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Abstract: Accurate grasping state detection is critical to the dexterous operation of robots. Robots
must use multiple modalities to perceive external information, similar to humans. The direct fusion
method of visual and tactile sensing may not provide effective visual–tactile features for the grasping
state detection network of the target. To address this issue, we present a novel visual–tactile fusion
model (i.e., RFCT) and provide an incremental dimensional tensor product method for detecting
grasping states of weak-stiffness targets. We investigate whether convolutional block attention
mechanisms (CBAM) can enhance feature representations by selectively attending to salient visual
and tactile cues while suppressing less important information and eliminating redundant information
for the initial fusion. We conducted 2250 grasping experiments using 15 weak-stiffness targets. We
used 12 targets for training and three for testing. When evaluated on untrained targets, our RFCT
model achieved a precision of 82.89%, a recall rate of 82.07%, and an F1 score of 81.65%. We compared
RFCT model performance with various combinations of Resnet50 + LSTM and C3D models commonly
used in grasping state detection. The experimental results show that our RFCT model significantly
outperforms these models. Our proposed method provides accurate grasping state detection and has
the potential to provide robust support for robot grasping operations in real-world applications.

Keywords: visual–tactile fusion perception; target grasping state detection; grasping; multimodal
perception

MSC: 68T40

1. Introduction

Recently, with the rapid increase in demand for robot operations in both industry and
the service sector, the grasping ability of robots has become increasingly crucial [1,2]. Robot
grasping is a complex problem that encompasses various research domains, with grasp
stability prediction and post-grasp slip detection emerging as two key tasks garnering
significant attention in the field of robot operations [3–6]. However, when robots are re-
quired to grasp objects with low stiffness, such as drinks made of paper, merely considering
post-grasp slip detection is insufficient. However, when robots are tasked with grasping
objects of low stiffness, such as paper-based beverages, solely focusing on post-grasp slip
detection proves inadequate. This is because it may result in excessive deformation or
missed grasps even before lifting the object [7–9]. Therefore, it becomes imperative to
comprehensively address both grasp stability prediction before lifting and post-grasp slip
detection when dealing with deformable objects. In this study, we define the problem of
evaluating the grasp status of deformable objects as a five-class classification task. This
classification comprises the object’s grasp status before lifting (no contact, moderate contact,
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excessive contact) as well as its grasp status after lifting (slip, no slip). Collectively, these
five status detections are referred to as grasp status detection throughout this paper. Solving
the grasping problem for robots is a complex task because it involves recognizing various
factors, such as the shapes, surface materials, weights of different objects, and the robot
hand’s posture. Convolutional Neural Networks (CNNs), as deep learning tools, possess
robust feature extraction and modeling capabilities, aiding in capturing these complexi-
ties. Compared to traditional methods, they excel at learning from data and addressing
nonlinear problems more effectively.

Numerous studies have used visual and tactile direct fusion (DF) methods, as shown
in Figure 1, to detect the grasping states of targets [5,6,10], obtaining promising results.
Although the DF method integrates inherent visual and tactile characteristics, it does not
characterize interrelated features [11]. To better fuse these features, we add a dimension
and find the tensor product after extracting visual and tactile features separately, as shown
in Figure 2. The initial fused visual–tactile feature (IVTF) method characterizes the correla-
tions and inherent properties of visual and tactile sensations, but because the incremental
dimensional tensor product (IDTP) feature fusion method may lead to redundant informa-
tion in the IVTF, it is difficult for the subsequent classification network to make relative
judgments. Inspired by the added efficacy of attention mechanisms, the convolutional
block attention mechanism (CBAM) [12] has been introduced to channels and spaces to
reduce redundant information and capture the most important IVTFs. Traditional target
grasping state detection problems use rigid bodies that are resilient to deformation; thus,
their gripping and slip success markers are constant. However, in real industrial scenarios,
it is important to consider targets with weak-stiffness characteristics, because their lack of
rigidity will defy the predominant success markers.

