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Abstract: As a powerful tool for models of quantum computing, q-calculus has drawn the attention
of many researchers in the discipline of special functions. In this paper, we present new properties
and characterize q-Bessel functions of the first kind using some identities of q-calculus. The results
presented in this article help us to obtain new expression results related to q-special functions. New
summation and integral representations for q-Bessel functions of the first kind are also established. A
few examples are also provided to demonstrate the effectiveness of the proposed strategy.
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1. Introduction

One of the most important generalizations of conventional calculus is quantum cal-
culus, often known as q-calculus, because it has been shown to be applicable to quantum
physics and various other fields of study, including number theory, combinations, orthog-
onal polynomials, etc. Initially, the theory of q-calculus was developed by Jackson [1].
The introduction of q-calculus opened the possibility for the introduction and study of
the q-analogs of several elementary and special functions, for example, q-exponential,
q-trigonometric, q-gamma, q-beta [2], q-hypergeometric [3], and q-Bessel functions [4,5]. In
recent years, the theory of q-special functions has attracted additional attention due to their
usefulness in different emerging branches of mathematics and the sciences.

There is a close relationship between Bessel functions and problems involving circular
or cylindrical symmetry. The free vibrations of a circular membrane can be studied, and
the temperature distribution along a cylinder can be calculated, as two examples. Not only
are they essential in electromagnetic theory but also in countless other branches of physics
and engineering. Because of their natural link with cylinder-shaped domains, “cylinder
functions” are shorthand for all solutions to Bessel’s equation.

We were motivated by the applications of Bessel functions in different fields of science
and engineering. Bessel functions are also used to find separable solutions to Laplace’s
equation and the Helmholtz equation in spherical coordinates and are therefore particularly
relevant for many situations involving wave propagation and static potentials. The q-
analog of these functions has attracted the attention of several researchers, who developed
the theory of q-Bessel functions. q-Bessel function J1

n(x; q) was introduced and studied
by Jackson [6]. J2

n(x; q) was introduced and studied by Ismail [7] and also studied by
Hahn [8]. Hahn and Exton introduced the third q-Bessel function [9–11]. Some well-known
forms of q-Bessel functions (J1

n(x; q)) of the first kind can be found in [4,12]. The theory
of q-Bessel functions has been studied by many mathematicians and physicists. This

Mathematics 2023, 11, 3831. https://doi.org/10.3390/math11183831 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11183831
https://doi.org/10.3390/math11183831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6206-9113
https://orcid.org/0000-0002-1247-6431
https://orcid.org/0000-0001-8996-2270
https://doi.org/10.3390/math11183831
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11183831?type=check_update&version=1


Mathematics 2023, 11, 3831 2 of 13

theory has grown to include two variables [13] and generalized q-Bessel functions [14].
Srivastava [15] considered some recent developments with respect to the extension of the
q-Bessel polynomials.

Recently, several researchers working in the field of q-special functions introduced
and studied several properties of q-Bessel functions (see, e.g., [13,14,16–21]). The series
definition of a q-Bessel function Jn(x; q) is given by the following expression

Jn(x; q) =
(qn+1; q)∞

(q; q)∞

∞

∑
k=0

(−1)k(x/[2]q
)n+2k

(q; q)k(qn+1; q)k

=
∞

∑
k=0

(−1)k(x/[2]q
)n+2k

[n + k]q![k]q!
for −∞ < x < ∞. (1)

which converges absolutely for |x| < [2]q and (qn+1;q)∞
(q;q)∞

= 1
(q;q)n

. The following generat-

ing function also characterizes the first kind of q-Bessel functions (J1
n(x; q) or Jn(x; q))

(see, e.g., [4,12]):

eq

(
[2]−1

q xt
)

eq

(
−
(
[2]qt

)−1x
)
=

∞

∑
n=−∞

Jn(x; q) tn for t 6= 0 and −∞ < x < ∞. (2)

For any real number (r ≥ 0), in view of (1), we have the following series definition of
the q-Bessel functions of the second kind:

Jr,q(x) =
∞

∑
k=0

(−1)k(x/[2]q
)r+2k

Γq(r + k + 1)[k]q!
for −∞ < x < ∞.

