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Abstract: An automated Condition Monitoring (CM) and real-time controlling framework is essential
for outdoor mobile robots to ensure the robot’s health and operational safety. This work presents a
novel Artificial Intelligence (AI)-enabled CM and vibrotactile haptic-feedback-based real-time control
framework suitable for deploying mobile robots in dynamic outdoor environments. It encompasses
two sections: developing a 1D Convolutional Neural Network (1D CNN) model for predicting system
degradation and terrain flaws threshold classes and a vibrotactile haptic feedback system design
enabling a remote operator to control the robot as per predicted class feedback in real-time. As
vibration is an indicator of failure, we identified and separated system- and terrain-induced vibration
threshold levels suitable for CM of outdoor robots into nine classes, namely Safe, moderately safe
system-generated, and moderately safe terrain-induced affected by left, right, and both wheels, as
well as severe classes such as unsafe system-generated and unsafe terrain-induced affected by left,
right, and both wheels. The vibration-indicated data for each class are modelled based on two sensor
data: an Inertial Measurement Unit (IMU) sensor for the change in linear and angular motion and
a current sensor for the change in current consumption at each wheel motor. A wearable novel
vibrotactile haptic feedback device architecture is presented with left and right vibration modules
configured with unique haptic feedback patterns corresponding to each abnormal vibration threshold
class. The proposed haptic-feedback-based CM framework and real-time remote controlling are
validated with three field case studies using an in-house-developed outdoor robot, resulting in a
threshold class prediction accuracy of 91.1% and an effectiveness that, by minimising the traversal
through undesired terrain features, is four times better than the usual practice.

Keywords: AI; condition monitoring; vibration; vibrotactile haptic feedback; wearable device; IMU;
current sensor; 1D CNN; outdoor mobile robot; remote control; operational safety

MSC: 68T40; 68T01; 68T07; 93C85

1. Introduction

The rapid developments of robotics fundamental techniques and Artificial Intelli-
gence (AI) models have enabled versatile outdoor robots to reduce human efforts in
performing dull, dirty, and repetitive tasks, thereby resolving labour shortage issues and
workplace-related safety infection risks. There is a vast market demand for diverse outdoor
applications such as pavement sweeping, fumigation and fogging, landscaping, inspec-
tion, logistics, and security. Based on ABI Research, an expected shipment volume of
outdoor mobile robots is 350,000 units by 2030, compared to 40,000 units in 2021 [1]. Much
research has been published on autonomous performance improvement to fit the out-
door environment; for example, environmental perception [2], visual navigation [3], path
planning [4], localisation [5], motion control [6], and pedestrian safety [7]. Though the
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system degradation in an outdoor robot is faster due to its exposure to extreme terrain
and weather changes, focus on Condition Monitoring (CM) studies are still not commonly
used to assess health states and terrain-related flaws, causing accelerated deterioration and
potential hazards. The above mentioned research works are mainly focused on performing
operations autonomously. However, there is still a long way to go to make these robots
operate without human guidance by considering the open, hostile, and unsafe outdoor
environment. Also, local regulations and certifications are to be checked and complied
with for deploying robots autonomously on public pavements [8].

In this context, shared autonomy, where the robot’s autonomous system and operator
input work collaboratively to make decisions and achieve common goals [9,10], is a safe
and feasible option for outdoor robot deployment. Also, studies on haptic-feedback-based
motion control of robots [11–14] have enabled effective remote operation. An environment-
independent sensor selection for data acquisition and a fast and accurate classifier model is
crucial for real-time CM frameworks for the outdoor environment. There are numerous
AI-enabled and vibration-based terrainability studies for outdoor robots using different
sensors to classify tile, stone, sand, asphalt, grass, and gravel [15–19], which will help to
decide the traversability of the robot, but there is not a proper CM approach for assessing
the health condition of the robot and level of terrain-induced concerns that accelerate
system degradation. Hence, an automated CM and feasible remote controlling framework
involving a shared autonomy and haptic feedback system is imperative for outdoor robots
assisting in either stopping or minimising the exposure to extreme terrain conditions
based on the internal health and external terrain states of the robot. Towards this effort,
this paper proposes and discusses vibration-based anomalies prediction using Inertial
Measurement Unit (IMU) and current sensors data and a 1D Convolutional Neural Network
(1D CNN) as the classifier, along with real-time robot control, by developing a wearable
vibrotactile haptic feedback system, assuring productivity and operational safety in outdoor
mobile robots.

1.1. Problem Statement

The deployment of mobile robots in a dynamically changing and unsafe outdoor
environment is still a challenging problem, and condition monitoring studies performed to
assess the health conditions of the robot and the uneven terrain features affecting acceler-
ated deterioration is an unexplored research area, resulting in catastrophic failure, a high
maintenance cost, unexpected downtime, operational hazards, and customer dissatisfac-
tion. The aforesaid terrainability studies may help the last mail delivery or outdoor security
robots in path planning, avoiding terrain-related flaws. However, in fumigation, lawn
mowing, and pavement sweeping applications, the robot is supposed to cover a given area
for the intended function. In particular, traversing through grass fields is more challenging
where exteroceptive techniques are impractical as most ground-level imperfections are
grass-covered. The system also degrades naturally due to continuous usage, even when
deployed in a plain area, or there may be accelerated deterioration due to the terrain flaws
depending on the workspace deployed. Hence, periodic maintenance is not advised for
outdoor robots. The manual procedure is generally practised to assess the robot’s condition
and how good the given area is for deployment, which is labour-oriented and results in
high maintenance costs. Hence, a study on automated CM strategy for outdoor mobile
robots is vital for addressing this problem.

Selecting proper sensors to extract the characteristics of both system degradation
and terrain-induced concerns is critical, and it should be environment-independent for
outdoor robots. Vibration is widely accepted for fault detection, and most of the studies
used an IMU sensor for vibration-indicated data modelling based on the change in linear
and angular motions. However, sometimes robots are stopped by ground-level obstacles
where no abnormal vibrations are noticed, so more suitable sensors must be integrated
and explored. A fast and computationally low-cost neural network model with higher
prediction accuracy is mandated for real-time applications to avoid false positive actions.
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The shared autonomy and haptic-feedback-based approach is a feasible approach for CM
in outdoor robots; however, the current studies are mainly focused on controlling robot
arms, motion control, and safe navigation, avoiding obstacles in mobile robots and drones
in their heading direction, and do not explore CM applications in outdoor mobile robots.
Since CM covers internal and external factors and different threshold levels are involved,
a multi-level haptic feedback patterns system is essential for effectively monitoring and
controlling the robot. The proposed study analyses the abovementioned problems for a
feasible solution for CM applications in outdoor mobile robots.