Figure 1. Direct fusion method for visual and tactile features.

Figure 2. Visual and tactile method of increasing dimensional tensor products (IDTP).

To address this need, we add the detection of a target’s deformation degree based
on slip detection, including “no contact”, “moderate contact”, and “excessive contact”
states. This variety of gripping states allows robots to adapt their gripping and slip controls
more intelligently. We mimic humans’ neurologically driven tactile strategies to propose
a new deep-learning visual–tactile fusion with deformation. We use normal red–green–
blue (RGB) cameras as visual sensors and an array of Uskin tactile sensors, each with
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16 points, providing three-axis (x, y, and z) information [13] for acquiring the corresponding
sequence readings (Figure 3) in two lateral shear directions (x, y) on the target. The z-axis
reflects the contact strength. This results in the extraction of more effective visual–tactile
fusion features. In this report, we provide experimental results on the efficacy of visual
and tactile information extracted using different feature fusion methods. An ablation
study is also applied to understand incremental performance improvements based on
model constituents.

The primary contributions of this study include the following:

(1) We propose a new visual–tactile fusion method for a target grasping state detection
network to achieve more accurate detection of the grasping state of targets.

(2) In grasping state detection of weak-stiffness targets, we introduce multiple grasping
states based on adding deformation degree detection to the slip detection of the target
to make the robot more dexterous and intelligent.

(3) The IDTP method is proposed to obtain IVTF using the CBAM attention mechanism
for the automatic capture of sensitive weights on channels and spaces to extract
more important information on visual–tactile features, which has advantages over the
DF method.

Figure 3. Visual and tactile devices: (1) UR5 robot arm. (2) (3) Tactile data from the Uskin sensor.
(4) Images taken by an external camera.

2. Related Works

Tactile sensors have been used extensively for target grasping [3,8] and manipulation [14,15].
We first introduce studies related to target grasping state detection and visual–tactile
fusion learning, and thereafter introduce studies related to commonly used grasping state
detection models.

2.1. Target Grasping Status Detection

Proper grasping state detection improves robot resilience and dexterity in manipu-
lation tasks. Target deformation and slip during weak-stiffness target grasping remain
challenging [7,8]. Robots with tactile sensors can pick up a variety of targets based on
contact detection [16–18]. Yuan et al. [19] employed GelSight tactile images as inputs to a
neural network to estimate target stiffness. Such optical tactile sensors offer abundant tactile
information, but their processing times are often too long for real-time tasks. To prevent
the grasped target from slipping out of the robot’s end-effector, researchers have applied
a range of tactile sensors and gripping modalities. Kwiatkowski et al. [20] enhanced the
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ability to predict robot arm target slip by using an unsupervised feature learning method
that incorporated external and self-sensation strategies. In [21], 3972 samples were used to
explore the effects of dataset composition on classifier performance. While maintaining
similar overall precision, the ability to detect grip failures was found to be significantly
affected by the dataset composition. Yi et al. [22] extracted tactile features from signals and
proposed a new genetic algorithm-based integrated hybrid sparse limit learning machine
for grasp stability recognition tasks. Han et al. [23] introduced a Transformer-based robotic
grasping framework for rigid gripper robots, leveraging tactile and visual information to
ensure secure object grasping. Evaluation on slip detection and fruit grasping datasets
demonstrated that Transformer models exhibit higher grasping accuracy and computational
efficiency compared to traditional CNN + LSTM models. As it is challenging to accurately
model the contact state between an end-effector and a target, Funabashi et al. [24] uti-
lized a convolutional neural network (CNN) with a long short-term memory (LSTM) to
process high-dimensional tactile information and achieve stable robot hand operations.
This method facilitates the processing of complex tactile information and enhances the
dexterity of robotic multiple-fingered hand operations. Numerous studies have focused on
single modality input to learning models. For example, extensive overviews of different
modalities have been published [25,26]. Although significant progress has been made in
related fields, not enough attention has been paid to effectively integrating visual and
tactile information.