In this paper, we present new properties of q-Bessel functions. Applying our results,
we characterize q-Bessel functions of the first kind. New summation and integral represen-
tations for q-Bessel functions of the first kind are also established. In summary, some of the
results presented in this paper are original; we also refer to results reported in the literature
as special cases (see, e.g., [2–5,7,9–12,22,23] and references therein).

2. Preliminaries

In this section, we state some basic definitions, notations, and known results in quan-
tum calculus that are needed for further discussion throughout this paper.

The complex number w has a q-analog defined as follows (see, e.g., [24,25]):

[w]q =
1− qw

1− q
=

w

∑
k=1

qk−1 for 0 < q < 1 and w ∈ C. (3)

The q-factorial (see [24,25]) is defined as

[r]q! =

{
∏r

s=1[s]q = [1]q[2]q . . . [r]q, 0 < q < 1 r ≥ 1
1, r = 0,

which satisfies [r + 1]q! = [r + 1]q[r]q!. For a ∈ C and 0 < q < 1, the q-shift factorials
((a; q)s) (see [24,25]) are defined by

(a; q)0 = 1,

(a; q)s =
s−1

∏
r=0

(1− qra) for s ∈ N, (4)
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and

(a; q)∞ = lim
s→+∞

(a; q)s =
+∞

∏
r=0

(1− qra).

The following known property is important for computation (see [24]):

(a; q)r+s = (a; q)r(aqr; q)s for r, s ∈ N.

For more information on the q-shift factorial ((a; q)n), please refer to [24,25] and related
references therein. It is known that the equivalent expression of Equation (4) is represented
by (see [24,25])

(
[r]q
)

s
=

Γq(r + s)
Γq(r)

=

{
[r]q[r + 1]q[r + 2]q . . . [r + s− 1]q, s ≥ 1
1, s = 0,

(5)

where Γq(r) is the q-gamma function (see, e.g., [2]) satisfying

Γq(r + 1) = [r]q!. (6)

Gauss’s q-binomial coefficient (see [24,25]) is given by[
r
t

]
q
=

[r]q!
[r− tq![t]q!

for t = 0, 1, . . . , r.

For more details, we refer the reader to [24,25] and references therein.
In [24,25], the two q-exponential functions indicated by eq(x) and Eq(x) were defined,

respectively, by

eq(x) =
∞

∑
n=0

xn

[n]q!
for 0 < q < 1. (7)

and

Eq(x) =
∞

∑
n=0

q(
n
2) xn

[n]q!
for 0 < q < 1. (8)

The following is the relationship between eq(x) and Eq(x):

Theorem 1 (see, e.g., [24,25]). For 0 < q < 1, we have

eq(x)Eq(−x) = 1. (9)

In [26], when a function ( f ) was being differentiated with regard to an x value, the
notation for the q-derivative is (Dq,x f (x)) was given by

Dq,x f (x) =
f (qx)− f (x)

qx− x
for 0 < q < 1 and x 6= 0.

In particular, we have
Dq,x xn = [n]qxn−1.

The kth-order q-derivatives of q-exponential functions (see [26]) are given by

Dk
q,xeq(αx) = αkeq(αx) for k ∈ N, 0 < q < 1 and α ∈ C

and
Dk

q,xEq(αx) = αkq(
k
2)Eq(αqkx) for k ∈ N, 0 < q < 1 and α ∈ C,
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where Dk
q,x represents the kth-order q-derivative with regard to x. In particular, we use Dq,x

instead of D1
q,x. The following formula is well known (see [26]):

Dq,x
(

f (x)g(x)
)
= f (x)Dq,xg(x) + g(qx)Dq,x f (x). (10)

For any function ( f (x)) the q-definite integral is defined as follows (see, e.g., [1]):

∫ a

0
f (x)dqx = (1− q)a

∞

∑
n=0

qn f (aqn).

In particular, we have the following (see [1]):∫
Dq f (x)dqx = f (x). (11)

A q-definite integral of the q-derivative of a function ( f ) on [0, a] is defined as follows
(see, e.g., [1]): ∫ a

0
Dq f (x)dqx = f (a). (12)

For more information on the q-derivative and q-definite integral, we refer the reader
to [1] and references therein.