1.2. Related Works

Abnormal vibration is an indicator of system failure; hence, many fault detection
and prognosis studies are conducted based on vibration-indicated data collected through
suitable sensors, mainly accelerometers [20–22]. The advent of deep learning models,
especially 1D CNN, is found to be accurate in extracting the unique features in order to
classify and assess the severity of anomalies, and they are used for real-time applications
due to their simple structure, low computational complexity, and easy deployability [23].
The vibration and 1D-CNN-based works are common for the CM and fault assessment
of machine components [24,25], structural systems [26], and industrial robots [27]. Other
CM and fault diagnosis works for industrial robots include minimising downtime in a
wafer transfer robot [28], failure prediction in a packaging robot [29], and a safe stop for a
collaborative robot [30]. However, such CM works are not extended for outdoor mobile
robots, though a great research scope using the typical onboard sensors and a necessity
because of their vast market demand and safety. Towards this CM effort, we introduced two
vibration-based approaches in previous works for indoor mobile robots, considering both
internal and external sources of vibration. In an IMU sensor-based work [31], the change in
angular velocity and linear acceleration data due to vibration sources is mainly modelled
as vibration data and, in the second work, a monocular camera sensor [32] is used and
the change in optical flow 2D vector displacement data is modelled as vibration-indicated
data for training. In both works, a 1D CNN was adapted as a classifier and compared with
other models, such as a Support Vector Machine (SVM), Multilayer Perceptron (MLP), Long
Short-Term Memory (LSTM), and CNN-LSTM, showing better accuracy and inference time.

The CM studies for outdoor robots are more challenging and unexplored, and the
existing studies are limited to terrain classification using different sensors and AI models to
assess traversability only; for instance, a terrain type study using IMU and a Probabilistic
Neural Network (PNN) for autonomous ground vehicles in [15], classifying asphalts, gravel,
mud, and grass. A terrain feature study based on texture-based descriptors is conducted
in [17] using a camera and Random Forest (RF) classifier. A sensor fusion approach using
IMU and camera is used in [18] for terrain classification, adapting an SVM as the classifier
and mentioning that a faster model is needed for real-time application. A 3D LiDAR
sensor is used for traversability analysis in [19] with the positive naive Bayes classifier by
defining the feature vectors with different dimensions. Regarding the wheel–terrain tough
interactions due to ground-level imperfections and obstacles, a higher torque is applied
to overcome the flaws and, naturally, a higher current consumption occurs. However, the
current sensors are more used for energy efficient strategy studies in mobile robots [33,34]
rather than CM applications, except an earlier study in [35] for fault diagnosis in motor-
driven equipment by monitoring current readings.

The vibrotactile haptic feedback approach is used in many systems, conveying in-
formation to the user or operator through vibration patterns, mainly for human health
monitoring or assistance, by developing wearable devices, such as the health monitoring
of an offshore operator in [36] and wheelchair navigation for disability people in [37].
Recently, these techniques have been applied to remotely controlled industrial and mobile
robots. For instance, haptic-feedback-based teleoperation using a Phantom Omni haptic
feedback master device and a 6-DOF robot arm was used with a force sensor as a slave,
enabling the operator to adjust the position and direction of the arm safely from a distance
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based on the distance from the haptic feedback to the manipulator [38], and a similar study
was conducted in [39] to stop the manipulator avoiding any collision. An inexpensive
electro-tactile-based haptic feedback method is presented in [40] for obstacle avoidance in
a cluttered workspace of a teleoperated robot arm. A wearable hand gesture recognition
and vibrotactile system is developed in [41] to control drone navigation, where the obstacle
information in the heading direction is fed back to the operator. A haptic feedback and
shared autonomy-based teleoperation for the safe navigation of mobile robots is explained
in [11], where obstacle range information is fed back to the operator as a force through
a haptic probe. Similar force feedback studies for mobile robots were conducted, includ-
ing [12–14]. These haptic-feedback-based works are mainly undertaken for indoor robots
for smooth navigation and avoiding obstacles in the heading direction. However, to our
knowledge, there are no such works for CM applications in outdoor robots, feeding back
the system deterioration stage and terrain-related features to ensure the robot’s health and
operational safety.

1.3. Contributions

1. An unexplored vibration-based Condition Monitoring (CM) framework is introduced
for outdoor mobile robots considering both the system deterioration state and uneven
terrain features.

2. Eight abnormal states are identified for an outdoor wheeled robot set at different
threshold levels for CM in view of real-world cases.

3. The vibration-indicated data are modelled based on IMU and current sensors data,
which complement each other for system-generated/degraded and wheel–terrain
interaction-related robot behaviour.

4. A simple 1D CNN-based model is structured for the fast, accurate, and computation-
ally low cost enabling of the real-time prediction of vibration threshold classes.

5. A novel wearable vibrotactile haptic feedback device architecture is presented for CM
applications in outdoor robots and configured with unique tactile feedback patterns
for each threshold class.

6. The real-time field case studies conducted using an in-house-developed outdoor
fumigation robot show the impacts of the proposed research framework, enhancing
the robot’s health and operational safety.

7. The proposed AI-enabled vibrotactile feedback-based CM framework for real-time
remote controlling is the first of its kind for outdoor mobile robots.

The remainder of this paper is structured as follows. Section 2 presents an overview
and methodology of the proposed work. Section 3 elaborates on the framework evaluation
and results. Section 4 explains field case studies conducted to validate the proposed method
for real-time application, and Section 5 concludes with a summary of the work.