Cui et al. [7] extracted visual and tactile information as features in three dimensions
and used fully connected layers to derive the corresponding grasping states. The closest
visual–tactile fusion model to ours is the CNN + LSTM, which was first proposed by
Sainath et al. [27]. As our primary improvement, we replace the LSTM [28] with a temporal
convolutional neural network (TCN) [29]. First, note that the core of the LSTM network
is cyclic, and thus, it does not lend itself to parallel processing, resulting in slow training
speeds, even with state-of-the-art graphics processing units (GPUs). Second, the importance
of early training data is often overlooked during new inputs owing to the fixed capacity
of the hidden state. Finally, as feature sequences become longer, long-term temporal
dependencies may be lost. For grasping status determination, Li et al. [5] found that
shorter sequences are better and that moderate sequences are more descriptive. Using
the TCN model, the output states share a wider perceptual field than with LSTM via
the introduction of a null convolution and a multitemporal data treatment method that
equalizes the importance levels at each phase, allowing the TCN to effectively correlate
earlier and later information. In sequence-to-sequence learning [30,31], TCN networks are
already preferred as they outperform LSTMs [3,30] on several tasks. To our knowledge,
TCN has rarely been used with visual and tactile sequence data. Because TCN uses far
fewer parameters than LSTM, faster detection speeds are provided for detecting robot
grasping status [28].

2.2. Visual–Tactile Fusion Learning

Visual and tactile senses are the two main sensory modalities used by humanoid
animals to understand and interact with their environment [32,33]. Our aim is for robots
to integrate visual and tactile senses in state-detection tasks [34,35]. Visual sense provides
information about the target surface, which facilitates the robot to grasp the position [36],
while tactile information provides more detailed textures [37], roughness [38], and other
invisible characteristics. Combining this information allows for more accurate detection
of target deformation and slip trends [9,39]. Effectively combining information from both
modalities is very important in state-detection tasks. We would like the robot to integrate
visual and tactile senses in state-detection tasks [35,40]. In the brain, interactions between
visual and tactile perceptions occur in the cerebral cortex, and these interactions are cross-
modal, implying that visual perception can stimulate tactile perception [41]. Allen et al. [42]
first proposed a combination of visual and tactile sensations to generate target surfaces,
especially for curved targets. Numerous studies have focused on a single modality as an
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input to the model, for example, References [25,26] have completed extensive overviews
based on the visual and tactile modalities. Although significant progress has been made in
visual and tactile perception research, less attention has been paid to effectively integrating
visual and tactile concerns. Calandra et al. [10] studied learning re-grasp strategies based
on visual and tactile information after the initial grasp. Experimental results showed that
the effective combination of visual and tactile sensations can significantly improve grip
performance. However, most of the targets they used in their experiments were rigid
bodies that do not require precise force magnitude control. Visual and tactile methods
of DF have been studied extensively [5–7] with good results. The DF method can fuse
intrinsic visual and tactile properties without characterizing the correlation between visual
and tactile features.

Previous studies focused on different visual and tactile learning tasks and reported
that a combination of visual and tactile sensations was superior to a single modality.
Unfortunately, existing deep-learning-based visual–tactile fusion approaches combine
features of visual and tactile modalities directly and then perform subsequent classification
or regression. Owing to the simple structure, the DF method may fail to construct effective
visual–tactile features. We believe that an effective fusion approach of features is possible
to significantly improve the performance of the target grasp-state detection model.

This study aims to provide effective visual–tactile features for grasping state detection.
The input includes continuous and fixed numbers of visual (XV) and tactile (XT) signal
frames, with the visual signal containing 224 × 224 × 3 image pixel information and the
tactile signal containing 4 × 4 × 3 matrix information.

Firstly, the corresponding visual features V and tactile features T are extracted by the
visual (EV) and tactile (ET) feature extractors, Resnet50 [43], and the custom neural network
(as shown in Figure 4).

