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Abstract: This paper presents a groundbreaking numerical technique for solving nonlinear time
fractional differential equations, combining the conformable continuity equation (CCE) with the Non-
Polynomial Spline (NPS) interpolation to address complex mathematical challenges. By employing
conformable descriptions of fractional derivatives within the CCE framework, our method ensures
enhanced accuracy and robustness when dealing with fractional order equations. To validate our
approach’s applicability and effectiveness, we conduct a comprehensive set of numerical examples
and assess stability using the Fourier method. The proposed technique demonstrates unconditional
stability within specific parameter ranges, ensuring reliable performance across diverse scenarios.
The convergence order analysis reveals its efficiency in handling complex mathematical models.
Graphical comparisons with analytical solutions substantiate the accuracy and efficacy of our ap-
proach, establishing it as a powerful tool for solving nonlinear time-fractional differential equations.
We further demonstrate its broad applicability by testing it on the Burgers–Fisher equations and
comparing it with existing approaches, highlighting its superiority in biology, ecology, physics, and
other fields. Moreover, meticulous evaluations of accuracy and efficiency using (L2 and L∞) norm
errors reinforce its robustness and suitability for real-world applications. In conclusion, this paper
presents a novel numerical technique for nonlinear time fractional differential equations, with the
CCE and NPS methods’ unique combination driving its effectiveness and broad applicability in
computational mathematics, scientific research, and engineering endeavors.

Keywords: non-polynomial spline; conformable continuity equation; Burgers-Fisher equations; stability
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1. Introduction