2. Overview of the Vibrotactile Feedback-Based Condition Monitoring Framework

An overview of the proposed vibrotactile feedback-based condition monitoring and
real-time remote controlling framework for health monitoring and avoiding uneven terrain
features in outdoor mobile robots is depicted in Figure 1. It mainly consists of two systems:
a health status and uneven terrain-induced threshold classes publishing system at the robot
side and a haptic-feedback-based real-time remote controlling system using a vibrotactile
haptic feedback device at the operator side. The data transfer between the robot (publisher)
and the vibrotactile device (subscriber) is accomplished by setting a topic through a Message
Queuing Telemetry Transport (MQTT) broker protocol. The design and methodology
followed to develop and test these two systems for the proposed framework are elaborated
as follows.
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Figure 1. Overview of the vibrotactile feedback-based condition monitoring and remote controlling.

2.1. Predicting the Anomalous Cases for Condition Monitoring—Robot Side

This section explains the methodology followed for identifying and predicting the
anomalous cases at the robot side, covering the details of the outdoor robot platform used
for the data acquisition and field trials, the system-generated/deteriorated and uneven
terrain-induced vibration threshold classes, vibration-indicated data modelling, and the 1D
CNN model structured for classification and prediction.

2.1.1. Outdoor Mobile Robot Test Platform

An in-house-developed wheeled outdoor mobile robot is used in this study for
vibration-indicated data acquisition and real-time field case studies. The base platform
of this robot is designed with interchangeable payloads for outdoor applications such as
fumigation (pest control), pavement sweeping, and lawn mowing by mounting a sprayer
with a tank assembly, sweeping brushes, and grass-cutting wire module, respectively. Here,
we used the fumigation robot as it is intended to travel on both pavements and grass fields,
exposing maximum undesired terrain features, and is hence an ideal test platform for this
study. The size of the robot is 1.6 (L) × 0.85 (W) × 1 (H) m and it has an approximate
weight of 300 Kg. The robot’s locomotion unit consists of four hub wheel motors of 250 W
and steering motors of 100 W power, and the wheel size is 38 (outer diameter) × 15 (width)
cm. An omnidirectional mobility is designed with independent steering drive wheels en-
abling better manoeuvrability. The robot is built with a robust chassis using the welding of
stainless-steel sections, plates, shafts, and brackets for mounting all critical sub-assemblies
and sensors, including a double wishbone suspension system to fit driving for outdoor
applications. A 300 Ah 48V DC Lithium iron phosphate (LFP) battery is used to power
the system and payloads. An Industrial PC Anewtech IPC970-10WF5E1A is integrated
for entire operation and data storage. The Robot Operating System (ROS) middleware in
the Ubuntu Noetic operating system is used to execute all communications. A TP-Link
LTE 4G Router is added for remote monitoring and control, establishing Internet and
wireless networking.

A shared autonomy framework is executed; hence, the robot’s autonomous behaviour
is combined with human input as needed to monitor and control the robot, assuring
the robot’s health and operational safety. The onboard computer processes a low-level
autonomy stack using the perception sensors integrated to avoid large obstacles. The
sensors include four ultrasonic sensors (UCC4000) mounted at four corners of the robot
and two 2D LiDARs (SICK TIM581) mounted at the front and rear sides. A stereo camera
(ZED 2) is mounted at the front towards the heading direction. For live streaming, four
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cameras are mounted: one main camera facing towards the heading direction, one at the
rear side for any reverse motion, and the other two cameras at the left and right sides.
This shared autonomy framework integrated into this fumigation robot was based on
the previous works from our research lab [10], and a briefing of this shared autonomy
framework is as follows. The four ultrasonic sensors detect obstacles, including transparent
glass walls (when the robot traverses nearby buildings) and moving objects at all sides.
The two 2D LiDAR sensors enable the robot to mainly detect any prominent cliffs, kerbs,
or steps. The stereo camera detects the presence of pedestrians, bicycles, animals, and
vehicles at the front, and measures pedestrian density as well. The four cameras help
with live streaming. Additionally, a decision-making process based on multi-layer fuzzy
logic is integrated into the robot as additional safety layers, considering the operator’s
attention level and switching the operation modes, accordingly avoiding hazardous events.
However, this is applicable only for the large obstacles in the heading direction of the robot,
and any unseen and undetected ground-level obstacles are still harmful to the robot’s
health and operational safety. The fumigation outdoor robot, as explained, used as a test
platform in this study, is shown in Figure 2, including the perception sensors integrated for
shared autonomy. Depending on the remote location, the human–robot interface/shared
autonomy layer is connected through a network protocol, either using a local area network
or cloud computing.

Figure 2. Shared autonomy integrated outdoor fumigation robot test platform.

2.1.2. Vibration Threshold Classes for Condition Monitoring

A mobile robot produces unusual vibrations as early symptoms of failure and potential
hazards. The sources of such vibrations could be due to internal system issues like compo-
nent deterioration, wear and tear, loose assembly, and an unbalanced structure, or external
factors like uneven terrain and undetected ground-level small obstacles/features. Here,
the severity of vibration depends on the various levels of such internal and external factors.
Hence, a vibration threshold level-based classification used to distinguish the vibration
sources and their acceptance assessment is essential to trigger prompt and proper corrective
or maintenance action. For example, if the robot’s vibration is moderate, close attention is
needed to proceed or change the heading direction. Suppose that the vibrations are severe
due to internal or external factors: the operator should stop and fix the issues as soon as pos-
sible or change the heading direction to avoid ground-level obstacles and hazards. Hence,
this study proposes nine vibration threshold classes for condition monitoring suitable for
a four-wheeled outdoor mobile robot by considering both system-generated vibrations
due to internal concerns and terrain-flaws-related external circumstances, namely Safe
(no action required), Moderately safe due to System-generated (MS), Moderately safe due
to Terrain-induced Left wheels affected (MTL), Moderately safe due to Terrain-induced
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Right wheels affected (MTR), Moderately safe due to Terrain-induced where both Left
and Right wheels are affected (MT), Unsafe due to System-generated (US), Unsafe due to
Terrain-induced Left wheels affected (UTL), Unsafe due to Terrain-induced Right wheels
affected (UTR), and Unsafe due to Terrain-induced where both Left and Right wheels are
affected (UT). Here, the MS class need to be kept in view to ensure that the condition is
not worsening. The MTL, MTR, and MT classes need attention while proceeding or the
heading direction may change. For the US class, the robot should be stopped and the issues
should be fixed with proper maintenance actions. For the UTL, UTR, and UT classes, it
is better to stop and change the heading angle and proceed only if it is safe. These nine
vibration threshold classes tested and validated for condition monitoring in outdoor robots
are depicted in Figure 3.