Figure 4. Structure of a tactile convolutional neural network.

Secondly, visual and tactile features are fused using the IDTP method constructed
in this study. Compared with the DF method, the IDTP method is easier to interpret
and semantically more meaningful. Therefore, subsequent classification networks can
easily decode meaningful information about the visual–tactile features. Although IVTF has
enhanced correlation between visual and tactile modalities, it may have some redundant
information. As the IDTP method may add some unimportant information to the space
and channel of IVTF, it is not adapted for subsequent classification networks. Inspired
by the CBAM attention mechanism and combined with the drawbacks brought by the
IVTF approach, the feature mapping of the attention mechanism is performed along
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two independent dimensions of IVTF, channel and space, to perform adaptive feature
refinement on the input feature map. IVTF undergoes CBAM attention mechanism to
eliminate some redundant information and focus more on relatively important features.
To some extent, it is easier to characterize the correlation and inherent properties between
different modalities using the IVTF of the CBAM attention mechanism, and here, the feature
is called the final visual–tactile feature (FVTF).

Finally, FVTF is input into the TCN network, which outputs the grasping state corre-
sponding to the target: output for 0, 1, 2, 3, and 4 (0 for no contact, 1 for moderate contact,
2 for excessive contact, 3 for slip, and 4 for no slip).

In our proposed RFCT model, the visual feature extraction module EV and the tactile
feature extraction module ET , the IDTP method + CBAM (VTFCB) module, and the TCN
network are implemented by neural networks with different structures and parameters.
The steps are illustrated in Figure 5, where we describe the three modules. Below are the
specific details of our network model implementation.

Figure 5. RFCT network architecture diagram.
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3. Methods
3.1. Visual and Tactile Feature Extraction Networks

First, the visual features are extracted using the Resnet50 network. We process the
tactile signal into the form of a 4 × 4 × 3 tactile matrix and use the custom network structure
in Figure 4 for feature extraction. For each tactile matrix, two neural network structures
have access to weight normalization and a rectified linear unit (ReLU) activation function
after each layer. The first layer contains three 3 × 3 kernels with a step size of one, filled
with 1 × 1 convolutions. The second layer contains eight 3 × 3 kernels with a step size of
one, filled with 1 × 1 convolutions. Instead of pretraining, the visual and tactile feature
networks are trained along with the rest of the network.

V = EV(XV), V ∈ RHV×WV×CV (1)

T = ET(XT), T ∈ RHT×WT×CT (2)

where HV , WV , and CV are the height, width and feature channel dimensions of V, respec-
tively. These notations are similar for the tactile feature T.

3.2. VTFCB Module

The main task of the VTFCB module is to perform effective feature characterization
using the visual and tactile features outputted above. Most existing methods for visual
and tactile fusion use direct splicing of features from two different modalities (as shown in
Figure 1). However, the DF approach is still at the primary stage of feature fusion.

Unlike the DF method, the VTFCB module is divided into two stages to extract the
visual–tactile fusion features. Firstly, the visual and tactile senses are used to obtain the IVTF
through the IDTP method. Secondly, the CBAM attention mechanism module is executed
on the IVTF to obtain the FVTF as detailed below for the fusion between modalities:
(1) Visual and tactile features were obtained in Resnet50 and neural networks for visual
and tactile are customized for each channel. The length and width of the visual and tactile
feature maps are flattened, and an additional dimension is added, after which the visual
and tactile features are subjected to a tensor product operation; the result is shown in
Figure 2. IVTF has visual, tactile, and visual–tactile correlated features. Feature fusion is
performed in the above manner, which lays the foundation for subsequent modal fusion
between arbitrary channel spatial locations for the CBAM attention module, capturing
visual–tactile properties. Because tensor fusion is mathematically interpreted as formed
by the outer product of features, it has no learnable parameters. (2) IVTF is compared to
the DF method of feature direct splicing. Based on Figure 2, we can suspect that it may
contain a lot of redundant and noisy information, which is not conducive to be used as a
classification feature of the classification network. We use the channel and spatial attention
mechanism (CBAM) structure (Figure 6) to further streamline and capture the visual–tactile
features that are beneficial to the task. It achieves the effect of the attention mechanism
by adding different weights to different channels and spaces of IVTF, and we believe that
this operation can make VTF more capable of providing effective visual–tactile features for
grasping state detection models to learn.