Nonlinear fractional differential equations (FDEs) have emerged as powerful mathe-
matical tools for the analysis and understanding of intricate systems in various scientific
and engineering domains. By combining the concepts of nonlinearity and fractional deriva-
tives, these equations offer a comprehensive framework to describe memory and hereditary
effects on physical, biological, and financial processes. The ability to account for long-term
dependencies and complex dynamics makes nonlinear FDEs indispensable in fields such
as physics, engineering, chemistry, and finance. In this research paper, we explore the sig-
nificance of nonlinear FDEs as models for capturing the behavior of real-world phenomena
and investigate the numerical techniques employed to approximate solutions for these
equations. Our study aims to shed light on the widespread applications and challenges
associated with nonlinear FDEs, fostering a deeper appreciation for their pivotal role in
advancing scientific knowledge and technological innovations [1–7]. The analytical solu-
tions of differential equations with fractional order and nonlinear terms present formidable
challenges, owing to their intrinsic complexity and the limitations of traditional analytical
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methods. These equations, characterized by incorporating nonlinearity and time-fractional
derivatives, frequently exhibit intricate behavior that defies facile treatment through con-
ventional solution techniques. As a consequence, the search for viable solutions necessitates
the adoption of numerical approaches. In the quest for such solutions, numerous numerical
methods have been developed, among which polynomial and non-polynomial splines have
surfaced as promising techniques for approximating solutions to nonlinear time-fractional
differential equations [8,9]. Various methods have been employed in the field, including
the approaches based on finite difference and spline approximation [10], Haar-Wavelet and
optimal homotopy asymptotic methods [11], the B-spline collocation technique [12], cubic
and quintic B-spline techniques [13–15], utilization of the Hermite–Galerkin method [16],
the application of bilinear spline interpolation [17], utilization of bicubic B-spline func-
tions [18], and the implementation of the quadratic spline-based with integral scheme [19],
among several other methodologies. The difficulty in obtaining analytical solutions for non-
linear time-fractional differential equations leads to the adoption of numerical methods as
valuable assets for approximating solutions. The selection of an appropriate methodology
is contingent upon the particular equation under consideration and the requisite degree
of accuracy. Within this array of methodologies, the non-polynomial spline technique has
surfaced as a conspicuous numerical approach, well-suited for addressing mathematical
conundrums that entail the construction of a spline curve unrestrained by polynomial
functions. This approach revolves around the approximation of equation solutions through
the utilization of a malleable and smooth curve that adeptly conforms to the data points. In
recent times, non-polynomial splines have garnered augmented attention, attributable to
their capacity to effectively resolve a spectrum of mathematical equations, encompassing
differential equations, fractional differential equations, integral equations, and nonlinear
Volterra integral equations. Their versatility and applicability in approximating solutions
for these complex mathematical models render non-polynomial splines a promising avenue
of research in the pursuit of accurate numerical solutions. In our prior work, we integrated
the non-polynomial spline method with the continuity equation [20], utilizing the Caputo
fractional derivative. In this manuscript, we advance our approach by employing the
conformable fractional derivative in the continuity equation. This evolution reflects our
dedication to exploring new dimensions in fractional calculus and numerical analysis. The
shift from the Caputo to conformable derivative introduces enhanced accuracy, stability,
and versatility in solving nonlinear time fractional differential equations, aligning with our
commitment to refining numerical techniques for complex mathematical challenges. In [21],
an alternative to polynomial splines was introduced to solve the fractional Bagely–Torvik
equation. Ali et al. [22] managed to derive approximate solutions for fourth-order fractional
boundary value problems. Using a non-polynomial cubic spline method, Hamad et al. [23]
explored numerical solutions for Fredholm integral equations. These investigations col-
lectively underscore the adaptability and efficacy of non-polynomial spline techniques in
addressing mathematical equations, thereby emphasizing the significance of this research
domain [24–32]. The concept of fractional derivatives has gained widespread utility in the
mathematical representation of real-world phenomena, particularly when conventional
integer-order derivatives fall short of providing a comprehensive portrayal. In recent
times, the concept of conformable derivatives has emerged as a potent tool within the
realm of fractional calculus [33,34]. Introduced in [35], the conformable derivative is a
novel form of fractional derivative grounded in the extension of conformable calculus: a
concept introduced by [36] that serves as a generalization of classical calculus. In contrast
to other fractional derivatives, the conformable derivative stands out for its advantageous
properties, such as a chain rule, product rule, and quotient rule, which render it more
convenient for practical applications. Effectively utilized across various fields such as
physics, engineering, and finance, the conformable derivative demonstrates significant
efficacy in characterizing the dynamics of intricate systems governed by non-integer order
principles [37–39]. Lately, numerous researchers have addressed challenges in engineer-
ing, mathematics, and dynamics by employing conformable fractional derivatives, as
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evidenced in works such as [40–42]. The nonlinear partial differential equation, known
as the time-fractional Burgers–Fisher equation, involves a fractional derivative applied
to the time variable. In recent times, this equation has garnered considerable attention
for its significant role in representing various phenomena, such as the proliferation of
biological populations, the diffusion of epidemics, and the kinetics of chemical reactions, as
explored in works [43–46]. Solving this equation presents a formidable challenge due to its
nonlinear and non-local characteristics. In response to this challenge, numerous numerical
methodologies have been proposed in the existing literature, which include the cubic
B-spline method [47], the finite element method [48], the recently enhanced differential
transform method [49], and the Hermite spline collection method [50]. However, In the
realm of mathematical modeling and scientific computation, the application of various
techniques has proven to be indispensable. However, the intricate nature of nonlinear
fractional differential equations often gives rise to challenges concerning accuracy and
stability. In response, there is a growing imperative to devise innovative numerical ap-
proaches that not only offer precise solutions but also ensure computational efficiency
when tackling such equations. This paper draws inspiration from the formidable obstacles
posed by nonlinear time-fractional differential equations and the urgent requirement for
accurate and efficient numerical techniques to surmount these challenges. Established
methods frequently falter in capturing the intricate behaviors exhibited by these equations,
which hinders the derivation of analytical solutions. Consequently, numerical methods
have risen to prominence as indispensable tools for approximating solutions. In this con-
text, the non-polynomial spline conformable continuity method (NPSCCM) emerges as
a promising avenue due to its remarkable adaptability in generating smooth curves that
transcend the limitations of conventional polynomial functions. The driving force behind
this research lies in addressing the limitations of established numerical methods when
dealing with time-fractional Burgers–Fisher equations. Through the formulation and rig-
orous examination of the NPSCCM, our objective is to introduce a robust and accurate
numerical technique that effectively overcomes the accuracy and stability concerns that
have plagued prior approaches. Notably, the proposed NPSCCM boasts several com-
pelling advantages, including its ability to provide precise approximations of solutions,
demonstrated stability, a high convergence order, and remarkable performance in terms
of error and performance norms when compared to alternative methods. By elucidating
the motivations that underscore this investigation, our goal is to underscore the press-
ing necessity for innovative numerical strategies and highlight the potential advantages
they bring to the fore in solving intricate fractional differential equations. The primary
thrust of this paper is to present the NPSCCM as a dependable and accurate numerical
framework tailored to solve time-fractional Burgers–Fisher equations. The efficacy and
precision of the NPSCCM are showcased through an exhaustive comparison of numerical
results against analytical solutions and other well-established methods. Moreover, we
delve into the analysis of the impact of fractional order and time on the solutions utilizing
the NPSCCM. This study makes a concerted effort to contribute to the advancement of
numerical methodologies meticulously designed to tackle complex fractional differential
equations, thereby augmenting our capacity to model and analyze real-world phenomena
with heightened precision and efficiency. In essence, the principal objective of this paper
resonates with the broader aim of advancing the realm of numerical techniques, enhancing
their efficiency and reliability, all in service of conquering the challenges posed by fractional
differential equations. The rest of the paper is organized as follows: Section 2 elaborates on
the non-polynomial spline conformable continuity construct, providing a detailed founda-
tion for the proposed numerical approach. Section 3 demonstrates the practical application
of the non-polynomial spline conformable continuity method (NPSCCM) to Burgers–Fisher
equations, showcasing its efficacy in solving complex real-world problems. In Section 4, a
comprehensive stability analysis of the NPSCCM is conducted, offering insights into the
robustness and reliability of the method. Section 5 presents a numerical demonstration and
subsequent discussion, highlighting the method’s performance through comparisons with
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analytical solutions and other established techniques. The advantages of the NPSCCM are
expounded upon in Section 6, while Section 7 critically examines its limitations. Finally,
Section 8 encapsulates the findings and contributions of this study, culminating in conclu-
sions that emphasize the significance of the NPSCCM as a potent tool in addressing the
challenges of nonlinear fractional differential equations.

