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Abstract: For a space-fractional diffusion equation with a nonlinear superdiffusion coefficient and
with the presence of a delay effect, the grid numerical method is constructed. Interpolation and
extrapolation procedures are used to account for the functional delay. At each time step, the algorithm
reduces to solving a linear system with a main matrix that has diagonal dominance. The convergence
of the method in the maximum norm is proved. The results of numerical experiments with constant
and variable delays are presented.
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1. Introduction

Partial differential equations of both integer and fractional orders with various com-
plicating effects are widely used in many mathematical models (gas dynamics, population
dynamics, and others). These effects may include nonlinearities in the differentiation
operator [1,2], delay effects [3,4], and the presence of space-fractional orders (superdiffu-
sion) [5,6].

Linearization techniques initially introduced by Bellman [7] also provide iterative
methods to overcome the nonlinear difficulty in differential equations. Later OHAM
methods appeared and they have been extensively applied to several types of nonlinear
differential equations [8,9].

Due to the complexity of the effects under study, the development of numerical
algorithms for solving the problems posed comes to the fore. Analytical solutions can
be obtained extremely rarely in such problems [10,11]. For equations with fractional
derivatives with respect to state, numerical methods are now being actively developed. We
note the works [12,13], the results of which are used in this article. More accurate numerical
methods for solving linear superdiffusion equations, including those with two or more
spatial variables, were developed in [14–20]. A numerical method for a space-fractional
equation with a constant delay was developed in [21].

So, for partial differential equations with a functional delay effect, numerical methods
were studied, in particular, in the articles [22–25]. Algorithms for the numerical solution of
linear space-fractional equations with a functional delay effect were studied in [26].

In this paper, we consider a quasilinear superdiffusion equation with a delay effect.
In view of the special form of nonlinearity (quasilinearity), it is possible to construct
an efficient algorithm for solving the considered equations. The idea of this algorithm
was borrowed from [27]; for the diffusion equation with the delay effect, the idea was
implemented in [28]. In contrast to [28], where the algorithm reduces to solving a linear
system with a tridiagonal matrix at each time step, for the superdiffusion equation with
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a two-sided Riemann–Liouville derivative, a linear system arises at each time step that
does not have the tridiagonal property. However, this system has a diagonal predominance
with positive diagonal elements, which makes it possible to solve it quite effectively. In
addition, the properties of the system allow us to prove the stability of the method and, as
a consequence, to obtain the convergence of the method in the maximum norm.

The structure of the work is as follows. In the second section, the problem is formulated
and the main assumptions are made. Section 3 constructs a difference method that takes
into account the effect of functional delay, the fractional nature of the derivative with
respect to space, and the nonlinearity of the superdiffusion coefficient. In the next section,
the local error of the method is studied. In the fifth section, the global error of the method
is studied and the convergence theorem is proved. The results of numerical experiments
on test examples are presented. In conclusion, the results are summarized and prospects
for the development of the method are outlined.

2. Problem Statement and Basic Assumptions

Consider a nonlinear one-dimensional superdiffusion equation with a functional delay:

∂u
∂t

= K(u(x, t))(
1
2
+

q
2
)

∂αu
∂xα

+ K(u(x, t))(
1
2
− q

2
)

∂αu
∂(−x)α

+ f
(

x, t, ut(x, ·)
)
, (1)

where t ∈ [t0, θ] ⊂ R1, x ∈ [0, X] ⊂ R1 are time- and space-independent variables,
u(x, t) ∈ R1 is the unknown solution function, ut(x, ·) = {u(x, t + s), − τ 6 s 6 0} is
the history of the desired function up to the time t, τ is the delay value. K(u(x, t))–nonlinear
superdiffusion coefficient, −1 6 q 6 1. The left-hand and right-hand fractional derivatives of
order α, 1 < α < 2, are defined in the Riemann–Liouville sense

∂αu
∂xα

=
1

Γ(2− α)

∂2

∂x2

x∫
0

u(η, t)dη

(x− η)α−1 ,

∂αu
∂(−x)α

=
1

Γ(2− α)

∂2

∂x2

X∫
x

u(η, t)dη

(x− η)α−1 .

Initial and boundary conditions are set

u(x, t) = ϕ(x, t), x ∈ [0, X], t ∈ [t0 − τ, t0], (2)

u(0, t) = 0, u(X, t) = 0, t ∈ [t0, θ]. (3)

Let us assume that there is a unique solution to the problem (1)–(3), while deriving
error estimates, we assume that it is sufficiently smooth.

The set of functions q(s) that are piecewise continuous on [−τ, 0], with a finite number
of discontinuity points of the first kind, and right-continuous at the discontinuity points
is denoted by Q = Q[−τ, 0]. We define the norm of functions on Q[−τ, 0] by the relation
‖q(·)‖Q[−τ,0] = max

−τ6s60
|q(s)|.