FI =

[
ZV
1

]⊗[
ZT
1

]
(3)

where FI is the IVTF, ZV stands for the height and width of V, which is paved, the
number of channels remains the same, and ZT is treated similarly. Moreover, ZV ∈
R(HV×WV)×CV , ZT ∈ R(HT×WT)×CT , FI ∈ R(HV×WV)×(HT×WT)×CV,T , and ⊗ represents broad-
cast and element-wise multiplication.
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Figure 6. CBAM attention mechanism.

Ac(FI) = σ(MLP(AvgPool(FI)) + MLP(MaxPool(FI))) (4)

where σ denotes the sigmoid function, Ac ∈ RC×1×1 and FI is the output of convolution
layers. Then, we get FcI = Ac(FI)⊗ FI , where ⊗ represents broadcast and element-wise
multiplication.

As(FcI) = σ
(

f 3×3([AvgPool(FcI); Maxpool(FcI)])
)

(5)

where σ denotes the sigmoid function and f 3×3 denotes a 3 × 3 convolution with 1 × 1
padding. Then, we get FscI = As(FcI)⊗ FcI , where⊗ represents broadcast and element-wise
multiplication.

3.3. TCN Module

TCN is used for time series modeling and prediction of the series using a fully con-
nected layer. The TCN model consists of two dilated convolutional layers, each of which is
weight normalized. Residual connectivity (1 × 1 convolution) is also used to help the model
learn temporal relationships. The output of the last time step of the temporal convolutional
network is connected to another fully connected layer, which generates five predicted
values.

Output = Activation(x + S(x)) (6)

where Activation( · ) is the Relu function, S( · ) is the backbone of the TCN model, x is the
residual connection, and Output is the grasping state of the output. Output ∈ 0, 1, 2, 3
and 4.

4. Data Collection and Experimental Setup
4.1. Data Collection

Our experiments were conducted using the UR5 robotic arm and Robotiq shown
in Figure 3 to grasp the state evaluation targets. The maximum opening distance of the
end-effector was 85 mm, which was reduced to 75 mm due to the two Uskin tactile sensors
affixed inside. The two tactile sensors gathered 2 × 4 × 4 × 3 = 96 signals, and the camera
was mounted to the side of the end-effector, the angle of which could be adjusted while
capturing 224 × 224 × 3 RGB image signals. The 15 weak-stiffness targets are shown in
Figure 7, for which the grasping states were divided into the five types discussed.

Noting that target deformations are mainly caused by internal characteristics, such
as the elasticity of the target material and/or the applied external force, the dataset was
constructed in two stages. To increase data diversity, the initial crawl position of each target
was randomized, and the width of each was measured. The width of the end-effector to
which the tactile sensor was attached was then set 5-mm greater than the target estimation.
The two Uskin sensor contacts had relatively small differences in thickness, and the fingers
were slightly tilted. The motion of the end-effector was set to squeeze the target from both
sides to a random constriction between 0 and 25 mm, which corresponds to real target
dynamics in industrial situations. For output, deformation labels were created using one of
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three categories (i.e., “no contact”, “moderate contact”, and “excessive contact”). When
the distance between the end-effector was greater than the width of the target, the system
classified the scenario as “no contact”. When the distance between the end-effectors was
0–15 mm shorter than the originally estimated width of the target, the label was marked as
“moderate contact”. When the distance was between 15 and 20 mm, the state was labeled
“excessive contact”. After grasping the target, the end-effector was programmed to move
at a constant speed of 10.0 mm/s as data were collected simultaneously by the camera
and the Uskin tactile sensor at a rate of 40 Hz. We conducted 30 tests per contact state for
a total of 90 “catches”. Because the input formats included 1–7 frames, 2–8 frames, and
34–40 frames, the deformation dataset ultimately consisted of 45,900 seven-frame visual
image sequences and corresponding tactile image sequences.