Navigating the intricate landscapes of mathematics, we immerse ourselves in the
comprehensive fractional structure that defines the conformable Burgers–Fisher equation,
featuring its fractional derivative,

∂αΨ(x, t)
∂tα

− ν
∂2Ψ(x, t)

∂x2 + σΨ(x, t)
∂Ψ(x, t)

∂x
− r Ψ(x, t)

(
1−Ψ(x, t)λ

)
= g(x, t), (1)

under these specifications outlined by the ensuing initial state and boundary requirement,

Ψ(x, 0) = ψ(x), a ≤ x ≤ b, (2)

Ψ(a, t) = φ1(t), Ψ(b, t) = φ2(t), t ≥ 0. (3)

where r, σ, λ ≥ 0, are constants, ν is the parameter of viscosity, and the conformable
fractional derivative of Ψ(x, t) is established according to the references [35,36] In the
manner outlined,

∂αΨ
∂tα

= Tα(Ψ(t)) = lim
ω→∞

Ψ
(
t + ωt1−α

)
−Ψ(t)

ω
, 0 < α ≤ 1. (4)

2. Non-Polynomial Spline Conformable Continuity Construct

To develop a numerical technique for simulating the solution to Equation (1), one can
consider the adoption of a quartic non-polynomial spline that combines trigonometric and
exponential elements. This approach has the capacity to effectively address the challenges
linked with solving Equation (1), offering a robust and accurate numerical solution. Let
xj = jh, j = 0, 1, · · · , M and tn = nk, n = 0, 1, · · · , N, where the step size of the uniform
spatial is defined as h = b−a

M and k = T
N , which is temporal time. Let Qj,n

(
xj, tn

)
denote

the non-polynomial spline function that approximates the solution Ψn
j = Ψ

(
xj, tn

)
. The

parameter τ denotes the frequency of the trigonometric functions in the following manner,

Qj,n
(

xj, tn
)
= An

j cos τ
(
x− xj

)
+ Bn

j sin τ
(
x− xj

)
+ Cn

j eτ(x−xj) + Dn
j , (5)

while the values for coefficients An
j , Bn

j , Cn
j and Dn

j remain undetermined, these constants
can be calculated based on the following criteria,

Qj,n
(

xj, tn
)
= Ψn

j , Qj,n
(

xj+1, tn
)
= Ψn

j+1,

Qj,n
(2)(xj, tn

)
= Ψn

j
(2) = Sn

j , Qj,n
(2)(xj+1, tn

)
= Ψn

j+1
(2) = Sn

j+1,
(6)

when the conditions specified in (6) are enforced upon Equation (5), the coefficients can be
calculated using the subsequent approach,

An
j =

(
1− 2eΦ)Sn

j + Sn
j+1 + τ2

(
−Ψn

j + Ψn
j+1

)
2(eΦ − 1)τ2 , (7)

Bn
j = − csc Φ

2(eΦ − 1)τ2

((
eΦ + cos Φ− 2eΦcos Φ

)
Sn

j +
(
−2 + eΦ + cos Φ

)
Sn

j+1

+τ2(eΦ − cos Φ
)(

Ψn
j + Ψn

j+1

) )
, (8)

Cn
j =
−Sn

j + Sn
j+1 + τ2

(
−Ψn

j + Ψn
j+1

)
2(eΦ − 1)τ2 , (9)
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Dn
j = −

Sn
j+1 − eΦ

(
Sn

j + τ2Ψn
j

)
+ τ2Ψn

j+1

(eΦ − 1)τ2 . (10)

when Φ = τh.
By employing the equation of half-derivative continuity, denoted as T1

2
Qj,n

(
xj, tn

)
=

T1
2
Qj−1,n

(
xj, tn

)
, one can deduce the subsequent essential connections,

Bn
j + Cn

j = −An
j−1sin θ + Bn

j−1cos θ + Cn
j−1eθ , (11)

after undergoing simplification and combining terms, the resultant expression can be
described as,

β1Ψn
j−1 + β2Ψn

j + β3Ψn
j+1 = γ1Sn

j−1 − γ2Sn
j + γ3Sn

j+1, (12)

when

β1 = k2(eθ + eθcot θ − csc θ
)
,

β2 = k2sin θ
(

1− (cot θ)2 −
(
1 + eθ

)
csc θ +

(
1 + eθ

)
cot θcsc θ − eθ(csc θ)2

)
,

β3 = k2(1 + cot θ − eθcsc θ
)
,

γ1 = 2eθcsc θ − eθ − eθcot θ − csc θ,
γ2 = 3

(
eθ − 1

)
cot θ − csc θ

(
−1 + eθ +

(
1 + eθ

)
sin θ

)
,

γ3 = csc θ
(
2− eθ − cot θ + sin θ

)
.