It is well known that the following generating function characterizes the Bessel func-
tions of the first kind (Jn(x)) (see [27]):

exp
[

1
2

x
(
t− 1

t
)]

=
∞

∑
n=−∞

Jn(x)tn for t 6= 0 (13)

and the series definition

Jn(x) =
∞

∑
k=0

(−1)k(x/2)n+2k

k!(n + k)!
for −∞ < x < ∞. (14)

In view of Equation (13), for x = 0, we have

∞

∑
n=−∞

Jn(0)tn = 1.

By comparing the two sides of the previous equation, we find that

Jn(0) = 0 for n 6= 0,

and
J0(0) = 1.

Again, based on Equation (13), we can deduce

J
′
0(0) = 0 for n = 0.

Furthermore, inputting n = 1 and x = 0 into the q-derivative of Equation (14), we
obtain

J
′
1(0) =

1
2

.

For more details, we refer the reader to [27] and references therein. It is well known that

J−n(x; q) = (−1)n Jn(x; q).
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It is obvious that if we take x = 0 in (2), we obtain

∞

∑
n=−∞

Jn(0; q)tn = 1.

Comparing both sides of the above equation for equal powers of t, we obtain

Jn(0; q) = 0, for n 6= 0

and
J0(0; q) = 1.

Taking n = 0 and x = 0 into the q-derivative of Equation (2), we have

J
′
0(0; q) = 0. (15)

Similarly, taking n = 1 and x = 0 into the q-derivative of Equation (2) yields

J
′
1(0; q) =

1
[2]q

. (16)

Remark 1. Replacing x with −x in (1) yields

Jn(−x; q) = (−1)n Jn(x; q).

Theorem 2 (see, e.g., [27]). For any Bessel function (Jn(x)), the following differential recurrence
relations hold:

Dx{xn Jn(x)} = xn Jn−1(x), (17)

Dx{x−n Jn(x)} = −x−n Jn+1(x), (18)

Dx Jn(x) = Jn−1(x)− n
x

Jn(x), (19)

Dx Jn(x) =
n
x

Jn(x)− Jn+1(x), (20)

and
Dx Jn(x) =

1
2

(
Jn−1(x)− Jn+1(x)

)
. (21)

Remark 2. Taking n = 0 in Equation (20) yields

J
′
0(x) = −J1(x). (22)

The following crucial formulas are used to prove our results.

Theorem 3 (see, e.g., [27]).

J 1
2
(x) =

√
2

πx
sinx (23)

and

J−1
2
(x) =

√
2

πx
cosx. (24)

Theorem 4 (see, e.g., [23]).

∞

∑
k=0

J2k+1(x) =
1
2

∫ x

0
J0(y)dy. (25)
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3. Characteristics of q-Bessel Functions

In this section, we study several features of q-Bessel functions of the first kind, includ-
ing their recurrence relations.

We now establish the following recurrence relations for a q-Bessel function (Jn(x; q)).

Theorem 5. The q-derivative of the product of q-Bessel function Jn(x; q) and power xn can be
expressed by the following recurrence relation

Dq,x{xn Jn(x; q)} = xn

[2]q
Jn−1(x; q) +

(√
q
)n+1xn

[2]q
Jn−1

(√
qx; q

)
, (26)

Proof. By multiplying each side of (1) by xn, then taking the q-derivative of the product
with regard to x, we obtain

Dq,x{xn Jn(x; q)} =
∞

∑
k=0

(−1)k[2n + 2k]qx2k+2n−1

[n + k]q![k]q!([2]q)2k+n . (27)

From Equation (3) for [2n + 2k]q, we have

[2n + 2k]q =
1− q2(n+k)

1− q

=
1− qn+k

1− q
(1 + qn+k)

= [n + k]q(1 + qn+k).

Incorporating the aforementioned formula into the right-hand side of Equation (27),
we obtain

Dq,x{xn Jn(x; q)} = xn

[2]q

∞

∑
k=0

(−1)k(1 + qn+k)x2k+n−1

[n + k− 1]q![k]q!([2]q)2k+n−1

=
xn

[2]q

∞

∑
k=0

(−1)kxn−1+2k

[n− 1 + k]q![k]q!([2]q)n−1+2k

+

(√
q
)n+1xn

[2]q

∞

∑
k=0

(−1)k(√qx
)n−1+2k

[n− 1 + k]q![k]q!([2]q)n−1+2k . (28)

By using (1), we can prove (26).