Diversity was added to the slip datasets based on variations in contact positions.
The distance of the end-effector was judged to be between 0 and 15 mm based on the
deformation state of the first stage. The robot arm slowly lifted the target 3 cm at 40.0 mm/s,
which is empirically sufficient to determine whether the target slips. We next performed
30 experiments for each of the two states, for a total of 60 experiments. This time, the
slip dataset comprised 30,600 sequences of seven-frame visual images alongside their
corresponding tactile image sequences. The deformation–slip dataset contained 76,500 data
samples. Visual and tactile target grasps are shown in Figure 8. The model was then trained
using deformation and slip data from 12 randomly selected targets, whereas data from
three other targets were used for validation.

Figure 7. Weak-stiffness targets used in our experiments.
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Figure 8. Visualization of Uskin sensor readings. Starting from the left, the different targets are read.
Each green dot represents a vertex of the 4 × 4 sensor matrix. The diameter (z-axis, normal force) and
position change (x- and y-axis, shear force) of the green dots indicate the magnitude and direction of
each three-axis (x, y and z) measurement.

4.2. Experimental Setup

The visual input for each of the following experiments was the raw data of size
224 × 224 × 3. The tactile signal input was data of size 4 × 4 × 3 that changed after contact
to evaluate different models. The visual–tactile seven-frame input is shown in Figure 9.

Figure 9. One sample of inputs. The first row is seven frames of image data. The second row is the
tactile data acquired from the two tactile Uskin sensor matrices.

Single Visual: The input was visual data, the visual model was Resnet50 + LSTM.
LSTM had two hidden layers.

Single Tactile: The input was tactile data, the visual model was CNN + LSTM, the
CNN used for tactile feature extraction is shown in Figure 4, and the LSTM had two hidden
layers.

RL: The input was 6–9 frames of visual and tactile data. The model was Resnet50 + LSTM.
Unlike the study [5], the feature extraction network was different for visual and tactile. The
visual and tactile feature fusion method was a feature DF method to find the optimal visual
and tactile optimal input frames. The optimal number of visual and tactile data input
frames in the experiment is called the optimal visual–tactile frame number.

C3D: The input was the optimal visual–tactile frame number, the model was C3D [7],
and the visual features and tactile features fusion method was the DF method.

RT: The input was the optimal visual–tactile frames, the model was Resnet50 + TCN,
and the visual features and tactile features were fused using the DF method.
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RFL: The input was the optimal visual–tactile frames, the model was RL, and the
visual and tactile feature fusion method was the IDTP method.

CF: The input was the optimal visual–tactile frames, the model was C3D, and the
visual and tactile feature fusion method was the IDTP method.

RFT: The input was the optimal visual–tactile frames, the model was RT, and the visual
and tactile features were fused using the IDTP method.

RFCL: The input was optimal visual–tactile frame number, the model was the basis of
experiment RFL, and the CBAM attention mechanism module was added to IVTF.

CFC: The input was the optimal visual–tactile frame number, the model was the basis
of experiment CF, and the CBAM attention mechanism module was added to IVTF.

RFCT: The input was the optimal visual–tactile frame number, the model was the basis
of experiment RFT, and the CBAM attention mechanism module was added to IVTF.

For all models implemented in this study, we optimized each model using limited
hardware resources owing to the large datasets. For all models, we used the Adam
optimizer with cross-entropy loss function and a learning rate of 0.000001. All models were
built using PyTorch 1.8 and NVIDIA RTX A4000 was used as the GPU.