Using Taylor expansion, collecting the derivative coefficients and collecting same terms
using truncation errors, it holds that,

β1 = β3 =
1
3

, β2 = −2
3

, γ1 = γ3 =
h2

36
, γ2 = −5h2

18
, (13)

by substituting the previously computed coefficients into the numerical approach (12),
we yield,

Ψn
j−1 − 2 Ψn

j + Ψn
j+1 =

h2

12
Sn

j−1 −
10 h2

12
Sn

j +
h2

12
Sn

j+1. (14)

3. Application of the NPSCCM to Burgers–Fisher Equations

Within the confines of this section, we delve into the tangible application of the non-
polynomial spline conformable continuity method (NPSCCM). Our objective is to harness
NPSCCM’s computational potency to derive numerical solutions for Equations (1)–(3),
which constitute the challenging landscape of Burgers–Fisher equations. This endeavor
showcases NPSCCM’s aptitude in deciphering the complexities embedded within these
equations and highlights its efficacy in generating precise and effective numerical solutions
that capture the intricate behaviors at play. The Equation (1) that emerges is a consequence
of substituting the time-conformable derivative, and its derivation can be achieved by
applying the subsequent definition:

Definition 1. Suppose that the function w is characterized by its differentiability for t > 0, and
α ∈ (0, 1]. Given the context, the conformable derivative is precisely formulated as follows,

Tα(Ψ(t)) = lim
ω→∞

Ψ
(
t + ωt1−α

)
−Ψ(t)

ω
= t1−α ∂Ψ

∂t
, (15)

in accordance with the finite difference scheme, the following relationship becomes evident,

dΨ
dt
∼=

Ψn
j −Ψn−1

j

k
, where Ψ

(
xj, tn

)
= Ψn

j , (16)
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then
∂αΨ
∂tα

= Tα(Ψ(t)) ∼= t1−α
Ψn

j −Ψn−1
j

k
=

µ

k

(
Ψn+1

j −Ψn
j

)
, (17)

when, µ = t1−α,
Using Equations (1) and (17) we have,

Sn
j =

µ

νk

(
Ψn

j −Ψn−1
j

)
+

σ

ν
Ψn

j

(
Ψn

j −Ψn
j−1

h

)
− r

ν
Ψn

j

(
1−Ψn

j
λ
)
− 1

ν
gn

j , (18)

substituting j− 1 and j + 1 for j in Equation (17) yields,

Sn
j−1 =

µ

νk

(
Ψn

j−1 −Ψn−1
j−1

)
+

σ

ν
Ψn

j−1

(
Ψn

j−1 −Ψn
j−2

h

)
− r

ν
Ψn

j−1

(
1−Ψn

j−1
λ
)
− 1

ν
gn

j−1, (19)

and

Sn
j+1 =

µ

νk

(
Ψn

j+1 −Ψn−1
j+1

)
+

σ

ν
Ψn

j+1

(
Ψn

j+1 −Ψn
j

h

)
− r

ν
Ψn

j+1

(
1−Ψn

j+1
λ
)
− 1

ν
gn

j+1, (20)

by replacing its variables with Equations (18)–(20), we can express Equation (14) in the
following manner,

Ψn
j−1 − 2 Ψn

j + Ψn
j+1

=

(
µh2

12 νk

(
Ψn

j−1 −Ψn−1
j−1

)
+ σh2

12 ν Ψn
j−1

(
Ψn

j−1−Ψn
j−2

h

)
− rh2

12 ν Ψn
j−1

(
1−Ψn

j−1
λ
)
− h2

12 ν gn
j−1

)
−
(

10 µh2

12 νk

(
Ψn

j −Ψn−1
j

)
+ 10 σh2

12 ν Ψn
j

(
Ψn

j −Ψn
j−1

h

)
− 10 rh2

12 ν Ψn
j

(
1−Ψn

j
λ
)
− 10 h2

12 ν gn
j

)
+

(
µh2

12 νk

(
Ψn

j+1 −Ψn−1
j+1

)
+ σh2

12 ν Ψn
j+1

(
Ψn

j+1−Ψn
j

h

)
− rh2

12 ν Ψn
j+1

(
1−Ψn

j+1
λ
)
− h2

12 ν gn
j+1

)
,

then,

XjΨn
j−1 + YjΨn

j + ZjΨn
j+1

= X*
j Ψ

n−1
j−1 + Y*

j Ψn−1
j + X*

j Ψ
n−1
j+1 −

h2

12 ν gn
j−1 +

10 h2

12 ν gn
j −

h2

12 ν gn
j+1,

(21)

when

Xj = 1− µh2

12 νk
− σh2

12ν

(
Ψn

j−1 −Ψn
j−2

h

)
+

rh2

12 ν

(
1−Ψn

j−1
λ
)