Theorem 6. The q-derivative of the product of q-Bessel function Jn(x; q) and power x−n can be
expressed by the following recurrence relation:

Dq,x{x−n Jn(x; q)} = −−x−n

[2]q
Jn+1(x; q)−

(√
q
)−n+1x−n

[2]q
Jn+1

(√
qx; q

)
, (29)

Proof. By multiplying both sides of Equation (1) by x−n and taking the q-derivative of both
sides of the result with respect to x yields

Dq,x{x−n Jn(x; q)} =
∞

∑
k=0

(−1)k[2k]qx2k−1

[n + k]q![k]q!([2]q)2k+n . (30)
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Based on Equation (3), for [2k]q, we have

[2k]q =
1− q2k

1− q

= [k]q(1 + qk).

Taking the preceding formula into the right-hand side of Equation (30) yields

Dq,x{x−n Jn(x; q)} = x−n

[2]q

∞

∑
k=1

(−1)k(1 + qk)x2k+n−1

[n + k]q![k− 1]q!([2]q)2k+n−1 ,

or, equivalently,

Dq,x{x−n Jn(x; q)} = −x−n

[2]q

∞

∑
k=0

(−1)k(1 + qk+1)x2k+n+1

[n + k + 1]q![k]q!([2]q)2k+n+1

=
−x−n

[2]q

∞

∑
k=0

(−1)kxn+1+2k

[n + 1 + k]q![k]q!([2]q)n+1+2k

−
(√

q
)−n+1x−n

[2]q

∞

∑
k=0

(−1)k(√qx
)n+1+2k

[n + 1 + k]q![k]q!([2]q)n+1+2k .

Making use of (1), we arrive at (29).

Theorem 7. The q-derivative of q-Bessel function Jn(x; q) can be expressed by the following
recurrence relation:

Dq,x Jn(x; q) =
1

qn[2]q
Jn−1(x; q) +

(√
q
)n+1

qn[2]q
Jn−1

(√
qx; q

)
−

[n]q
qnx

Jn(x; q), (31)

Proof. Applying (10) to the left side of Equation (26), we have

[n]qxn−1 Jn(x; q) + (qx)n J
′
n(x; q) =

xn

[2]q
Jn−1(x; q) +

(√
q
)n+1xn

[2]q
Jn−1

(√
qx; q

)
, (32)

or, equivalently,

J
′
n(x; q) =

1
qn[2]q

Jn−1(x; q) +

(√
q
)n+1

qn[2]q
Jn−1

(√
qx; q

)
−

[n]q
qnx

Jn(x; q), (33)

which can be rewritten as (31).

Inputting (10) into the left-hand side of (29), we obtain the following theorem.

Theorem 8. The q-derivative of q-Bessel function Jn(x; q) can be expressed by the following
recurrence relation:

Dq,x Jn(x; q) =
−qn

[2]q
Jn+1(x; q)−

(√
q
)n+1

[2]q
Jn+1

(√
qx; q

)
+

[n]qqn

x
Jn(x; q). (34)



Mathematics 2023, 11, 3831 8 of 13

Theorem 9. The q-derivative of q-Bessel function Jn(x; q) can be expressed by the following
recurrence relation:

Dq,x Jn(x; q) =
1
[2]q

(
1

qn−1[2]q
Jn−1(x; q)− qn

[2]q
Jn+1(x; q) +

(√
q
)n+1

qn−1[2]q
Jn−1

(√
qx; q

)
−
(√

q
)n+1

[2]q
Jn+1

(√
qx; q

)
+

[n]qqn

x
Jn(x; q)−

[n]q
qn−1x

Jn,q(x; q)
)

(35)

Proof. Multiplying Equation (31) by q and adding the result to Equation (34), we ob-
tain (35).

Theorem 10. The q-derivative of the product of q-Bessel function Jn(x; q) and [n]q
qnx +

[n]qqn

x can be
expressed by the following recurrence relation:(

[n]q
qnx

+
[n]qqn

x

)
Jn(x; q) =

1
qn−1[2]q

Jn−1(x; q) +
qn

[2]q
Jn+1(x; q)

+

(√
q
)n+1

qn−1[2]q
Jn−1

(√
qx; q

)
+

(√
q
)n+1

[2]q
Jn+1

(√
qx; q

)
. (36)

Proof. The difference between Equation (31) and Equation (34) yields (36).