5. Experimental Results and Analysis

We next discuss the performance of different models and visual–tactile feature com-
binations. Each method was evaluated according to the description in Section 4. To
evaluate the performance of the proposed model more comprehensively and accurately,
we compared the precision, recall, and F1 scores of the different models.

(1) Table 1 shows the results of the comparison of different models and visual–tactile
fusion performance. The results show that the visual and tactile accuracies of the unimodal
models were 41.90% and 69.50%, respectively. The tactile modality, to some extent, detected
the grasping state of the target more easily than the visual modality. Because the tactile
sensation was able to detect changes in the target directly in a very short time, images
were measured indirectly. This shows that the tactile sensation information should be
the primary information and the image information should be secondary when detecting
the grasping state. The performances of the three visual and tactile fusion models were
generally much higher than those of the single modality models. It can be concluded that
visual and tactile sensations are more practical as inputs for deep learning.

Table 1. Comparison of unimodal and multimodal networks.

Model Sequence
Length Precision Recall F1 Score

RT 7 74.06 72.19 72.62
C3D 7 75.49 74.54 74.75
RL 7 76.17 72.03 72.18

Single Tactile 7 69.50 66.09 66.06
Single Visual 7 41.90 41.60 41.07

(2) Different numbers of frames were input into Resnet50 + LSTM in Section 4 to find
the optimal number of input frames. As shown in Table 2, the visual and tactile frames
were the best with a precision of 76.17%, a recall rate of 72.03%, and an F1 score of 72.18%
for all performance metrics at a visual and tactile frame rate of 7. This result implies
that the sequence length is not proportionally related to the effectiveness of the LSTM
network. Long sequences may introduce some noisy information, significantly reducing
the capability of the classification network to classify the visual–tactile features. Subsequent
experiments also used seven frames of data as input to the model.
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Table 2. Results for visual–tactile inputs of different sequence lengths.

Model Sequence
Length Precision Recall F1 Score

RLRLRL

6 74.77 70.55 70.30
777 76.1776.1776.17 74.5474.5474.54 72.1872.1872.18
8 75.74 72.03 71.42
9 75.81 66.09 70.60

(3) In the DF method, the performance ranking was RL, C3D, and RT in descending
order. LSTM, as the most used network for visual–tactile fusion, showed superior per-
formance in the DF method. As LSTM runs serially, earlier information may occupy less
as the LSTM network runs later. The grasping state of the target needs to be compared
with the earlier state; therefore, LSTM may not be applicable if the sequence is relatively
long. However, the model is more suitable for the DF method. The performance of the
C3D model is intermediate because C3D adds feature extraction to the temporal dimension,
which is relevant to this dimension of time. However, visual and tactile sensations are
separately processed by C3D feature extraction, and thus, relatively important information
may have been lost before the link with the DF method, causing the C3D model to have
certain limitations. TCN can solve the common problem of LSTM very effectively. Firstly,
the TCN model solves the problem of long LSTM running time by running in parallel.
Secondly, LSTM tends to lose excessive information initially because of the specificity of the
grasping state task. The TCN model can capture long-term dependencies under different
time scales by operating with convolutional kernels of different sizes, and thus, it has a
better long-term dependency modeling capability than the LSTM network. However, in the
DF method, the TCN performance is not better than that of LSTM and C3D. We believe that
this is because the DF method does not sufficiently characterize the correlation between
the modes, which prevents the TCN model from learning the corresponding parameters
for correct classification. In the IDTP method, the RFCT model outperformed both the
RFCL and CFC models, and the growth was the largest compared to the DF method. Here,
it can be verified that the TCN model adapts relatively well to the representation of the
visual–tactile fusion, whereas the simple DF method does not perform well.