We will assume that the functional f
(
x, t, ut(x, ·)

)
is Lipschitz with constant L f in

the last argument, i.e., there is a constant L f , that for all x ∈ [0, X], t ∈ [t0, θ], v1(·) ∈ Q,
v2(·) ∈ Q

| f (x, t, v1(·))− f (x, t, v2(·))| 6 L f ‖v1(·)− v2(·)‖Q. (4)

Let for all x ∈ [0, X], t ∈ [t0 − τ, t0], the exact solution (1)–(3) |u(x, t)| 6 U is satisfied.
We will assume that, in the domain |u| 6 2U, the following condition is satisfied:

K(u) > K̂ > 0.



Mathematics 2023, 11, 3941 3 of 14

We will also assume that the function K(u) is Lipschitz in this domain, meaning that
there exists a constant LK such that for any u and v from this domain,

|K(u)− K(v)| 6 LK|u− v|. (5)

3. Implicit–Explicit Difference Method

Let us divide the segments [0, X], [t0, θ] into parts with steps h = X/N and
∆ = (θ − t0)/M, respectively, and introduce the points xi = ih, i = 0, N, tk = t0 + k∆,
k = 0, M. Without loss of generality, we assume that the value τ/∆ = m is an integer.

If τ/∆ is a non-integer, which may happen when (θ − t0)/τ is a non-integer, then the
step can be introduced as follows. Let us define the step ∆ = τ/m, where m is an integer.
Then the number of steps M can be determined through the integer part of the relation:
M = [(θ − t0)/∆].

The approximation of the exact solution u(xi, tk) at the nodes of the grid (xi, tk) will
be denoted by ui

k. For each fixed i = 0, N, we introduce a discrete history up to the moment
tk, k = 0, M: {ui

l}k = {ui
l , k−m 6 l 6 k}.

Definition 1. The operator of interpolation–extrapolation of discrete prehistory {ui
l}k is the map-

ping I : {ui
l}k → vi

k(·) ∈ Q[−τ, ∆].

In what follows, we will use the piecewise constant interpolation with extrapolation
by continuation

vi
k(t) =


ϕ(xi, t), t ∈ [t0 − τ, t0],
ui

j−1, t ∈ [tj−1, tj), 1 6 j 6 k,
ui

k, t ∈ [tk, tk+1].
(6)

This method of interpolation with extrapolation has the first order of ∆, i.e., if the
exact solution u(x, t) is continuously differentiable with respect to t on [t0 − τ, θ], then
there are constants C1 = 1 and C2, so that for all i, k and t ∈ [tk − τ, tk+1], the following
inequality holds

|vi
k(t)− u(xi, t)| 6 C1 max

k−m6j6k
|ui

j − u(xi, tj)|+ C2∆. (7)

Note also that the operator of piecewise constant interpolation with extrapolation
by continuation is Lipschitz with the Lipschitz constant LI = 1 in the following sense:
if wi

k(t) and vi
k(t) are the results of piecewise constant interpolation with extrapolation

by continuation of two discrete prehistories, respectively, {wi
j}k and {vi

j}k, then for all
t ∈ [tk − τ, tk+1] the following inequality holds

|wi
k(t)− vi

k(t)| 6 LI max
k−m6j6k

|wi
j − vi

j|.

To approximate the left-hand fractional derivative on the k + 1-th time layer, we will
use the right-shifted Grunwald–Letnikov formula [5]

δα,x[ui
k+1] =

1
hα

i+1

∑
j=0

gα,ju
i−j+1
k+1 ,

where the normalized Grunwald weights are defined by the relations

gα,j =
Γ(j− α)

Γ(−α)Γ(j + 1)
, j = 0, 1, . . . .
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In particular, gα,0 = 1, gα,1 = −α,

gα,j = (−1)j α(α− 1) · · · (α− j + 1)
j!

, j = 2, . . . .

Similarly, to approximate the right-hand fractional derivative on the k + 1-th time layer, we
will use the left-shifted Grunwald–Letnikov formula [12]

δα,−x[ui
k+1] =

1
hα

N−i+1

∑
j=0

gα,ju
i+j−1
k+1 .

We introduce the difference operator

Λ(ui
k)[u

i
k+1] = K(ui

k)(
1
2
+

q
2
)δα,x[ui

k+1] + K(ui
k)(

1
2
− q

2
)δα,−x[ui

k+1].

Lemma 1. If the condition (5) is satisfied, the left-hand and right-hand derivatives of order α + 1
of the exact solution, as well as their Fourier transforms, are continuous. Thus,

K(u(xi, tk+1))(
1
2
+

q
2
)

∂αu(xi, tk+1)

∂xα
+ K(u(xi, tk+1))(

1
2
− q

2
)

∂αu(xi, tk+1)

∂(−x)α

= Λ(u(xi, tk))[u(xi, tk+1)] + Pi
k, |Pi

k| 6 C3(∆ + h).