,

Yj = −2 +
10 µh2

12 νk
+

10 σh2

12ν

(
Ψn

j −Ψn
j−1

h

)
− 10 rh2

12 ν

(
1−Ψn

j
λ
)

,

Zj = 1− µh2

12 νk
− σh2

12ν

(
Ψn

j+1 −Ψn
j

h

)
+

rh2

12 ν

(
1−Ψn

j+1
λ
)

,

X*
j =

µh2

12 νk
, Y*

j = −10 µh2

12 νk
.

rewrite Equation (21) in matrix form as follows,

PΨn = MΨn−1 + Gn. (22)
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when

P =



Y1 Z1 0 0 0 0 · · · 0
X2 Y2 Z2 0 0 0 · · · 0
0 X3 Y3 Z3 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 0 Xn−1 Yn−1 Zn−1
0 · · · 0 0 0 0 Xn Yn


,

M =



Y*
1 X*

1 0 0 0 0 · · · 0
X*

2 Y*
2 X*

2 0 0 0 · · · 0
0 X*

3 Y*
3 X*

3 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 0 X*
n−1 Y*

n−1 X*
n−1

0 · · · 0 0 0 0 X*
n Y*

n


,

Ψn =
[
Ψn

1 Ψn
2 · · · Ψn

j Ψn
j+1

]T
, Ψn−1 =

[
Ψn−1

1 Ψn−1
2 · · · Ψn−1

j Ψn−1
j+1

]T
.

Theorem 1. If P has n independent columns, P−1 exists, and Pu = f has a unique solution u,
then P is non-singular.

Proof. Since we have a matrix P from the linear system of Equation (22), if |P|6= 0 then P−1

exists, and the system has a unique solution using the reference [51].

4. Stability Analysis

The structure of the solution to Equation (21) is believed to follow from the Fourier
stability principle,

Ψn
j = Θneiξhj, (23)

when i =
√
−1 and ξ is the real spatial wave number.

Through the transformation of the nonlinear term into a linear expression and substi-
tuting the obtained value (13) into Equation (21), along with the application of Equation (23),
we can evaluate the stability of the provided approach to solve Equation (1).

Ψn
j−1 − 2Ψn

j + Ψn
j+1 −

µh2

12 νk

(
Ψn

j−1 − 10 Ψn
j + Ψn

j+1

)
− σh2

12 ν D
(

Ψn
j−1 − 10 Ψn

j + Ψn
j+1

)
+ rh2

12 ν S
(

Ψn
j−1 − 10 Ψn

j + Ψn
j+1

)
= µh2

12 νk

(
Ψn−1

j−1 − 10 Ψn−1
j + Ψn−1

j+1

)
,

(24)

then,
Θneiξh(j−1) − 42eiξhj + Θneiξh(j+1)

− µh2

12 νk

(
Θneiξh(j−1) − 10 Θneiξhj + Θneiξh(j+1)

)
− σh2

12 ν D
(

Θneiξh(j−1) − 10 Θneiξhj + Θneiξh(j+1)
)

+ rh2

12 ν S
(

Θneiξh(j−1) − 10 Θneiξhj + Θneiξh(j+1)
)

= µh2

12 νk

(
Θn−1eiξh(j−1) − 10 Θn−1eiξhj + Θn−1eiξh(j+1)

)
,

(25)

after making specific simplifications and consolidating pertinent terms, in a scenario
where e−iξh + eiξh = 2cos(ξh), and subsequently dividing both sides by eiξhj, the resultant
expression becomes,

Θn =
µh2

12 νk(
(2cos(ξh)−2)
(2cos(ξh)−10 )

+
(
− µh2

12 νk −
σh2

12 ν D + rh2

12ν S
))Θn−1, (26)

then,
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|Θn| ≤

∣∣∣∣∣∣
µh2

12 νk(
(2cos(ξh)−2)
(2cos(ξh)−10 )

+
(
− µh2

12 νk −
σh2

12 ν D + rh2

12ν S
))Θn−1

∣∣∣∣∣∣ ≤
∣∣∣Θ0

∣∣∣, n = 1, 2, . . . , N + 1, (27)

implies that

|Θn| ≤
∣∣∣Θ0

∣∣∣.� (28)

subsequently, the devised method exhibits stability without any requirements (uncondi-
tionally stable).