(4) In Table 3, regarding the three different models of visual–tactile fusion, the IDTP
method significantly outperformed the DF method, RFL (3.67% increase in precision), CF
(5.3% increase in precision), and RFT (7.7% increase in precision). We believe that the main
reason is that although the DF method preserves the characteristics of each mode, it does
not reflect the correlation between the modes after fusion. After the IDTP method is fused,
IVTF includes both the intrinsic properties of the modalities and the correlation of the fusion
between the two modalities. This fusion method provides more easily characterized visual–
tactile features for the following classification networks. The experimental performance
comparison shows that the IDTP method expresses visual and tactile sensations better than
the DF method.
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Table 3. Results of different feature fusion methods and whether to add the CBAM attention
mechanism.

Model Sequence
Length Precision Recall F1 Score

RFCTRFCTRFCT 777 82.8982.8982.89 82.0782.0782.07 81.6581.6581.65
RFT 7 81.76 80.92 80.43
RT 7 74.06 72.19 72.62

CFCCFCCFC 777 81.3681.3681.36 81.2181.2181.21 80.5880.5880.58
CF 7 80.79 79.32 78.70

C3D 7 75.49 74.54 74.75
RFCLRFCLRFCL 777 80.0180.0180.01 77.3177.3177.31 76.7776.7776.77
RFL 7 79.84 76.90 76.56
RL 7 76.17 72.03 72.18

(5) The IDTP method is an outer product of two feature vectors from a mathematical
perspective. This undoubtedly increases the parametric number of visual–tactile features
in the channel and space. Although the IDTP method performs better than the simple DF
method, the redundant information of the features is not desired because this may lead
to poor performance and slow convergence of the model. Based on this observation, we
also investigated whether the attention mechanism enhanced the representational ability
of IVTF. It is well known that CBAM attention mechanisms mainly reinforce features in
terms of channel and space. IVTF is just suitable for this situation, and thus, we intended to
make IVTF more focused on the corresponding parameters in channel and space through
the CBAM attention mechanism. The confusion matrix for the three models is shown in
Figure 10. Experimental results show that the three models improved precision, recall
rate, and F1 score with the CBAM attention mechanism, i.e., RFCL (0.17% increase in
precision), CFC (0.57% increase in precision), and RFCT (1.13% increase in precision).
This shows that our conjecture is correct. Although IVTF is well characterized by visual
and tactile properties, it has a certain amount of redundant information. However, the
CBAM attention mechanism enhances the features of IVTF, making the fused features more
generally applicable to the network. We also hope to apply it to other visual and tactile
integration tasks.

Figure 10. Confusion matrix for RFCT, CFC and RFCL models. NC stands for “no contact”, MC
stands for “moderate contact”, EC stands for “excessive contact” states, S stands for “slip”, and NS
stands for “no slip”.

6. Conclusions

We proposed a new grasping state detection model, RFCT, that uses visual and tactile
features as input targets. We improved the DF method to IDTP method to solve the problem
of inadequate integration of visual–tactile features by the DF method. Because the IDTP
method may introduce redundant information in channels and space in IVTF, we investi-
gated whether the CBAM attention mechanism can eliminate such redundant information
and enhance IVTF feature expression. We performed approximately 2250 grasping experi-
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ments using 15 different weak-stiffness targets, 12 of which were used for training and 3 for
testing. When tested on untrained targets, the RFCT model achieved a precision of 82.89%,
a recall rate of 82.07%, and an F1 score of 81.65%. We compared the proposed RFCT model
with various combinations of the widely used Resnet50 + LSTM and C3D. The RFCT model
outperformed various combinations of Resnet50 + LSTM and C3D. We also compared the
IDTP method with the DF method and demonstrated that the IDTP method is more suitable
for visual–tactile feature fusion. In the current version of our research, our primary focus
has been on grasp status detection and slip detection for textured objects. Consequently,
we did not include demonstrations for textureless objects. However, we acknowledge
the significance of textureless objects in practical applications, and our future research
directions will address this aspect. We provided examples of how visual information can
be combined with tactile information to achieve better performance. We believe this work
will be useful in the field of robot grasping. In future work, we will mount the camera
on the robot, use our method for stable grasping, and use a larger training set to achieve
higher recognition rates.
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