Proof. By virtue of the assumptions about the corresponding smoothness of the solution
u(x, t) of the problem (1)–(3) and assumptions about the function K(u), we obtain

K(u(xi, tk+1)) = K(u(xi, tk)) + r1, |r1| 6 C4∆,

and, as follows from [5]

∂αu(xi, tk+1)

∂xα
= δα,x[u(xi, tk+1)] + r2, |r2| 6 C5h,

likewise
∂αu(xi, tk+1)

∂(−x)α
= δα,−x[u(xi, tk+1)] + r3, |r3| 6 C6h.

The same assumptions also imply that K(u(xi, tk)), δα,x[u(xi, tk+1)] and δα,−x[u(xi, tk+1)]
are bounded, whence follows the conclusion of the lemma.

For k = 0, M− 1, consider the implicit–explicit difference scheme

ui
k+1 − ui

k
∆

= Λ(ui
k)[u

i
k+1] + f (xi, tk+1, vi

k(·)), i = 1, N − 1, (8)

with initial and boundary conditions

vi
0(t) = ϕ(xi, t), t 6 t0, i = 0, N, (9)

u0
k = 0, uN

k = 0, k = 0, M. (10)

Without interpolation and extrapolation procedures, difference methods would arise in
an infinite-dimensional space. The procedure of interpolation and extrapolation with given
properties allows us to make the numerical method implicit only in a finite-dimensional
space. The use of interpolation and extrapolation makes it possible to explicitly calculate
the functional f (xi, tk+1, vi

k(·)); therefore, we call the method implicit–explicit.
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The idea of taking the value of the non-linear superdiffusion coefficient from the
previous time layer makes the implicit–explicit method linear.

The values of the function K(u) in the system (8) are calculated at the points of the
time layer tk. Thus, the scheme (8)–(10) is a linear system with respect to the values ui

k+1
on the time layer tk+1.

Let us rewrite the system (8) as

ui
k+1 − ∆Λ(ui

k)[u
i
k+1] = ui

k + ∆ f (xi, tk+1, vi
k(·)), i = 1, N − 1. (11)

Let us write out the matrix A of the coefficients of the unknowns of the system (11),
elements of matrix A of dimension N − 1× N − 1 have the form

Aij =


1− (ξi + ηi)gα,1 j = i,
−(ξigα,2 + ηigα,0) j = i− 1,
−(ξigα,0 + ηigα,2) j = i + 1,
−ξigα,i−j+1 j < i− 1,
−ηigα,j−i+1 j > i + 1,

where
ξi = K(ui

k)(
1
2
+

q
2
)

∆
hα

, ηi = K(ui
k)(

1
2
− q

2
)

∆
hα

.

Lemma 2. The coefficients of the matrix A of the system (11) have strict diagonal dominance with
positive diagonal elements; hence, the system is solvable and has a unique solution.

Proof. Note the properties of the coefficients gα,1 = −α < 0, gα,j > 0, j = 0, 2, 3, . . . ,
i+1

∑
j=0

gα,j < 0,
N−i+1

∑
j=0

gα,j < 0 [13] (Lemma 1).

Also, we performed the following calculation: ξi = K(ui
k)(

1
2
+

q
2
)

∆
hα

> 0, ηi =

K(ui
k)(

1
2
− q

2
)

∆
hα

> 0. Then the diagonal elements are positive; moreover,

Aii = 1− (ξi + ηi)gα,1 > 1.

In addition, all off-diagonal elements of the matrix are negative. Let us show strict diagonal
dominance. Let, for example, i = 1, then

Aii −
N−1

∑
j=2
|Aij| = 1− (ξi + ηi)gα,1 − (ξigα,0 + ηigα,2)−

N−1

∑
j=i+2

ηigα,j−i+1

= 1 + ηi − ηi

N−1

∑
j=0

gα,j − ξi(gα,1 + gα,0) > 1.

This follows from the fact that ηi > 0, ξi > 0,
N−1
∑

j=0
gα,j < 0, gα,1 + gα,0 < 0.

Similarly, it is checked that in other cases, including i = 2, 2 < i < N − 2, i = N − 2,
i = N − 1, the condition

Aii −
N−1

∑
j=1,j 6=i

|Aij| > 1

is also satisfied.

The system (11) is solved using LU factorization, which is computed by Gaussian
elimination with partial pivoting.
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4. Residual of the Difference Method

Definition 2. Residual without interpolation of the method (8) is called

Ψi
k =

u(xi, tk+1)− u(xi, tk)

∆
−Λ(u(xi, tk))[u(xi, tk+1)]− f

(
xi, tk+1, utk+1(xi, ·)

)
,

i = 1, N − 1, k = 0, M− 1.

Lemma 3. Let the conditions of Lemma 1 be satisfied, and, moreover, the exact solution be twice
continuously differentiable with respect to t. Then the residual without interpolation of the method (8)
has the order h + ∆, i.e., there exists a constant C7, that

|Ψi
k | 6 C7(h + ∆), i = 1, . . . , N − 1, k = 0, . . . , M− 1.

Proof. According to the numerical differentiation formula, we have

u(xi, tk+1)− u(xi, tk)

∆
=

∂u(xi, tk+1)

∂t
+ r4, |r4| 6 C8∆.