As direct consequences of Theorems 5–10, we establish the following identities for
q-Bessel function Jn(x; q).

Corollary 1. The following identities hold:

qxJ
′
1(x; q) =

x
[2]q

J0(x; q) +
qx
[2]q

J0
(√

qx; q
)
− J1(x; q), (37)

(xq)−1 J
′
1(x; q) = x−2 J1(x; q)− −x−1

[2]q
J2(x; q)− x−1

[2]q
J2
(√

qx; q
)
, (38)

J
′
0(x; q) =

−1
[2]q

J1(x; q)−
(√

q
)

[2]q
J1
(√

qx; q
)
, (39)

and

J
′′
0 (x; q) =

−1
[2]q

J
′
1(x; q)−

(√
q
)

[2]q
J
′
1
(√

qx; q
)
. (40)

Proof.

(i) Taking n = 1 in Equations (26) and (29), we obtain

qxJ
′
1(x; q) + J1(x; q) =

x
[2]q

J0(x; q) +
qx
[2]q

J0
(√

qx; q
)
,

which is equivalent to (37).
(ii) Taking n = 1 in Equation (29), we have

(qx)−1 J
′
1(x; q)− x−2 J1(x; q) = −−x−1

[2]q
J2(x; q)− x−1

[2]q
J2
(√

qx; q
)
,

which is equivalent to (38).
(iii) Taking n = 0 in Equation (34), we show (39).
(iv) Differentiating both sides of Equation (39) with respect to x, we prove (40).
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Now, we represent some integral representations of a q-Bessel function (Jn(x; q)). In
view of Equations (15), (39) and (40) and using Equations (11) and (16), we obtain the
following: ∫ 1

[2]q
dqx = J1(0; q) + C, (41)

∫ 1

0

−1
[2]q

(
1 + qk+1)J1(x; q)dqx = J0(1; q)− 1 (42)

and ∫ 1

0

−1
[2]q

(
1 + qk+1)J

′′
1 (x; q)dqx = J

′
0(1; q)− J

′
0(0; q) = J

′
0(1; q). (43)

Substituting n with 1
2 in (2) and substituting n with − 1

2 in (2), since Γq(1/2) = √πq
(see [18]), we establish the following formulas for q-Bessel functions of the first kind:

Corollary 2. Let 0 < q < 1. Then

J 1
2
(x; q) =

√
[2]q
xπq

(
x

[2]q[1/2]q
− x3

[2]3q[3/2]q[1/2]q
+

x5

[2]6q[5/2]q[3/2]q[1/2]q
− . . .

)
(44)

and

J− 1
2
(x; q) =

√
[2]q
xπq

(
1− x2

[2]2q[1/2]q
+

x4

[2]5q[3/2]q[1/2]q
− . . .

)
. (45)

Remark 3. (1) Equations (17)–(22) can be obtained by substituting q→ 1− in Equations
(26)–(36), respectively;

(2) Equations (23) and (24) can be obtained by substituting q → 1− in Equations (44) and (45),
respectively.

Here, we provide various examples illustrating the efficacy of the outcomes achieved
in this part.

Example 1. (1) Taking n = 2 into Equations (26) and (29), we obtain the following recurrence
relations of the q-derivatives of the products of J2(x; q) with power x2 and J−2(x; q) with
power x−2:

Dq,x{x2 J2(x; q)} = x2

[2]q
J1(x; q) +

q
√

qxn

[2]q
J1
(√

qx; q
)

and

Dq,x{x−2 J2(x; q)} = −−x−2

[2]q
J3(x; q)− x−2

[2]q
√

q
J3
(√

qx; q
)
.

