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Abstract: Autonomous mobile cleaning robots are ubiquitous today and have a vast market need.
Current studies are mainly focused on autonomous cleaning performances, and there exists a research
gap on monitoring the robot’s health and safety. Vibration is a key indicator of system deterioration
or external factors causing accelerated degradation or threats. Hence, this work proposes an artificial
intelligence (Al)-enabled automated condition monitoring (CM) framework using two heterogeneous
sensor datasets to predict the sources of anomalous vibration in mobile robots with high accuracy.
This allows triggering proper maintenance or corrective actions based on the condition of the robot’s
health or workspace, easing condition-based maintenance (CbM). Anomalous vibration sources are
classified as induced by uneven Terrain, Collision with obstacles, loose Assembly, and unbalanced
Structure, which causes accelerated system deterioration or potential hazards. Here, an unexplored
heterogeneous sensor dataset using inertial measurement unit (IMU) and current sensors is proposed
for effective recognition across different vibration classes, resulting in higher-accuracy prediction.
A simple-structured 1D convolutional neural network (1D CNN) is developed for training and
real-time prediction. A 2D CbM map is generated by fusing the predicted classes in real time on an
occupancy grid map of the workspace to monitor the conditions of the robot and workspace remotely.
The evaluation test results of the proposed method show that the usage of heterogeneous sensors
performs significantly more accurately (98.4%) than previous studies, which used IMU (92.2%) and
camera (93.8%) sensors individually. Also, this model is comparatively fast, fit for the environment,
and ideal for real-time applications in mobile robots based on field trial validations, enhancing mobile
robots’ productivity and operational safety.

Keywords: AL vibration; condition monitoring; IMU; current sensor; 1D CNN; condition-based
maintenance; operational safety; mobile cleaning robot

MSC: 68T40; 68T01; 68T07; 93C85

1. Introduction

The demand for autonomous professional indoor cleaning robots keeps increasing due
to frequent cleaning and disinfection of large workplaces, especially after the COVID-19
pandemic, and due to labor issues such as availability, cost, efficiency, and infection risks.
In [1], it is predicted that 48.6 million cleaning robot units will be sold in 2023. Also, [2]
shows a growth projection of the cleaning robot market to USD 25.9 billion by 2027 from
USD 9.8 billion in 2022. As a support to this industry, many technological enhancements
works have been conducted recently to improve autonomous and functional efficiency,
primarily perception [3,4], path planning [5,6], area coverage [7,8], energy saving [9,10],
and cleaning performance assessment [11,12]. However, a significant research gap ob-
served for mobile cleaning robots is that little work has been conducted on developing an
automated condition monitoring (CM) framework considering both internal and external
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factors that affect the robot’s health and operational safety. Such a CM framework can en-
able maintenance strategies such as condition-based maintenance (CbM), i.e., maintenance
only when needed, based on the robot’s condition or workspace. This CM framework in
addition to CbM is crucial to avoid catastrophic failure, malfunction, environmental haz-
ards, downtime, under-utilization of components, higher maintenance cost, and customer
dissatisfaction. The execution of such an automated CM framework is also paramount
by considering the enormous requirements of cleaning robots and opting for a suitable
rental strategy for manufacturers or cleaning contract companies, followed by a fixed rental
policy [13] for deployment irrespective of workspace conditions. Inertial measurement
unit (IMU) sensors are versatile, especially for vibration-based applications, not only for
robots but for human motion studies as well [14,15]. However, heterogeneous data are
preferred for effective CM application in mobile robots with high-accuracy prediction,
which complement each other during different scenarios affecting the robot’s health and
operational safety. Hence, this research proposes an unexplored heterogeneous sensor
dataset-based automated CM framework using IMU and current sensors for indoor mobile
robots facilitating real-time CbM and applying deep learning (DL) techniques.

1.1. Problem Statement

All mobile robots deteriorate naturally after long-term continuous usage, mainly
due to wear and tear, loosening subassemblies such as wheel couplings, sensors, etc.,
and fail in their operational and functional capabilities, even if deployed in the intended
environment. However, other reasons that accelerate the system degradation rate include
unbalanced structural loading or deployment on uneven terrains, such as tactile pavers,
pebble pathways, and damaged tiles. Collision with obstacles due to sensor limitations,
faults, and inaccuracies also causes accelerated system failure or becomes hazardous, for
example, LIDAR sensors’ limit to detecting glass doors, as mentioned in [16,17], and also
sometimes miss detecting thin metal legs of tables or unseen low-height table bases. Here,
vibration is the common decisive element for system degradation and threats, and such
anomalous vibration sources are mainly terrain, collision, assembly, and structure induced.
Also, one vibration source may lead to another unless prompt maintenance action is taken.
For instance, continuous drive on an uneven terrain causes the loose assembly of system
components. Early identification of such abnormal vibration sources will help to assess and
fix system level deterioration promptly, avoiding catastrophic failure, isolate or redirect the
robot from the hazardous workspaces, plan for a robot-friendly workspace, improve design
and assembly, etc. Hence, detecting the characteristics of vibration types using onboard
sensors and predicting the sources of such anomalous vibrations using an easily executable
DL technique is critical in mobile robots. Towards this, we introduced a vibration-based
automated CM framework enabling CbM in previous works using an IMU sensor [18]
and monocular camera sensor [19] individually. The camera-based study was better than
the IMU-based study in real-time prediction time and accuracy. However, camera-based
work is not recommended for dark/shadow environments; also, the camera lens’s glass
cover cleanliness is to be assured in a dusty cleaning environment. In both studies, the
accuracy of vibration source prediction needs to improve significantly to ensure the correct
maintenance action is placed; otherwise, it raises additional downtime and maintenance
costs. We observed the robot’s behavior during the IMU and camera-based studies, and
it was found that that, sometimes, there was no apparent vibration in the Collision and
Structure classes, being wrongly predicted as the Normal class. At the same time, the robot
kept trying to overcome the affected/abnormal load or obstacles. Therefore, IMU and
camera sensors are often limited to accurately predicting these classes. Hence, more studies
are essential for a higher-accuracy CM framework to execute in indoor mobile robots,
assuring the robot’s health and operational safety by exploring heterogeneous sensors with
unique data features.
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1.2. Related Works