Then, from the statement of Lemma 1, taking into account the fact that u(xi, tk+1) is the
exact solution of the Equation (1), we obtain the assertion of the lemma.

Definition 3. Residual with piecewise constant interpolation and extrapolation by continuation of
the method (8) is called

Ψ̂i
k =

u(xi, tk+1)− u(xi, tk)

∆
−Λ(u(xi, tk))[u(xi, tk+1)]− f

(
xi, tk+1, v̂tk+1(xi, ·)

)
,

i = 1, N − 1, k = 0, M− 1,

where v̂(xi, t) for t ∈ [tk− τ, tk+1] is the result of piecewise constant interpolation and extrapolation
by continuation (6) of the discrete prehistory of the exact solution at the nodes {u(xi, tl)}k.

Lemma 4. Under the condition of the previous lemma the residual with piecewise constant interpo-
lation and extrapolation by continuation of the method (8) has the order h + ∆, i.e., there exists a
constant C9 such that

|Ψ̂i
k | 6 C9(h + ∆), i = 1, . . . , N − 1, k = 0, . . . , M− 1.

Proof. Residual with piecewise constant interpolation and extrapolation by continuation
of the method (8) is related to residual without interpolation of the method (8) by

Ψ̂i
k = Ψi

k + f
(
xi, tk+1, v̂tk+1(xi, ·)

)
− f

(
xi, tk+1, utk+1(xi, ·)

)
. (12)

Using the Lipschitz conditions (4) and the fact that piecewise constant interpolation with
extrapolation by continuation is of the first order of ∆ (7), we obtain

| f
(

xi, tk+1, v̂tk+1(xi, ·)
)
− f

(
xi, tk+1, utk+1(xi, ·)

)
| 6 L f ‖v̂tk+1(xi, ·)− utk+1(xi, ·)‖Q 6 L f C2∆.

From here, from (12) and the assertion of Lemma 3, the required assertion follows.

5. Error Analysis

Let us determine the error of the method (8)

εi
j = u(xi, tj)− ui

j, j = 0, . . . , M, i = 0, . . . , N.

We say that the method converges with order hp + ∆q, if there exists a constant C
independent of h and ∆, that |εi

j| 6 C(hp + ∆q) for all i = 0, 1, . . . , N and j = 0, 1, . . . , M.
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Let us define for each time layer with the number j = 0, 1, . . . , M the layer-by-layer
error by the vector ε j = (ε1

j , ε2
j , · · · , εN−1

j ) with the norm ‖ε j‖ = max
16i6N−1

|εi
j|.

In addition, we determine the accumulated prehistory of the layer-by-layer error by
the time tk, k = 0, 1, . . . , M : {ε j}k = {ε j, 0 6 j 6 k} with norm ‖{ε j}k‖ = max

06j6k
‖ε j‖.

Lemma 5. Let |εi0
k+1| = max

16i6N−1
|εi

k+1|, then

|εi0
k+1| 6 |ε

i0
k |(1 + ∆2LKC10) + ∆| f̂ i0

k+1 − f i0
k+1|+ ∆C9(h + ∆), (13)

f i
k+1 = f

(
xi, tk+1, vtk+1(xi, ·)

)
, f̂ i

k+1 = f
(
xi, tk+1, v̂tk+1(xi, ·)

)
.

Proof. Let us write the method (8) as

ui
k+1 − ∆Λ(ui

k)[u
i
k+1] = ui

k + ∆ f i
k+1.

Let us rewrite the definition of the residual with interpolation in the form

u(xi, tk+1)− ∆Λ(ui
k)[u(xi, tk+1)] = u(xi, tk) + ∆Λ(u(xi, tk))[u(xi, tk+1)]

−∆Λ(ui
k)[u(xi, tk+1)] + ∆ f̂ i

k+1 + ∆Ψ̂i
k .

Then the equation for the error has the form

εi
k+1 − ∆Λ(ui

k)[ε
i
k+1] = εi

k + ∆( f̂ i
k+1 − f i

k+1) + ∆Ψ̂i
k

+∆(Λ(u(xi, tk))−Λ(ui
k))[u(xi, tk+1)]. (14)

The modulus of the left side of this relation for the index i0 is rewritten in the form

|εi0
k+1 − ∆Λ(ui0

k )[ε
i0
k+1]| = |ε

i0
k+1 −

∆
hα

K(ui0
k )
(
(

1
2
+

q
2
)

i0+1

∑
j=0

gα,jε
i0−j+1
k+1

+(
1
2
− q

2
)

N−i0+1

∑
j=0

gα,ju
i0+j−1
k+1

)
|.