(2) Taking n = 3 into Equations (31) and (34), we obtain the following recurrence relations for
J3(x; q):

Dq,x J3(x; q) =
1

q3[2]q
J2(x; q) +

(√
q
)4

q3[2]q
J2
(√

qx; q
)
−

[3]q
q3x

J3(x; q)

and

Dq,x J3(x; q) =
−q3

[2]q
J4(x; q)− q2

[2]q
J4
(√

qx; q
)
+

[3]qq3

x
J3(x; q).
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(3) Taking n = 2 in Equation (35), we obtain the following recurrence relation of J2(x; q):

Dq,x J2(x; q) =
1
[2]q

(
1

q[2]q
J1(x; q)− q2

[2]q
J3(x; q) +

√
q

[2]q
J1
(√

qx; q
)

−
q
√

q
[2]q

J3
(√

qx; q
)
+

[2]qq2

x
J2(x; q)−

[2]q
qx

J2,q(x; q)
)

.

4. Summation and Integral Representations

In this section, we establish some summation and integral formulas for a q-Bessel
function (Jn(x; q)) by utilizing the identities (7) and (9), as well as the generating function
and series description, of Jn(x; q).

Recall that the hypergeometric representation of rφs was defined by (see [28])

rφs

(
b1, b2, · · · , br
c1, c2, · · · , cs

; q, z
)
=

∞

∑
n=0

(b1, b2, . . . , br; q)n

(c1, c2, . . . , cs; q)n

(
(−1)nq(

n
2)
)s−r+1 zn

(q; q)n

and

2φ1

(
a, b
c

; q, z
)
=

∞

∑
n=0

(a; q)n(b; q)n

(c; q)n

zn

(q; q)n
. (46)

In particular, the following q-hypergeometric functions was given in (see [28]):

2φ1

(
−n, b

c
; q, qc+n−b

)
=

(
[c− b]q

)
n(

[c]q
)

n
, |qc+n−b| < 1. (47)

Theorem 11. The following summation formulas of q-Bessel function Jn(x; q) hold:

∞

∑
k=0

q(
k
2)
(

x/[2]q
)k Jn+k(x; q)

[k]q!
=

(
x/[2]q

)n

[n]q!
. (48)

Proof. In view of Equation (9), we have

eq

(
[2]−1

q xt
)

eq

(
−
(
[2]qt

)−1x
)

Eq

((
[2]qt

)−1x
)
= eq

(
[2]−1

q xt
)

,

which, upon using Equations (8), (7) and (2), yields

∞

∑
n=−∞

Jn(x; q)tn
∞

∑
k=0

q(
k
2)
(
x/[2]q

)kt−k

[k]q!
=

∞

∑
n=0

(
x/[2]q

)ntn

[n]q!
,

or, equivalently,

∞

∑
n=−∞

∞

∑
k=0

Jn(x; q)q(
k
2)
(

x/[2]q
)ktn−k

[k]q!
=

∞

∑
n=0

(
x/[2]q

)n
q tn

[n]q!
.

By changing the index of n to n + k as the range of the values of n on −∞ < n < ∞,
we obtain

∞

∑
n=−∞

∞

∑
k=0

Jn+k(x; q)q(
k
2)
(

x/[2]q
)ktn

[k]q!
=

∞

∑
n=−∞

(
x/[2]q

)n
q tn

[n]q!
.

Therefore, by comparing the equal powers of t on both sides, we obtain (48).
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Theorem 12. The following summation formula of q-Bessel functions Jn(x; q) holds:

∞

∑
k=0

J2k+1(x; q) =
q−(

k
2)

[2]q

∫ x

0
J0(y; q)dqy. (49)

Proof. By applying Equation (1), we have

∞

∑
k=0

J2k+1(x; q) =
∞

∑
k,n=0

(−1)n(x/[2]q
)2n+2k+1

[n]q![n + 2k + 1]q!

=
∞

∑
n=0

n

∑
k=0

(−1)n−k(x/[2]q
)2n+1

[n− k]q![n + k + 1]q!
.

By multiplying the right side of the above equation by [n]q !
[n]q ! ,

[k]q !
[k]q !

[n+1]q !
[n+1]q ! and q(

k
2)−nk

q(
k
2)−nk

,

we obtain

∞

∑
k=0

J2k+1(x; q) =
∞

∑
n=0

n

∑
k=0

(−1)−k[n]q!q(
k
2)−nk

[n− k]q!
[n + 1]q![k]q!
[n + k + 1]q!

(−1)n(x/[2]q
)2n+1

[k]q![n]q![n + 1]q!q(
k
2)−nk

.