Figure 3. Vibration threshold classification for condition monitoring.

2.1.3. Vibration-Indicated Dataset Modelling

A wheeled outdoor mobile robot vibrates at different rates linearly or in angular mo-
tion (roll, pitch, yaw) due to being system-generated or terrain-induced, as explained in the
previous section. Such abnormal movements of the robot could be assessed through IMU
sensor data. Sometimes, the robot may not show an apparent vibration/angular motion
when stuck with ground-level obstacles; instead, it keeps trying to overcome the obstacle,
resulting in a higher torque required and higher current consumption. Hence, adding the
current consumed data from each wheel motor will enhance the terrain-related threshold
classes assessment specific to the left or right side affected for corrective action. Thus, these
heterogeneous IMU and current sensors data support filling the gaps of individual sensors
in extracting the relevant vibration-affected features. In this study, we used the onboard
Vectornav VN-100 IMU sensor to extract the rate of the linear and angular motion of the
robot at different vibration threshold classes, i.e., linear acceleration and angular velocity,
from the accelerometer and gyroscope integrated with IMU. An ACS712 current sensor
module is integrated with each wheel drive motor to tap the current consumption using an
Arduino Mega 2560 microcontroller, enabling better prediction accuracy for terrain-induced
classes specific to left and right. The calculated angular acceleration from the angular veloc-
ity data is added for further dataset strengthening. These proprioceptive sensors do not
depend on each other and are unaffected by the environment or light conditions, facilitating
higher-accuracy prediction. As the robot locomotion is controlled by four independent
steering wheels (two drive wheels at both the front and rear) with holonomic mobility, the
average current value of the front-left wheel motor and rear-left wheel motor is recorded as
the left current value, and similarly for the Right. The IMU current sensors data acquisition
scheme is depicted in Figure 4.
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Figure 4. Dataset acquisition scheme using IMU and current sensors.

In this work, the vibration-indicated data (Vibdata) are the changes in the linear acceler-
ation, angular velocity, angular acceleration measured through the IMU sensor, and data of
the average current consumed by left-side pair motors and right-side pair motors measured
using the current sensors, due to the various vibration threshold classes, which is modelled
and represented as in (1). Here, the two types of sensors used have different behaviour;
hence, the sequential data subscription rate is critical to represent all data recorded for the
particular class in the given period. This is assured by setting the IMU subscription rate
at 80 Hz and lowering the delay in the Arduino program to the same rate as the current
sensor data subscription. It also confirmed that the total number of samples data collected
at any particular time is the same. The data features for linear acceleration, angular velocity,
and angular acceleration are recorded in three axes—a total of nine data from IMU and
two data features from the robot’s left and right-side motors pair—hence, a total of 11 data
features are used. Further, each data feature is compiled with 128 temporal data, forming
one sample datum for training acquired in 1.6 s. Hence, a sample datum is an array of
[128 × 11] as represented in (2). The IMU and current sensors data are normalised into
standard scale without losing information for better convergence during training, and then
compiled into an array of [n × 128 × 11] as training and evaluation datasets for each class
for the 1D CNN training, where n is the total number of samples.

Vibdata = [Alin, Vang, Aang, I(L) (Le f t_Front)+(Le f t_Rear)
2

, I(R) (Right_Front)+(Right_Rear)
2

] (1)



AccLin(X)t1, AccLin(X)t2, . . . AccLin(X)t128
AccLin(Y)t1, AccLin(Y)t2, . . . AccLin(Y)t128
AccLin(Z)t1, AccLin(Z)t2, . . . AccLin(Z)t128

VelAng(X)t1, VelAng(X)t2, . . . VelAng(X)t128
VelAng(Y)t1, VelAng(Y)t2, . . . VelAng(Y)t128
VelAng(Z)t1, VelAng(Z)t2, . . . VelAng(Z)t128

AccAng(X)t1, AccAng(X)t2, . . . AccAng(X)t128
AccAng(Y)t1, AccAng(Y)t2, . . . AccAng(Y)t128
AccAng(Z)t1, AccAng(Z)t2, . . . AccAng(Z)t128

I(L)t1, I(L)t2, . . . I(L)t128
I(R)t1, I(R)t2, . . . I(R)t128



(2)

2.1.4. 1D CNN Modelling for Training and Prediction of Threshold Classes

A simple structured 1D-CNN-based model is proposed to train threshold classes for
fast, accurate prediction and real-time CM applications. The model follows the convolution
operations on data vectors using a nonlinear activation function that convolves the input
vector to the output layer using a filter vector, as in Equations (3) and (4) [42]. Here, x (of
length N) is the input data vector, ω (of length L) is the filter vector, the term b is the bias to
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the best fit for given data, and c is the output layer (of length N − L + 1). For detecting the
key characteristics and reducing the number of parameters, a max pooling output vector
d is added after convolution layers, where m × 1 is the kernel size, u is a window function,
and s is the filter moving stride over input vector c.

Output layer c(j) = f

(
L−1

∑
i=0

ω(i)x(j − i) + b

)
, where j = 0, 1, . . . , N − 1 (3)

Max pooling output vector d = max(u(m × 1, s)c) (4)

The dataset [128 × 11] prepared for each class is flattened into a 1D array [1 × 1408]
to be fed into convolution layers. The CNN structure for this study is made simple with
four layers, and uses sixty-four filters for the first two layers, and then thirty-two for
the remaining. A convolution window (kernel) size of 3 is used for each layer. For
effective learning of the non-linear vibration-indicated heterogeneous sensors data pattern,
a Rectified Linear activation Unit (ReLU) is applied to each convolutional layer, followed
by a max pooling layer with a stride size of 2, enabling a reduction in the computation time.
To avoid over-fitting while training, a dropout layer is added at a rate of 0.2 for each layer.
Finally, with a flattening function, the pooled feature maps are converted into a 1D array
in the output layer, which predicts the multinomial probability of threshold classes. The
proposed 1D-CNN-based model structure is illustrated in Figure 5.

Figure 5. One-dimensional CNN model structure and data shape for training.