Due to the property of the coefficient gα,1 = −α, properties of the quantities K(ui0
k ) > 0,

1
2
− q

2
> 0 and

1
2
+

q
2
> 0, we obtain

|εi0
k+1 − ∆Λ(ui0

k )[ε
i0
k+1]| = |ε

i0
k+1 + αK(ui0

k )
∆
hα

εi0
k+1 (15)

− ∆
hα

K(ui0
k )
(
(

1
2
+

q
2
)

i0+1

∑
j=0,j 6=1

gα,jε
i0−j+1
k+1

+(
1
2
− q

2
)

N−i0+1

∑
j=0,j 6=1

gα,jε
i0+j−1
k+1

)
| > (1 + αK(ui0

k )
∆
hα

)|εi0
k+1|

− ∆
hα

K(ui0
k )
(
(

1
2
+

q
2
)

i0+1

∑
j=0,j 6=1

|gα,j||ε
i0−j+1
k+1 |+ (

1
2
− q

2
)

N−i0+1

∑
j=0,j 6=1

|gα,j||ε
i0+j−1
k+1 |

)
.

Let us estimate the right-hand side of the inequality (15) from below using the properties
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of the coefficients gα,j > 0, j = 0, 2, 3, . . . ,
i0+1

∑
j=0

gα,j < 0,
N−i0+1

∑
j=0

gα,j < 0 [13] (Lemma 1) and

the definition of the number i0

(1 + αK(ui0
k )

∆
hα

)|εi0
k+1| −

∆
hα

K(ui0
k )
(
(

1
2
+

q
2
)

i0+1

∑
j=0,j 6=1

|gα,j||ε
i0−j+1
k+1 |

+(
1
2
− q

2
)

N−i0+1

∑
j=0,j 6=1

|gα,j||ε
i0+j−1
k+1 |

)
> (1 + αK(ui0

k )
∆
hα

)|εi0
k+1|

− ∆
hα

K(ui0
k )
(
(

1
2
+

q
2
)

i0+1

∑
j=0,j 6=1

gα,j|εi0
k+1|+ (

1
2
− q

2
)

N−i0+1

∑
j=0,j 6=1

gα,j|εi0
k+1|

)

= |εi0
k+1|

(
1− ∆

hα
K(ui0

k )
(
(

1
2
+

q
2
)

i0+1

∑
j=0

gα,j + (
1
2
− q

2
)

N−i0+1

∑
j=0

gα,j
))
> |εi0

k+1|.

From this inequality and the inequality (15), we obtain the estimate

|εi0
k+1 − ∆Λ(ui0

k )[ε
i0
k+1]| > |ε

i0
k+1|. (16)

Let us estimate the modulus of the right side of the relation (14) for the index i = i0.
From the definition of the operator Λ, the fact that the function K is Lipschitz, and the
boundedness of δα,x[u(xi, tk+1)] and δα,−x[u(xi, tk+1)], it follows that

|Λ(u(xi0 , tk))[u(xi, tk+1)]−Λ(ui0
k ))[u(xi, tk+1)]|

= |K(u(xi0 , tk))(
1
2
+

q
2
)δα,x[u(xi, tk+1)] + K(u(xi0 , tk))(

1
2
− q

2
)δα,−x[u(xi, tk+1)]

−K(ui0
k )(

1
2
+

q
2
)δα,x[u(xi, tk+1)]− K(ui0

k )(
1
2
− q

2
)δα,−x[u(xi, tk+1)]|

6 2LKC10|εi0
k |, |δα,x[u(xi, tk+1)]| 6 C10, |δα,−x[u(xi, tk+1)]| 6 C10.

Using also Lemma 4, we obtain an estimate for the right-hand side of the relation (14) for
the index i = i0:

|εi0
k + ∆( f̂ i0

k+1 − f i0
k+1) + ∆Ψ̂i0

k + ∆(Λ(u(xi0 , tk))−Λ(ui0
k ))[u(xi, tk+1)]| (17)

6 |εi0
k |(1 + ∆2LKC10) + ∆| f̂ i

k+1 − f i
k+1|+ ∆C9(h + ∆).

From (14), (16) and (17), the assertion of the lemma follows.

The proved statement means the stability of the difference scheme. In the follow-
ing statement, the accumulated prehistory of the layer-by-layer error by the time tk+1 is
estimated in terms of the accumulated prehistory of the layer-by-layer error by the time tk.

Lemma 6. Under the conditions of the previous lemma, we have the estimate

‖{ε j}k+1‖ 6 (1 + (L f + 2LKC10)∆)‖{ε j}k‖+ C9∆(h + ∆).

Proof. Let |εi0
k+1| = max

16i6N−1
|εi

k+1|, then from (13) we obtain the relation

‖εk+1‖ 6 ‖εk‖(1 + ∆2LKC10) + ∆| f̂ i0
k+1 − f i0

k+1|+ ∆C9(h + ∆). (18)

Due to the Lipschitz property of the function f with respect to the last argument and the
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properties of piecewise constant interpolation with extrapolation by continuation, we obtain

| f̂ i0
k+1 − f i0

k+1| = | f
(
xi0 , tk+1, v̂tk+1(xi0 , ·)

)
− f

(
xi0 , tk+1, vtk+1(xi0 , ·)

)
| (19)

6 L f max
t∈[tk−τ,tk+1]

|v̂(xi0 , t)− v(xi0 , t)| = L f max
j=k−m,...,k

|εi0
j |

6 L f max
j=k−m,...,k

‖ε j‖ 6 L f ‖{ε j}k‖.