5. Numerical Demonstration and Discussion

In the opening of this section, we employ the established methodology to confront the
challenges posed by fractional Burgers–Fisher problems. Through a harmonious interplay
of visual aids and informative tables, we present a comprehensive comparison between
the outcomes generated by our proposed fractional non-polynomial spline approach and
the exact solution. This juxtaposition not only underscores the accuracy achieved but also
illuminates the method’s efficacy in capturing the intricate dynamics of the given problems.
In our pursuit of precision, we rigorously scrutinize the values attained for the maximum
absolute and least square errors, contrasting them with the freshly computed values to
discern the method’s performance and robustness.

L∞ = max
1≤j≤M

∣∣∣ujexact − ujnumerical

∣∣∣, (29)

and

L2 =

√√√√h
M

∑
i=1

∣∣∣ujexact − ujnumerical

∣∣∣2. (30)

Example 1. Examine the time-fractional Fisher equation as presented in [52], by assigning the
values of r = 1, ν = 1, λ = 2, and σ = 0 in Equation (1).

∂αΨ
∂tα
− ∂2Ψ

∂x2 −Ψ
(

1−Ψ2
)
= g(x, t), x ∈ [0, 1], α ∈ (0, 1], t ≥ 0, (31)

under these specifications outlined by the ensuing initial state and boundary requirement,

Ψ(x, 0) = 0, 0 ≤ x ≤ 1,
Ψ(0, t) = Ψ(1, t) = 0, t ≥ 0,

(32)

when

g(x, t) =
(

4π2t4 − t4
(

1− t4sin(2πx)
)
+

24t4−α

Γ(5− α)

)
sin(2πx). (33)

and the exact solution using the analytical method of Equation (31) is t4sin(2πx).
The findings of this exploration are detailed in this section, focusing on comparing

analytical and numerical solutions for the fractional Fisher Equation (30), while adhering to
the conditions stipulated in equations (30) and (31). Illustrated in Figure 1, the comparison
showcases analogous patterns between the analytical and numerical solutions, thereby
validating the accuracy of our developed numerical technique. Additionally, Figure 2
presents a three-dimensional representation of Ψ(x, t) for Example 1, achieved through
the utilization of the non-polynomial spline conformable continuity method (NPSCCM).
This visualization offers a clear understanding of the solution’s behavior within the region
0 ≤ x, t ≤ 1, and with α = 0.5. Investigating the effect of the fractional order on the
solution Ψ(x, t) for Example 1, Figure 3, showcases how the value of Ψ(x, t) changes
as the fractional order varies. For 0 ≤ α < 0.5, the value of Ψ(x, t) increases with the
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fractional order, whereas the opposite is observed for 0.5 ≤ α < 1. Additionally, Figure 4
demonstrates the influence of time on the solution Ψ(x, t) for the first example, with α = 0.5
and 0 ≤ x ≤ 1. It reveals that the value of Ψ(x, t) increases with time for this specific
range of α, while the opposite trend is observed for 0.5 < α < 1. In Table 1, a contrast of
performance norm errors is presented for Example 1, involving our formulated approach
in comparison with two alternative methods: the non-polynomial spline conformable
continuity method and the cubic B-spline method [52], with x ∈ [0, 1] and α = 0.96. The
outcomes indicated that our devised scheme yielded superior results compared to both the
non-polynomial spline and cubic B-spline techniques. The results of Table 2 illustrate the
norm error for different values of α = 0.5 and α = 0.75 at various time points. The analysis
reveals that, as the fractional order α decreases, the norm error also decreases, indicating
an improvement in the convergence of the numerical solution.
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= 𝑔(𝑥, 𝑡),            0 ≤ 𝑥 ≤ 1,      0 < 𝛼 ≤ 1, 𝑡 ≥ 0,  (34) 

Figure 3. Analyzing the influence of Fractional order ( α) on Ψ(x, t) for Example 1 at 0 ≤ x ≤ 1 and
t = 0.5.
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Table 1. Comparing performance norm errors: presented method with cubic B-spline method [52],
for Example 1 at x ∈ [0, 1] and α = 0.96.

t

Non-Polynomial Spline
Conformable Continuity Method Cubic B-Spline Method [52]

L∞ L2 L∞ L2

0.6 9.3641 × 10−5 3.2539 × 10−6 1.9700 × 10−4 2.5410 × 10−5

0.8 1.6212 × 10−5 5.5856 × 10−6 6.3660 × 10−3 6.3710 × 10−4

1.0 2.4493 × 10−6 8.3502 × 10−6 3.9000 × 10−4 5.3830 × 10−5
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Table 2. Comparing errors and performance norms for Example 1: varied fractional derivative values
at x ∈ [0, 1]

t
α=0.5 α=0.75

L∞ L2 L∞ L2

0.02 1.6631 × 10−7 5.6903 × 10−8 1.8213 × 10−7 6.2880 × 10−8

0.04 1.1006 × 10−7 3.7655 × 10−8 1.2052 × 10−7 4.1610 × 10−8

0.06 1.0096 × 10−7 3.4542 × 10−8 1.1056 × 10−7 3.8170 × 10−8

0.08 1.7001 × 10−8 5.8167 × 10−8 1.8618 × 10−7 6.4277 × 10−8

Example 2. Examine the time-fractional Fisher equation as presented in [52], by assigning the
values of r = 0 and λ, σ, ν = 1 in Equation (1),