2.2. Vibrotactile Feedback System for Condition Monitoring and Remote
Controlling—Operator Side

This section explains the vibrotactile haptic feedback device developed and the
methodology followed to receive and convert the predicted abnormal classes to unique
haptic feedback patterns corresponding to the abnormal threshold classes, enabling prompt
actions by the remote operator.

2.2.1. Vibrotactile Haptic Feedback Device Architecture

A vibrotactile haptic feedback device is developed to understand the anomalous
cases related to the robot’s system/deterioration level and uneven terrain features causing
accelerated degradation or hazards, thereby switching the robot’s control to operator mode
and taking necessary actions in real-time. Here, the anomalous cases are the eight abnormal
threshold classes (MS, MTL, MTR, MT, US, UTL, UTR, and UT) identified and predicted by
the robot (publisher). The haptic device comprises an ESP8266 ESP-12E microcontroller,
two vibration modules/motors (DFR0440), a 9 V alkaline battery, a 5 V voltage regulator,
and a power switch. A 3D-printed middle bracket for holding/guiding the components
and top and bottom protective enclosures are used and fastened with screws. The DFR0440
vibration module is built with an Eccentric Rotating Mass (ERM) vibration motor; hence,
the module vibrates when the motor shaft with offset mass rotates. The vibration modules
are vertically guided independently and floated with low-tension compression springs. A
hemispherical plastic bush is attached to each vibration module, acting as an actuator for
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tactile stimulation. The two vibration modules and the vibrator bushes named left and
right also represent the robot’s left and right wheels in the cases of left- and right-wheel-
induced vibration classes. The vibration modules stimulate based on the vibration pattern
configured for each threshold class and effectively deliver tactile feedback to the operator
through the left and right vibrator bushes. As it is a wearable device, various ergonomics
and safety factors have been considered while designing the device; for instance, a compact
and minimum overall size while at the same time keeping the left and right bushes as
far as possible to distinct the two bushes’ feedback, a lower weight, being easy to wear
with a single hand, being adjustable to fit with the operator’s upper arm size, and having
no sharp corners, especially regarding the vibrator bushes, which are in contact with the
operator, for mechanical safety. In addition, the electrical circuits and battery connection
are carefully wired and isolated for electrical safety. The device is compact, with a size of
80 × 68 × 38 mm, and weighs 100 gm. A single armband with a velcro fastener is used
to firmly hold the device with the remote operator’s upper arm, and the spring-loaded
left and right vibrator bushes ensure contact with the operator. The design and assembly
details of the haptic feedback device proposed for the CM application of an outdoor mobile
robot are depicted in Figure 6.

Figure 6. Vibrotactile haptic feedback device architecture.

2.2.2. Vibrotactile Haptic Feedback Patterns for Threshold Classes and Encoding

The vibration threshold classes predicted by the 1D CNN model at the robot side
are published to a topic via MQTT Broker, which is subscribed by the microcontroller
at the haptic feedback device. The vibrotactile feedback pattern for each threshold class
should be easy to perceive and intuitive to avoid additional cognitive attempts from the
operator. Hence, distinctive vibration feedback patterns are planned that correspond
to each threshold class by changing the vibration intensity of the module (ERM speed),
setting to ON/OFF and continuous ON modes, and utilising the left and right vibration
modules/bushes. The vibration intensities of the module are set by changing the duty cycle
of the Pulse Width Modulation (PWM) signal sent to the vibration module. The left, right,
or both vibration modules will be stimulated for the terrain-induced classes specific to the
affected left-, right-, or both-side wheels. For all Moderately safe classes (MS, MTL, MTR,
and MT), the PWM duty cycle is set as 50% and, for all Unsafe classes (US, UTL, UTR, and
UT), it is set to 100%, resulting in moderate and the highest vibration intensity, respectively.
Further, to distinguish between system-generated and terrain-induced, the vibration pattern
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is set as ON and OFF mode for System-generated classes (MS and US) with an off time
of 300 ms. And, for Terrain-induced classes (MTL, MTR, MT, UTL, UTR, and UT), the
vibration mode is set as a continuous pattern. The predicted vibration threshold classes’
conversion to specific vibrotactile feedback patterns is illustrated in Figure 7. Here, 1.6 s is
used for the vibration pattern, considering each prediction based on every new dataset.

As there are a total of eight abnormal classes (excluding the safe class, which needs
no action) in our proposed study, designing a unique pattern for each class was one of the
challenges in the work, which we realised by the combination of the mechanical design
of the haptic device, hardware, and software architecture. The mechanical design and
hardware setup were made simple with only two actuators (left and right vibrator tactile
bush/vibrator module) as more actuators/vibrator modules raise complexity in ergonomics
and assessment. Similarly, the programming simplified the design by limiting the Pulse
Width Modulation (PWM) duty cycles to only two settings (50% and 100%). Based on these
minimum number of features/ parameters, the unique haptic feedback pattern for eight
classes is made simple and intuitive.

In summary, for all Moderate classes (MS, MTL, MTR, and MT), the haptic feedback
intensity (vibration intensity of the vibrator module/motor) will be moderate, and for the
Unsafe classes (US, UTL, UTR, and UT) the haptic feedback intensity is set at maximum (not
harmful) to distinguish between these two threshold levels. Further, the haptic feedback is
set ON and OFF for the System-generated vibration MS and US classes (internal system
degradation), i.e., the device will be OFF for 300 ms after a 500 ms feedback period. These
vibration patterns designed are intuitive or need less learning effort; hence, the operator can
easily make decisions based on this vibration intensity difference and ON/OFF vibration
pattern configurations for the specific class.

As per the haptic feedback received through the vibrator bushes, the operator can
trigger the corrective actions by changing the robot’s heading angle, moving left or right,
thereby minimising the traversal through uneven terrain or planning to stop the robot if the
robot persistently predicts unsafe classes either due to system-generated or terrain-induced
flaws. The distinctive haptic feedback is evaluated, simulating the eight classes, and is
tested by different users. No haptic feedback is programmed for safe class prediction.

Figure 7. Vibrotactile feedback patterns for abnormal threshold classes.