From (18) and (19), the assertion of the lemma follows.

Theorem 1. Letting the exact solution u(x, t) of the problem (1)–(3) satisfy the conditions of
Lemma 1 and Lemma 3, then the method (8) converges with the order h + ∆.

Proof. From Lemma 6, we have

‖{ε j}k+1‖ 6 A‖{ε j}k‖+ B,

where A = 1 + (L f + 2LKC10)∆, B = C9∆(h + ∆). Consistently, we get ‖{ε j}0‖ = 0,
‖{ε j}1‖ 6 B, ‖{ε j}2‖ 6 AB + B, . . . , ‖{ε j}n‖ 6 (An−1 + . . . + A + 1)B. Using the geomet-
ric progression formula, we obtain for all time layers with the number n 6 M,

‖{ε j}n‖ 6
An − 1
A− 1

B 6
AM − 1
A− 1

B.

Let us substitute the expressions for A and B into this estimate, and also use the relation
∆M = θ − t0:

‖{ε j}n‖ 6
(1 + (L f + 2LKC10)∆)

θ−t0
∆ − 1

(L f + 2LKC10)∆
C9∆(h + ∆).

From this, we obtain the estimate

‖{ε j}n‖ 6
C9

L f + 2LKC10
e(L f +2LKC10)(θ−t0)(h + ∆)

uniform over all n = 1, 2 . . . , M. This estimate means the convergence of the method with
order h + ∆.

6. Numerical Experiments

Example 1. Let us consider the following test equation with constant concentrated delay with
respect to the variable t:

∂u(x, t)
∂t

= K(u(x, t))[(
1
2
+

q
2
)

∂αu
∂xα

+ (
1
2
− q

2
)

∂αu
∂(−x)α

] + 2tx2(1− x)2

+u(x, t− τ(t))− (t− 0.1)2x2(1− x)2 − (0.1 + βt6x6(1− x)6)t2[
1

Γ(3− α)
((1 + q)x2−α

+(1− q)(1− x)2−α)− 6
Γ(4− α)

((1 + q)x3−α + (1− q)(1− x)3−α)

+
12

Γ(5− α)
((1 + q)x4−α + (1− q)(1− x)4−α)],

where x ∈ [0, 1], t ∈ [0, 1], τ(t) = 0.1.

K(u(x, t)) = βu3(x, t) + 0.1.

Coefficient β is taken equal to 1. Initial and boundary conditions are set as
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u(x, t) = t2x2(1− x)2, x ∈ [0, 1], t ∈ [−0.1, 0].

u(0, t) = u(1, t) = 0, t ∈ [0, 1].

The exact solution is u(x, t) = t2x2(1− x)2. Let us denote the maximum error in nodes as

E(∆, h) = max
06k6M, 06i6N

|u(xi, tk)− ui
k|.

The method (8) was tested when the spatial step h was changed from the value 1
10

to the value 1
80 with a fixed time step ∆ = 1

4000 . The convergence order of the space is

characterized in the experiment by orderh = log2(
E(∆, 2h)
E(∆, h)

). Table 1 contains the values

E(∆, h), orderh and CPU time (s) for different parameters α, q and step h.
The simulation of the test equations was performed on the computer Intel Core

i5-2467M, 4 cores, CPU 1.6 GHz, 8 Gb RAM.

Table 1. Dependence of the values E(∆, h), orderh and CPU time from the spatial step and parameters.

h E(∆, h) orderh CPU Time E(∆, h) orderh CPU Time

q = 0 α = 1.1 α = 1.9

1/10 0.0018366 10.5 0.0004972 10.58
1/20 0.0010279 0.8373 21.48 0.0001121 2.1490 22.01
1/40 0.0006285 0.7097 46.15 0.0000286 1.9707 45.3
1/80 0.0003550 0.8241 85.97 0.0000121 1.2410 91.37

q = 1 α = 1.1 α = 1.9

1/10 0.0021382 10.38 0.0010900 10.34
1/20 0.0011889 0.8468 21.22 0.0004342 1.3279 22.01
1/40 0.0006387 0.8964 46.79 0.0001911 1.1840 46.82
1/80 0.0003381 0.9177 87.67 0.0000915 1.0625 91.36

q = 0.5 α = 1.1 α = 1.9

1/10 0.0018265 10.82 0.0007493 11.6
1/20 0.0010647 0.7786 22.8 0.0002648 1.5006 23.31
1/40 0.0006357 0.7440 49.29 0.0001093 1.2766 50.35
1/80 0.0003505 0.8589 90.14 0.0000517 1.0801 91.9

To study the dependence of the error on time, the time step ∆ varied from 1
10 to 1

80
with a fixed spatial step h = 1

1000 . The convergence order of the time is characterized in the

experiment by order∆ = log2(
E(2∆, h)
E(∆, h)

). Table 2 contains the values E(∆, h), order∆ and

CPU time (s) for different parameters α, q and step ∆.