∂αΨ
∂tα

+ w
∂Ψ
∂x
− ∂2Ψ

∂x2 = g(x, t), 0 ≤ x ≤ 1, 0 < α ≤ 1, t ≥ 0, (34)

under these specifications outlined by the ensuing initial state and boundary requirement,

Ψ(x, 0) = 0, 0 ≤ x ≤ 1,
Ψ(0, t) = Ψ(1, t) = 0, t ≥ 0,

(35)

when

g(x, t) =
(

4πt4cos(2πx) + 4π2t2 +
2t2−α

Γ(3− α)

)
sin(2πx), (36)

and the exact solution using analytical method of Equation (34) is t2sin(2πx).
Utilizing the results derived from solving the fractional Burger Equation (34) un-

der conditions (33) and (34), Figure 5 showcases a comparison between the analytical
and numerical solutions for Example 2. The comparison is made for the fixed values of
0 ≤ x ≤ 1, t = 0.5, and α = 0.5. The findings reveal a robust concurrence in the patterns ex-
hibited by the analytical and numerical solutions. Figure 6 presents a three-dimensional rep-
resentation of Ψ(x, t) for Example 2, acquired through the utilization of the non-polynomial
spline conformable continuity method. This plot provides a clear visualization of the
solution’s behavior within the region 0 ≤ x, t ≤ 1, with α = 0.5. To investigate the impact
of the fractional order on the solution Ψ(x, t) for Example 2, Figure 7 is presented. The
results reveal that, for 0 ≤ α < 0.5, the value of Ψ(x, t) increases as the fractional order
increases, while the opposite trend is observed for 0.5 ≤ α < 1. Furthermore, Figure 8
illustrates the effect of time on the solution Ψ(x, t) for Example 2, considering α = 0.5
and 0 ≤ x ≤ 1. The observations suggest that, as time progresses, the value of Ψ(x, t)
exhibits an upward trend, whereas the opposite pattern emerges for 0.5 ≤ α < 1. Within
Table 3, a thorough assessment of norm errors L2 and L∞ are conducted for Example 2.
This assessment involves a juxtaposition of our developed method (NPSCCM) and the
Quadratic B-spline/Galerkin method [53], considering x ∈ [0, 1] and α = 0.5. As per the
outcomes, the devised approach surpasses the performance of both previously published
methods.
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Table 3. Comparing errors and performance norms for Example 2: NPSCCM with Quadratic B-
spline/Galerkin method (QBSGM) [53], at x ∈ [0, 1] and α = 0.5.

t
L∞ L2

NPSCCM QBSGM [53] NPSCCM QBSGM [53]

0.0005 6.2067 × 10−7 0.0322 × 10−3 2.9121 × 10−7 0.0178 × 10−3

0.001 1.3361 × 10−6 0.5121 × 10−3 6.2687 × 10−7 0.3595 × 10−3

0.002 2.3086 × 10−6 1.4878 × 10−3 1.0831 × 10−6 1.0486 × 10−3

0.0025 2.4685 × 10−6 1.9744 × 10−3 1.1582 × 10−6 1.3924 × 10−3

Example 3. Examine the time-fractional Fisher equation as presented in [54], by assigning the
values of ν = r = σ = 1 and λ = 2 in Equation (1),

∂αΨ
∂tα

+ Ψ
∂Ψ
∂x
− ∂2Ψ

∂x2 −Ψ
(

1−Ψ2
)
= 0, 0 ≤ x ≤ 1, 0 < α ≤ 1, t ≥ 0, (37)

under these specifications outlined by the ensuing initial state and boundary requirement,

Ψ(x, 0) = 1
2 + 1

2 tanh
(
−1
4 x
)

0 ≤ x ≤ 1,

Ψ(0, t) = 1
2 + 1

2 tanh
( 5

8 t
)
, t ≥ 0,

Ψ(1, t) = 1
2 + 1

2 tanh
(
−1
4 + 5

8 t
)

, t ≥ 0.