3. Training and Evaluation of 1D-CNN-Based Threshold Class Prediction Model

This section composes data acquisition methods representing the nine classes based
on the two heterogeneous sensors and their visual representation, followed by the 1D CNN
model training for optimum performance and evaluation results.
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3.1. Training Dataset Preparation for the Vibration Threshold Classes

The data acquisition representing the nine classes for training the 1D CNN model,
using the two heterogeneous sensors integrated with the fumigation robot, is critical.
Hence, it is firstly confirmed that the Vectonav VN-100 IMU sensor and the four ACS712
30 A current sensors are mounted firmly with the chassis and wheel motors, and the data
subscription rate (80 Hz) and dataset collection algorithm work properly, compiling the
data in an array of [n × 128 × 11] as explained in Section 2.1.3. The robot’s linear speed
is set at 0.3 m/s, which is the same as the operating speed, and the robot is driven in a
zig-zag pattern while collecting the training data. For the safe class dataset preparation,
the robot is tested, assuring good health, and is operated on plain and well-maintained
pavements and grass fields, where no apparent vibrations are observed. The dataset
collected during this trial is saved and labelled as the safe class. The data collection for
the abnormal threshold classes involves robot modification representing system-generated
classes and running through uneven and simulated ground-level obstacle environments,
including positive and negative obstacles/features and unstructured grass fields. Some
of these setups used to capture the internal system-generated classes (health issues) and
external uneven/undetected ground-level obstacles/features for terrain-induce classes
data collection are shown in Figure 8.

Figure 8. Robot modification and terrain exposure for threshold classes training data acquisition.

The robot was modified on a minor level for the Moderately safe System-generated
class (MS). This includes loosening the components assembly mounting brackets, setting
the air pressure of one or more wheels as low, reducing the suspension system performance,
and placing offset the heavier items such as the battery. Then, the robot was driven on the
same plain terrains as the safe class and a minor level of vibration was noticed compared to
the safe class, which is purely due to the degraded system causes. The data were collected
and labelled as the MS class. Further, for the Unsafe System-generated class (US), the
modifications above intensified more with close observations and safety measures, such as
an emergency stop, resulting in a higher vibration of the robot compared to the MS class.
The data collected during these trials were labelled as the US class.

The left and right wheels of the robot are kept 0.7 m apart; hence the spot ground-level
obstacles are exposed to the particular wheel only, and the deterioration rate is affected
by the specific wheel and related assembly only. In this view, if the robot is exposed to
the spot obstacles at left-side wheels (front and rear), it will be labelled as MTL or UTL
depending on the size of the ground-level obstacles, and, similarly for right-side wheels,
MTR or UTR. The advantage of this approach is that the operator can easily avoid the
terrain-induced vibration, detecting left or right spot obstacles by moving left and right,
utilising the holonomic mobility of the robot as well. Alternatively, if the obstacle is spread
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like a long root or a large uneven pebbled area, both left/right wheels undergo the same
experience; hence, such data are labelled as MT or UT.

Next, for collecting moderately safe terrain-induced classes data, the robot is ex-
posed to typical pavements and grass fields with uneven/unstructured surfaces, dam-
aged/missing tiles pavement, stones, roots, pits, utility hole raised lids, and gutters, includ-
ing simulated obstacles. Here such selected imperfections had a moderate size of around
2–4 cm, both positive and negative. As explained above, these Moderate Terrain-induced
data are recorded as MTL, MTR, and MT. The same exercise and approach are repeated for
Unsafe Terrain-induced classes (UTL, UTR, and UT), driving through the undesired terrain
features of sizes of around 4-6 cm height, and the data were labelled accordingly.

For all Unsafe classes (US, UTL, UTR, and UT), as the robot vibrates more severely,
the deterioration rate become faster, and chances of total failure and hazards are high.
Hence, during such trials, the robot stopped intermittently and adjusted to continue trials
as an unsafe class. Also, all safety measures like close observation and an emergency stop
button were taken if needed. For each threshold class, a total of 2500 samples, forming
an array of [2500 × 128 × 11], were saved and split into 80% and 20% for training and
validation, respectively, for training the 1D CNN model. Additionally, a total of 500 dataset
samples were recorded for each class to evaluate the accuracy of the trained model. The
vibration-indicated IMU and current sensors data across the nine classes found different
values/patterns, enabling a faster convergence in extracting the unique characteristics of
each class and a higher prediction accuracy. For a visual representation of this unique
dataset for each class, we randomly collected a single dataset of 128 elements and used
only five features here for plotting, i.e., features from IMU (angular velocity in X, Y, and
Z axes) and the current sensor (left and right wheel current consumption) as shown in
Figures 9 and 10.

Figure 9. Vibration-indicated data from IMU sensor for each class.
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Figure 10. Vibration-indicated data from current sensors for each class.

As the data features are in different scales, especially the current sensors values,
normalisation pre-processing is conducted for the standard scale, supporting faster conver-
gence during the 1D CNN training. Here, IMU data were normalised into −1 to +1 and
0 to 1 for current consumption data following Equations (5) and (6), respectively.

Dataset_IMU Sensor : xNormalised = 2
x − min(x)

max(x)− min(x)
− 1 (5)

Dataset_Current sensor : xNormalised =
x − min(x)

max(x)− min(x)
(6)

3.2. 1D CNN Model Training and Evaluation Results

This section provides the 1D CNN model training methodology and the results. The
heterogeneous sensors-based unique dataset compiled is trained following a supervised
learning strategy using an Nvidia GeForce GTX 1080 Ti-powered workstation and Tensor-
flow DL-library [43]. To avoid over-learning and for generalisation, a K-fold cross-validation
technique is applied, where k = 5, assuring the dataset quality. A momentum with gradient
descent optimising strategy is adapted for faster learning and in order not to be stuck
with local minima. After tuning with different functions and values, the following hyper-
parameters are used for the optimum performance of the model. An adaptive learning
rate approach optimisation algorithm—an adaptive moment optimisation (Adam) opti-
miser [44] is applied with a learning rate of 0.001. Here, the exponential decay rates of
0.9 and 0.999 are used for the first and second moment, respectively. Considering this
model’s multinomial classification and probability prediction, a categorical cross-entropy
loss function is used, ensuring minimum loss while compiling the model. The model
performed better when set with a batch size of 32 and an epoch size of 100, as plotted in
Figure 11, depicting the loss and accuracy curve graphs during training and validation.
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Figure 11. Loss and accuracy curves during training and validation.