Making further use of (5) and the following property (see [28])

(q−n; q)k =
(q; q)n

(q; q)n−k
(−1)−kq(

k
2)−nk,

we arrive at

∞

∑
k=0

J2k+1,q(x) =
∞

∑
n=0

n

∑
k=0

(q−n; q)k

(
[1]q
)

k(
[n + 2]q

)
k
[k]q!

(−1)n(x/[2]q
)2n+1

[n]q![n + 1]q!q(
k
2)−nk

.

Making use of Equation (46) yields

∞

∑
k=0

J2k+1(x; q) =
∞

∑
n=0

2φ1

(
q−n, q
qn+2 ; q, 1

)
qnk−(k

2)(−1)n(x/[2]q
)2n+1

[n]q![n + 1]q!
.

By using Equation (47), we obtain

∞

∑
k=0

J2k+1(x; q) =
∞

∑
n=0

(
[n + 1]q

)
n(

[n + 2]q
)

n

qnk−(k
2)(−1)n(x/[2]q

)2n+1

[n]q![n + 1]q!
,

or, equivalently,

∞

∑
k=0

J2k+1(x; q) =
∞

∑
n=0

Γq(n + 2)Γq(2n + 1)qnk−(k
2)(−1)n(x/[2]q

)2n+1

Γq(2n + 2)Γq(n + 1)[n]q![n + 1]q!
.

Therefore, making use of Equation (6), we obtain

∞

∑
k=0

J2k+1(x; q) =
∞

∑
n=0

qnk−(k
2)(−1)n(x/[2]q

)2n+1

[2n + 1]q[n]q![n]q!
.

By applying Equation (12), we obtain
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∞

∑
k=0

J2k+1(x; q) =
q−(

k
2)

[2]q

∫ x

0

∞

∑
n=0

(−qk)n(y/[2]q
)2n

[n]q![n]q!
dqy,

which can be simplified as (49).

Theorem 13. The following summation formula of q-Bessel functions (Jn(x; q)) holds:

∞

∑
k=−∞

Jk(x; q)Jn−k,q(y) = Jn(x + y; q). (50)

Proof. By replacing x with x + y in the generating function (2), we have

eq

(
[2]−1

q xt
)

eq

(
−
(
[2]qt

)−1x
)

eq

(
[2]−1

q yt
)

eq

(
−
(
[2]qt

)−1y
)
=

∞

∑
n=−∞

Jn(x + y; q) tn.

By using Equation (2) again, we obtain

∞

∑
n=−∞

∞

∑
k=−∞

Jn(x; a)Jk(x; q) tn+k. =
∞

∑
n=−∞

Jn(x; q) tn.

Equating the equal powers of t, we prove (50).

Remark 4. When q→ 1−, Equation (49) reduces to Equation (25).

Finally, we consider a few examples that show the effectiveness of the results that
were attained in this section.

Example 2. (1) Taking n = 2 in Equation (48), we obtain the following summation formula of
q-Bessel function J2(x; q):

∞

∑
k=0

q(
k
2)
(
x/[2]q

)k J2+k(x; q)
[k]q!

=

(
x/[2]q

)2

[3]q[2]q
.

(2) Taking n = 3 in Equation (50), we obtain the following summation formula of q-Bessel
function J3(x; q):

∞

∑
k=−∞

Jk(x; q)J2−k,q(y) = J3(x + y; q).

5. Conclusions and Recommendations for Future Work

Recently, many special q-functions have been used to study quantum calculus. It is
amazing that this led to the presentation of new properties of q-Bessel functions of the
first kind using some identities of q-calculus. The generating function and series definition
of the q-Bessel functions of the first kind (Jn(x; q)) are the most important part of all of
these tasks. In this paper, we characterized the properties of q-Bessel functions of the first
kind and obtained some of their recurrence relations, summation formulas, and integral
representations. We also presented a few examples to demonstrate the effectiveness of the
proposed strategy.