Table 2. Dependence of the values E(∆, h), order∆ and CPU time from the time step and parameters.

∆ E(∆, h) order∆ CPU Time E(∆, h) order∆ CPU Time

q = 0 α = 1.1 α = 1.9

1/10 0.0090874 6.06 0.0053983 6.11
1/20 0.0043647 1.0580 11.85 0.0026669 1.0173 12.21
1/40 0.0021578 1.0163 25.73 0.0013375 0.9956 24.03
1/80 0.0010573 1.0292 53.18 0.0006651 1.0079 47.59

q = 1 α = 1.1 α = 1.9

1/10 0.0089543 6.06 0.0053841 6.19
1/20 0.0043161 1.0529 11.81 0.0026605 1.0170 11.97
1/40 0.0021371 1.0141 23.73 0.0013344 0.9955 23.81
1/80 0.0010477 1.0284 46.94 0.0006635 1.0080 50.21

q = 0.5 α = 1.1 α = 1.9

1/10 0.0090539 6.34 0.0053948 6.36
1/20 0.0043525 1.0567 11.96 0.0026653 1.0173 12.24
1/40 0.0021526 1.0158 24 0.0013367 0.9956 24.28
1/80 0.0010549 1.0290 52.18 0.0006647 1.0079 51.61
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Example 2. Let us consider the following test equation with variable concentrated delay with
respect to the variable t:

∂u(x, t)
∂t

= K(u(x, t))[(
1
2
+

q
2
)

∂αu
∂xα

+ (
1
2
− q

2
)

∂αu
∂(−x)α

] + 2t(x− 1
2
)3(

3
2
− x)3

+
ln u(x, t− τ(t))

ln ( t2

4 (x− 1
2 )

3( 3
2 − x)3)

(1 + βt4(x− 1
2
)6(

3
2
− x)6)t2[− 3

Γ(4− α)
((1 + q)(x− 1

2
)3−α

+(1− q)(
3
2
− x)3−α) +

36
Γ(5− α)

((1 + q)(x− 1
2
)4−α + (1− q)(

3
2
− x)4−α)

− 180
Γ(6− α)

((1 + q)(x− 1
2
)5−α + (1− q)(

3
2
− x)5−α)

+
360

Γ(7− α)
((1 + q)(x− 1

2
)6−α + (1− q)(

3
2
− x)6−α)],

where x ∈ [
1
2

,
3
2
], t ∈ [1, 5], τ(t) = t/2.

K(u(x, t)) = βu2(x, t) + 1.

Coefficient β is taken equal to 1. Initial and boundary conditions are set as

u(x, t) = t2(x− 1
2
)3(

3
2
− x)3, x ∈ [

1
2

,
3
2
], t ∈ [

1
2

, 1].

u(
1
2

, t) = u(
3
2

, t) = 0, t ∈ [1, 5].

The exact solution is the function u(x, t) = t2(x− 1
2
)3(

3
2
− x)3.

Table 3 for fixed time step ∆ = 1
1000 contains the values E(∆, h), orderh and CPU time

(sec.) for different parameters α, q and step h.

Table 3. Dependence of the values E(∆, h), orderh and CPU time from the spatial step and parameters.

h E(∆, h) orderh
CPU
Time E(∆, h) orderh

CPU
Time E(∆, h) orderh

CPU
Time

q = 0 α = 1.1 α = 1.5 α = 1.9

1/10 0.1327836 10.88 0.0163291 10.84 0.0161756 10.86
1/20 0.0848209 0.6466 22.37 0.0084232 0.9550 23.63 0.0053563 1.5945 22.25
1/40 0.0496605 0.7723 45.64 0.0064501 0.3850 45.86 0.0012954 2.0478 45.16
1/80 0.0272165 0.8676 88.34 0.0042617 0.5979 89.59 0.0002038 2.6682 89.98
1/160 0.0142327 0.9353 183.68 0.0026392 0.6913 181.5 0.0000177 3.5253 184.41

q = 1 α = 1.1 α = 1.5 α = 1.9

1/10 0.1208354 10.86 0.0630215 12.96 0.0338202 10.95
1/20 0.0573253 1.0757 21.81 0.0293685 1.1016 22.98 0.0103073 1.7142 22.39
1/40 0.0283827 1.0142 45.51 0.0142530 1.0430 48.22 0.0033612 1.6166 46.21
1/80 0.0140371 1.0157 91.01 0.0068465 1.0578 103.6 0.0013803 1.2840 93.87
1/160 0.0069495 1.0143 211.37 0.0033607 1.0266 214.66 0.0006030 1.1948 213.71

q = 0.5 α = 1.1 α = 1.5 α = 1.9

1/10 0.1309653 12.2 0.0334699 10.89 0.0225544 10.69
1/20 0.0756316 0.7921 21.72 0.0155466 1.1062 21.76 0.0095150 1.2451 22.15
1/40 0.0405079 0.9008 45.37 0.0080246 0.9541 48.38 0.0022931 2.0529 46.80
1/80 0.0208255 0.9599 88.38 0.0048249 0.7339 93.05 0.0007440 1.6239 103.1
1/160 0.0105022 0.9877 187.81 0.0028410 0.7641 228.31 0.0002780 1.4202 194.49
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Table 4 for fixed spatial step h = 1
2000 contains the values E(∆, h), order∆ and CPU

time (sec.) for different parameters α, q and step ∆.