The prediction accuracy of the trained model is assessed based on the statistical
metrics precision, recall, F1-score, and accuracy following Equations (7)–(10) [45], where
TP, TN, FP, and FN are True Positive, True Negative, False Positive, and False Negative,
respectively. The additional 500 samples recorded for each class during data acquisition,
which were not part of training, were used for the 1D CNN model evaluation, resulting in
an average prediction accuracy of 92.6% with an inference time of 0.238 ms. Table 1 lists the
detailed results of this offline evaluation test for each class. Hence, this proposed model is
suitable for accurately predicting the vibration threshold classes and condition monitoring
applications in outdoor mobile robots

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1Score =
2 × Precision × Recall

Precision + Recall
(9)

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

Table 1. One-dimensional CNN model evaluation result.

Vibration Threshold Classes Precision Recall F1 Score Accuracy

Safe 0.94 0.92 0.93 0.93
Mod safe System-generated (MS) 0.87 0.89 0.88 0.88

Mod safe Terrain-induced—Left (MTL) 0.90 0.89 0.92 0.91
Mod safe Terrain-induced—Right (MTR) 0.91 0.94 0.92 0.92

Mod safe-Terrain induced-Left & Right (MT) 0.95 0.96 0.93 0.95
Unsafe System-generated (US) 0.90 0.93 0.89 0.90

Unsafe Terrain-induced—Left (UTL) 0.93 0.94 0.91 0.93
Unsafe Terrain-induced—Right (UTR) 0.94 0.94 0.92 0.94

Unsafe Terrain-induced—Left & Right (UT) 0.97 0.98 0.95 0.97
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A summary of the various challenges and fixes during the 1D-CNN-based classifier
training and an evaluation are as follows. The training data acquisition and compilation
representing all nine classes were challenging; the data subscription rate for both types
of sensors selected (IMU and current sensors) should be the same, and a higher data
subscription rate is preferred for a maximum number of predictions per unit of time, where
each data feature (a total of 11 features from two types of sensors) with a process window
size (128 temporal data) is to be confirmed, forming a single dataset for training. This was
realised by developing a data subscription and compiling algorithm, lowering the delay in
the Arduino program during the current consumption data subscription for the maximum
data subscription rate, and ensuring that the dataset was prepared for all the features with a
uniform processing window size. As the proposed IMU and current heterogeneous sensor
data fall on different scales, there are difficulties in converging speed during training; hence,
the data are brought to a common scale by normalisation. A fast and low computation
cost and higher prediction accuracy are crucial for the CM in a mobile robot; hence, the
model is structured with a minimum number (four) of convolution layers and tested with
different filter sizes and convolution windows in order to choose ideal parameters to fit
the given dataset. We opted for a suitable activation function (ReLU) for this classification
model, tested with different configurations of pooling and dropout layers to reduce the
computation time and overfitting, and finalised the structure of the 1D CNN model for a
fast and accurate prediction model. Similarly, the challenges faced during the training for
fast convergence and better accuracy were fixed by exploring the various hyperparameters
of the model. We used the accuracy and loss curve tool to monitor how well the proposed
1D CNN model fits training data (training loss) and new data (validation loss) and updated
the hyperparameters accordingly to finalise a fast and accurate model.

4. Real-Time Experiments and Framework Validation

The proposed haptic-feedback-based real-time condition monitoring and remote con-
trolling framework to assess system-generated issues mainly deterioration and minimise
traverse through terrain-related flaws reducing the chances of accelerated deterioration
and hazards, is validated by conducting three field case studies. Prior to the case studies,
a threshold class inference and haptic feedback trigger engine is developed as illustrated
in the flowchart, Figure 12. Here, the engine applies the 1D CNN model’s knowledge for
every new data sample for inferencing in real-time. A total of 128 temporal data (Data)
and 11 features (Feature) form a new dataset [128 × 11] for prediction. A placeholder
TemporalBuffer is used during dataset collection, and InferenceBuffer holds one complete
dataset as input to the 1D CNN model, runs on the TensorFlow platform, and returns
the predicted threshold class. The algorithm also switches the predicted class (PC) to the
corresponding vibration pattern, as illustrated. Next, the robot’s shared autonomy and
control operations over cloud computing, including the class inference and haptic feedback
engine performance, are verified by running the robot on a plain pavement and intruding
rods of different sizes, testing safe, MTL, MTR, MT, UTL, UTR, and UT classes as shown
in Figure 13.

Field case studies are planned to assess all the threshold classes’ real-time predic-
tion accuracy and how the vibrotactile haptic feedback system enables operators to stop,
avoid/minimise ground-level obstacles, and ensure a safe class. Two engineers are trained
to learn vibration patterns for each threshold class and are assigned these field trials to
monitor and switch over to manual control and operate based on haptic feedback threshold
class patterns. The robot is driven in a zig-zag pattern to cover the given test area at a linear
speed of 0.3 m/s. The IMU and current sensors data subscription ensure the same at 80 Hz.
Before starting each trial, it is also ensured that the robot’s health conditions are good.
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Figure 12. Flowchart: class inference and haptic feedback engine.
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Figure 13. Pre-trial set up and framework testing.

A plain ground with uniformly paved tiles is identified for the first case study and a
total area of 10 × 12 m2 is selected for testing. There are few drainage utility holes with
raised covers as ground-level obstacles and also some aluminium profiles of different sizes
are kept, randomly inducing terrain threshold classes. Secondly, an uneven grass field of a
test area of 15 × 20 m2 is selected, where many natural surface level flaws of different sizes
are observed, such as small pits, stones, and tree roots spread over the ground, that are
either passable or blocking. Most of these imperfections are covered by grass so that they
can be detected and controlled only through this proposed retrospective technique. Finally,
a pavement area is identified with ground-level obstacles, such as missing or broken tiles,
small pits, cliffs, kerbs, gutters, and drainage cover at varied heights, and more obstacles are
added, which is the same as the first case study, simulating a poorly maintained pavement.
Here, a total area of 8 × 16 m2 was selected and isolated from other users, considering
further testing as a long-term trial for system-generated classes. The test areas for these
three field case studies are shown in Figure 14.

Figure 14. Three case studies conducted for haptic-feedback-based CM framework validation.