We now outline our proposed main avenues for future research, starting with the work
presented here. The results presented in this paper suggest several ideas to characterize
properties of q-Bessel functions and other special q-functions of the second and third
kinds and obtain recurrence relations, summation formulas, and integral representations.
Moreover, the results established in this paper can help us obtain new expression results
related to other special q-functions in future studies.
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10. Exton, H. q-Hypergeometric Functions and Applications; Ellis Horwood Ltd.: Chichester, UK; Halsted Press [John Wiley & Sons,

Inc.]: New York, NY, USA, 1983.
11. Hahn, W. Die mechanische Deutung einer geometrischen Differenzgleichung. Z. Angew. Math. Mech. 1953, 33, 270–272. [CrossRef]
12. Dattoli, G.; Torre, A. Symmetric q-Bessel functions. Matematiche 1996, 51, 153–167.
13. Riyasat, M.; Khan, S.; Nahid, T. Quantum algebra εq (2) and 2D q-Bessel functions. Rep. Math. Phys. 2019, 93 191–206. [CrossRef]
14. Riyasat, M.; Khan, S.; Haneef, M. Generalized 2D Extension of the q-Bessel polynomials. Rep. Math. Phys. 2022, 90, 63–80. [CrossRef]
15. Srivastava, H.M. An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel

polynomials. Symmetry 2023, 15, 822. [CrossRef]
16. Cao, J.; Srivastava, H.M.; Zhou, H.L.; Arjika, S. Generalized q-Difference Equations for q-Hypergeometric Polynomials with

Double q-Binomial Coefficients. Mathematics 2022, 10, 556. [CrossRef]
17. Cao, J.; Huang, J.-Y.; Fadel, M.; Arjika, S. A review on q-difference equations for Al-Salam–Carlitz polynomials and applications

to U(n+1) type generating functions and Ramanujan’s integrals. Mathematics 2023, 11, 1655. [CrossRef]
18. Dattoli, G.; Germano, B; Górska, K.; Martinelli, M.R. Can Umbral and q-calculus be merged? arXiv 2019, arXiv:1909.00058.
19. Raza, N.; Fadel, M.; Nisar, K.S.; Zakarya, M. On 2-variable q-Hermite polynomials. Aims Math. 2021, 6, 8705–8727. [CrossRef]
20. Srivastava, H.M.; Yasmin, G.; Muhyi, A.; Araci, S. Certain results for the twice-iterated 2D q-Appell polynomials. Symmetry 2019, 11, 1307.

[CrossRef]
21. Wolter, G. 3nj-symbols and identities for q-Bessel functions. Ramanujan J. 2018, 47, 317–337.
22. Florenini, R.; Vinet, L. Quantum algebras and q-special functions. Ann. Phys. 1993, 221, 53–70. [CrossRef]
23. Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960.
24. Andrews, G.E.; Askey, R.; Roy, R. Special Functions of Encyclopedia Mathematics and Its Applications; Cambridge University Press:

Cambridge, UK, 1999; Volume 71.
25. Kac, V.G.; Pokman C. Quantum Calculus; Springer: New York, NY, USA, 2002; Volume 113.
26. Jackson, F.H. XI.—On q-functions and a certain difference operator. Earth Environ. Sci. Trans. Royal Soc. 1909, 46, 253–281. [CrossRef]
27. Andrews, L.C. Special Functions of Mathematics for Engineers, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1992.
28. Gasper, G.; Rahman, M. Basic Hypergeometric Series. In Encyclopedia of Mathematics and Its Applications, 2nd ed.; Cambridge

University Press: Cambridge, UK, 2004; Volume 96.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/00036817808839221
http://dx.doi.org/10.2478/spma-2014-0014
http://dx.doi.org/10.1112/plms/s2-2.1.192
http://dx.doi.org/10.1002/mana.19490020604
http://dx.doi.org/10.1002/zamm.19530330811
http://dx.doi.org/10.1016/S0034-4877(19)30039-4
http://dx.doi.org/10.1016/S0034-4877(22)00051-9
http://dx.doi.org/10.3390/sym15040822
http://dx.doi.org/10.3390/math10040556
http://dx.doi.org/10.3390/math11071655
http://dx.doi.org/10.3934/math.2021506
http://dx.doi.org/10.3390/sym11101307
http://dx.doi.org/10.1006/aphy.1993.1003
http://dx.doi.org/10.1017/S0080456800002751

	Introduction
	Preliminaries
	Characteristics of q-Bessel Functions
	Summation and Integral Representations
	Conclusions and Recommendations for Future Work
	References