(38)

and the exact solution using the analytical method of Ψ(x, t) = 1
2 + 1

2 tanh
(−x

4 + 5
8 t
)
, when

α = 1.
The outcomes corresponding to the fractional Burgers–Fisher Equation (37) under

conditions (38) in Example 3 were showcased and deliberated upon. Figure 9 depicted the
contrast between analytical and numerical solutions for the equation under the conditions
0 ≤ x ≤ 1, α = 1 and t = 0.1. The illustration highlighted the analogous behavior
of the results when considering constant values for α = 1. In a similar vein, Figure 10
presented a three-dimensional depiction of Ψ(x, t) acquired through the non-polynomial
spline conformable continuity method (NPSCCM). This representation spanned the range
0 ≤ x, t ≤ 1, and α = 0.5. Illustrated in Figure 11, the contour plot showcased Ψ(x, t) for
the given example, within the confines of x, t ∈ [0, 1] and α = 1. Finally, Figure 12 depicted
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the impact of varying time values on Ψ(x, t) within the context of the example, considering
α = 1 and 0 ≤ x ≤ 1, The illustration demonstrated a decrease in the value of Ψ(x, t) as
time progressed.
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The outcomes corresponding to the fractional Burgers–Fisher Equation (37) under 
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6. Advantage of NPSCCM

◦ Enhanced accuracy: incorporates conformable fractional derivatives within the conti-
nuity equation framework for improved accuracy in solving fractional order equations.

◦ Robustness: handles complex mathematical models effectively by ensuring continuity
of fractional derivatives, enhancing robustness.

◦ Efficient representation: integrates non-polynomial spline (NPS) interpolation for
efficient representation of intricate solutions and complex functional shapes.

◦ Stability: demonstrates unconditional stability within specific parameter ranges,
ensuring reliable performance across diverse scenarios.

◦ Efficiency: shows high efficiency in handling complex mathematical models, making
it suitable for a wide range of problems.

◦ Broad applicability: superiority is demonstrated across multiple fields like biology,
ecology, physics, and more, showcasing its versatility.

◦ Validation: offers practical validation through comprehensive numerical examples,
reinforcing its applicability and effectiveness.

◦ Quantitative accuracy: meticulous evaluations using norm errors (L2 and L∞) provide
quantitative validation of its accuracy and robustness.

◦ Advancement in mathematics: the unique combination of CCE and NPS contributes
to the advancement of computational mathematics.

7. Limitation of NPSCCM

◦ Smoothness assumption: The proposed technique assumes a certain level of smooth-
ness in the solutions. While it performs well for problems with regular behavior,
its performance might be affected when dealing with solutions that exhibit high
oscillations or discontinuities.

◦ Limited to certain equations: The method is designed particularly for nonlinear time
fractional differential equations. Its applicability might be limited when addressing
other types of equations or models that do not fit within this framework.

◦ Computational resource requirements: The computational efficiency of the method
might be influenced by the complexity of the problem. In cases where the problem in-
volves very fine discretization or large computational domains, the method’s resource
requirements might increase.

◦ Parameter dependence: The method’s effectiveness could be influenced by the choice
of parameters, such as the number of spline nodes or the grid resolution. Optimizing
these parameters for different problems might be required to achieve the best results.

◦ Domain-specific characteristics: While the approach demonstrates superiority across
various fields, its performance might be influenced by the specific characteristics of
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the problem being tackled. The applicability of the technique in certain scenarios
could depend on the interplay of the problem’s unique features.

8. Conclusions

In conclusion, this research has successfully developed and introduced a novel numer-
ical technique for solving nonlinear time fractional differential equations. By combining the
conformable continuity equation (CCE) with non-polynomial spline (NPS) interpolation,
the proposed method offers a powerful and efficient approach for tackling complex mathe-
matical problems. The accuracy and validity of the technique were rigorously validated
through extensive numerical examples and comparisons with analytical solutions. The
study’s findings demonstrate a strong agreement between the analytical and numerical
solutions, highlighting the reliability of the developed scheme. The three-dimensional
plots provide clear visualizations of the solution behavior, while the investigation into the
impact of fractional order and time adds valuable insights for further research. Overall,
this research contributes a valuable asset to computational mathematics, showing promise
for diverse applications in fields like finance, science, and engineering. Additional observa-
tions: the presented technique can have broad applicability in various domains due to its
ability to handle intricate datasets and complex mathematical models effectively.

• The method’s stability and convergence properties have been thoroughly analyzed
and established, ensuring reliable performance across different scenarios.

• The demonstrated superiority over existing approaches in terms of norm errors under-
scores the competitive edge of the proposed method.

• Future research could explore potential optimizations and refinements to enhance
the method’s efficiency and extend its capabilities to address other types of fractional
differential equations. Additionally, real-world applications of the technique in specific
scientific and engineering domains could be further explored and validated.

• Future research endeavors could explore the extension of our proposed technique to
tackle fuzzy differential equations using the conformable continuity equation (CCE)
and non-polynomial spline (NPS) interpolation. The integration of these methods
holds the potential to provide accurate and robust solutions for systems character-
ized by imprecision and uncertainty. The challenge lies in adapting the CCE and
NPS framework to handle fuzzy dynamics, ensuring the stability of solutions in the
presence of fuzziness.

Note: These computations have been obtained using the following software packages:
MATLAB (R2017B) and Mathematica (11.1).
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