We planned three operation modes for each case study to validate the effectiveness of
this proposed haptic-feedback-based condition monitoring and robot controlling frame-
work. The first mode is without executing the proposed haptic feedback system and
observing the total number of abnormal threshold classes predicted by the system. This
means that the robot is exposed to each test area with uneven terrain, which will cause
an accelerated system deterioration or become hazardous if driven continuously. The
second and third modes run with the proposed haptic feedback system, and the robot is
controlled remotely by operators 1 and 2, respectively. Here, we mainly tested how many
ground-level obstacles are avoided based on the haptic feedback when the robot hit the
terrain obstacles and control, avoiding the severe features or being limited to the moderate
class, or helping not to repeat this for the rear wheels by adequately changing the heading
direction. So, here, we mainly checked the total number of abnormal threshold classes
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reduced compared to without the haptic feedback and controlling system. Also, with two
operators, the repetitiveness of the system was tested and validated. The robot drove on
the three field areas selected for each mode and covered the whole area once in a zig-zag
pattern for each test. The test results summary of these three case studies (CS 1-3) for the
three modes of operation is plotted in Figure 15.

Here, for instance, in case study 1, without integrating the haptic feedback system
for real-time control, which is mode 1, the robot encountered 62 abnormal terrain features.
At the same time, the operator could control the robot for the same test environment,
avoiding such terrain anomalies based on the proposed haptic feedback, and encountered
only 17 terrain features (as shown in mode 2), reducing the chances of accelerated system
degradation and operational hazards.

Accordingly, the total number of abnormal classes exposed without haptic feedback
and hence the chances of system deterioration and hazards is four times more than with the
proposed system. Also, there is not much difference between modes 2 and 3, i.e., the ease
of operation in detecting the feedback pattern and controlling is validated. Additionally,
for mode 1 without haptic-feedback-based operations, a safety operator on the spot was
involved whenever the robot got stuck, especially when encountering MT, UTL, UTR, and
UT classes. The total number of instances of manual involvement needed to resume the
operations as per mode 1 for case studies 1–3 was 4, 13, and 5, respectively. This also shows
additional time and effort for a robot without integrating such a proposed CM framework,
other than the system degradation and chances of hazardous events.

Figure 15. Threshold class predicted/haptic feedback summary: 3 case studies, 3 operation modes.

Here, no system-deteriorated classes are observed as the robot was tested in healthy
condition and the test was completed in the short term to cover the given area once. So, for
testing system-generated classes, the third case study was planned to continue for the long
term (average 4 h a day) by removing the comparatively bigger ground-level obstacles,
allowing the robot to pass over the obstacles limited to moderated safe terrain-induced
classes. The robot was driven in a closed loop and zig-zag pattern in the predefined
area. The prediction classes and haptic feedback were tested daily. On the 20th day, an
intermittent prediction of the MS class and corresponding haptic feedback pattern was
observed. We continued this state for a few hours, closely monitoring the ground truth
with safety precautions such as e-stop, and, further, one of the wheels became punctured
and generated wobbling. The system occasionally predicted the US class as haptic feedback
whenever the wobbling effect was severe. To avoid total failure or hazards, we stopped
the operations and triggered maintenance actions to fix the loose assembly and replace
the wheel.
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We randomly collected 300 samples of each class from the above case studies and
long-term tests, closely observing the ground truth and actual haptic feedback to assess the
real-time prediction accuracy. Accordingly, the average accuracy was 91.1%, as listed in
Table 2 for each class, close to the offline evaluation results. This shows the feasibility and
repetitive accuracy of the proposed vibrotactile haptic-feedback-based condition monitoring
framework for outdoor mobile robots for real-time applications.

Table 2. Real-time prediction accuracy of threshold classes.

Haptic Feedback Classes Safe MS MTL MTR MT US UTL UTR UT

Prediction Accuracy (%) 92 86 88 89 90 92 94 93 96

The proposed study is distinct from the existing techniques, such as shared autonomy,
haptic feedback, and terrain classification. The usual shared autonomy works mainly to
switch to operator control due to the limitation of safe navigation, i.e., mainly avoiding
obstacles in its heading direction. The haptic feedback devices are generally used for human
health monitoring and to collect information about the obstacles in mobile robots. The
terrain classification intends to detect the type of terrain in order to assess the traversability.
However, our proposed work is for CM applications in outdoor mobile robots detecting
both the robot’s degradation level and terrain extremities, causing accelerated deteriora-
tion and operational hazards. Hence, this is an additional protection other than shared
autonomy capabilities.

5. Conclusions

The deployment of a mobile robot in a public outdoor workspace exposed to extreme
terrain features is still challenging due to the lack of a proper robot health monitoring
system, real-time control that avoids ground-level obstacles, limitations of technology
readiness, and other local regulations. This paper discussed and proposed a feasible and
novel approach for the real-time condition monitoring and remote control of an outdoor
robot by developing an AI-enabled haptic-feedback-based condition monitoring framework
that assesses the robot’s health state and enables remote operators to minimise traversing
through undesired terrain flaws. We proposed eight abnormal vibration threshold levels
for a typical four-wheeled outdoor robot for condition monitoring, including the system
health/deterioration status and the wheel–terrain-related undesired effects due to extreme
terrain features. The vibration-indicated data for the threshold classes were modelled based
on the onboard IMU and current sensors data, which are independent of environment
conditions and complement each other, representing the robot’s behaviour for each class.
A simple structured 1D CNN model was developed and trained on this heterogeneous
sensor data for fast, accurate, and real-time execution. A wearable vibrotactile haptic
feedback device architecture suitable for the condition monitoring of outdoor robots and
configured multi-level vibrotactile patterns unique to each threshold class is presented,
enabling the real-time controlling of the robot. A shared autonomy integrated in-house-
developed outdoor fumigation robot was used as a test platform in this work to validate
the proposed framework by conducting three field case studies, including a long-term
test. Accordingly, the threshold class prediction accuracy was found to be 91.1%, and the
effectiveness of the real-time haptic device operation was evaluated to be four times better
than the usual practice by assisting either in stopping or minimising the exposure to extreme
terrain features. Hence, the proposed AI-enabled vibrotactile feedback-based condition
monitoring and remote control significantly impact the robot’s health and operational
safety. We will further improve the prediction accuracy by exploring additional sensors as
future work suitable for outdoor mobile robots.
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