Table 4. Dependence of the values E(∆, h), order∆ and CPU time from the time step and parameters.

∆ E(∆, h) order∆
CPU
Time E(∆, h) order∆

CPU
Time E(∆, h) order∆

CPU
Time

q = 0 α = 1.1 α = 1.5 α = 1.9

4/5 0.0720137 19.02 0.1187463 19.01 0.1384748 19.11
2/5 0.0257392 1.4843 37.1 0.0404585 1.5534 40.73 0.0477516 1.5360 39.37
1/5 0.0076767 1.7454 75.68 0.0135595 1.5771 75.78 0.0175075 1.4476 76.48

1/10 0.0033587 1.1926 146.81 0.0057564 1.2361 146.92 0.0072343 1.2751 148.69

q = 1 α = 1.1 α = 1.5 α = 1.9

4/5 0.0854511 18.88 0.1143785 18.66 0.1381228 18.69
2/5 0.0285708 1.5806 34.99 0.0389019 1.5559 39.05 0.0476415 1.5357 37.86
1/5 0.0085101 1.7473 69.53 0.0133773 1.5401 73.2 0.0174835 1.4462 73.06

1/10 0.0034246 1.3132 147.69 0.0056034 1.2554 213.85 0.0072249 1.2749 149.36

q = 0.5 α = 1.1 α = 1.5 α = 1.9

4/5 0.0807698 18.92 0.1173488 18.75 0.1383859 20.12
2/5 0.0271901 1.5707 39.05 0.0399303 1.5552 39.11 0.0477238 1.5359 37.5
1/5 0.0076571 1.8282 74.27 0.0135595 1.5582 75.78 0.0175015 1.4472 72.74

1/10 0.0035328 1.1160 146.64 0.0056925 1.2522 147.34 0.0072319 1.2750 144.82

7. Conclusions and Directions for Further Research

In this paper, for the first time, a numerical method for solving the superdiffusion
differential equation with a nonlinear superdiffusion coefficient is presented. This equation
contains several effects that complicate the solution: the fractional nature of the space
derivative, the presence of a functional delay, and, most importantly, the nonlinearity of
the diffusion coefficient (in this case, superdiffusion).

The difference numerical algorithm is based on three methods. Accounting for left-
handed and right-handed fractional derivatives is carried out using the shifted Grunwald–
Letnikov formulas [5]. The delay effect is taken into account using interpolation, and
implicitness becomes finite-dimensional after additional extrapolation. The nonlinearity
of the superdiffusion coefficient is overcome by using the value of this coefficient in the
previous time layer, this technique is described in [27].

As a result, the algorithm is reduced to solving a system of linear equations of a
special form at each time layer. Following [12], the main matrix of this system is written
out. It is shown that it has the diagonal dominance, which implies that the system is
uniquely solvable.

The local error (residual) of the algorithm is written out without taking into account
interpolation and taking into account the piecewise constant interpolation with extrapola-
tion by continuation. It is shown that the residual values are of the first order of smallness
with respect to the partitioning steps in time and space. The grid value of the method
error, the layer-by-layer error vector, and the vector of the accumulated error history are
introduced. The main result of the paper is the proof of Lemma 5, which plays the role of a
statement about the stability of the algorithm in the maximum norm. From this lemma, we
derive an estimate of the norm of the accumulated error history at the next time layer in
terms of the norm of the accumulated error history at the previous time layer. This also
implies the theorem on convergence of the algorithm with the first order of smallness with
respect to the steps of partitioning in time and space. It should be noted that the proof
of convergence does not rely on the embedding of the algorithm in a general difference
scheme with heredity [23,25,26]; however, the ideas of the proof are similar.

The last section of the work presents the results of numerical experiments on test ex-
amples with exact solutions. Note that the selection of such examples is also a difficult task,
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since all three effects must be taken into account: the fractional nature of the derivatives, the
nonlinearity of the superdiffusion coefficient, and the presence of delays of various types.
The tests confirmed the theoretical conclusions about the convergence of the algorithms.

However, a small order of convergence requires a large number of operations to
achieve high accuracy, which, in turn, leads to an increase in the computational error.
Therefore, the main issue for further research in solving this problem is the development of
algorithms of a higher order of convergence.

The research methodology proposed in this paper can also be applied to other types
of equations, primarily to equations with two and three spatial variables. For linear
superdiffusion equations, different authors have obtained efficient numerical algorithms,
such as ADI method. We hope that this methodology can be modified for non-linear
multidimensional space-fractional equations with functional delay.
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