In the literature, vibration-based health monitoring studies by analyzing the char-
acteristics of vibration data for fault detection, classification, and prediction have been
mainly conducted for machine components or systems such as bearings [20], motors [21],
machines [22,23], and structural systems [24]. Condition monitoring and fault diagnosis
studies were also conducted for industrial robots, for example, to reduce downtime in a
wafer transfer robot [25], predicting failure in a packaging robot [26], safe stop prediction
in a collaborative robot [27], etc. The advent of artificial intelligence (Al) has enhanced
fault diagnosis and prediction, and out of various techniques, the 1D convolutional neural
network (1D CNN) was found prominent due to its simple structure, fast inferencing,
computationally lower cost, and better prediction accuracy, making it suitable for real-time
applications [28]. The advantage of the 1D CNN model has also been verified in previous
works [18,19], showing a better accuracy and inference time compared to other common
approaches such as long short-term memory (LSTM), CNN-LSTM, multilayer perceptron
(MLP), and support vector machine (SVM). The type of sensor generally used for collect-
ing vibration data in various systems are micro-electromechanical systems (MEMS) or
piezoelectric accelerometers [20,29-31]. The studies described above show that vibration-
based CM research has been scarcely conducted for wheeled mobile autonomous robots,
especially for cleaning applications. Also, the different onboard typical sensors and their
configurations are to be explored more for high-accuracy real-time condition monitoring
applications in mobile robots.

Competitive (independent measurement of the same property), complementary (dif-
ferent measures complement each other, resolving the shortcomings of each sensor), and
cooperative (originate data from two sensors) sensor fusion techniques are used in mobile
robots for state estimation, localization, and navigation [32]. For instance, a camera visual
system and robot odometry fusion method are proposed in [33] using the Kalman filter
(KF), resulting in better localization accuracy in mobile robots compared to tests conducted
with each sensor data used separately. In [34], the authors simulated fusing odometry
and sonar sensor data for mobile robot navigation to improve position estimation and
correct systematic error using the extended Kalman filter (EKF) and the adaptive fuzzy
logic system (AFLS). A sensor fusion method to reduce position errors and better target
tracking for mobile robots is proposed in [35] using an encoder, an inertial sensor, and active
beacon sensors and applying the unscented Kalman filter (UKF). However, such sensor
fusion techniques mostly needed extensive system modeling and calibration processes of
statistical filtering techniques. To avoid such expensive approaches, recently, techniques
have been applied, such as the long short-term memory (LSTM) model adapted in [36]
for learning fused camera pose and IMU data. Another DL method, VINet architecture, is
proposed by fusing camera and IMU data in [37] for visual-inertial odometry motion esti-
mation. Similarly, a hybrid framework, recurrent convolutional neural network (RCNN), is
developed in [38] for higher accuracy and robustness in the localization of mobile robots,
fusing a 2D laser scanner and IMU sensor data.

In the literature, existing terrain classification works for mobile robots have been been
conducted to detect the terrain type for traversability analysis, using onboard proprio-
ceptive and exteroceptive sensors, including wheel-terrain interactive and noninteractive
works. These are primarily conducted using IMU sensor-based vibration data and suitable
classifiers. For instance, adaptive terrain classification using an IMU sensor to classify grass,
small and large gravel, and hard grounds at different operating speeds with the random
forest classifier in [39] observed an average accuracy of 93%. Five types of typical indoor
terrains, including different tiles and carpets, are classified based on IMU acceleration
and angular velocity data in [40] using a linear Bayes normal classifier, and a prediction
accuracy of around 89% was found. Similarly, in [41], the authors used the magnitude
frequency response on X- and Y-axis rotation and Z-axis acceleration data captured through
an IMU sensor to classify dirt, gravel/grass, asphalts, and mud using the classifier proba-
bilistic neural network (PNN) and found an accuracy around 84% considering different



Mathematics 2023, 11, 3682

4 0f 21

driving speeds as well. Similarly, different terrain types such as concrete, pebble, grass,
paving stone, sand, and synthetic running track are classified using IMU gyroscope and
accelerometer data and applying the multilayer perceptron (MLP) neural network in [42],
resulted in a prediction accuracy of 97.18 to 99.7 with different processing window sizes.
In [43], the authors used a combination of IMU vibration and camera-image-based data for
the classification of fourteen types of outdoor terrains using an SVM classifier and found an
average accuracy of 87.33%. These terrain classification studies may help CM applications
for the external terrain-induced vibration source class. However, other factors/classes we
proposed for CM, such as collision, loose assembly, and unbalanced structure affecting the
robot’s failure or potential hazards, are still unsolved.

Current sensors are the least exploited sensors for mobile robot applications other
than energy consumption or energy-efficient strategy studies for navigation in different
trajectories, as addressed in [44,45]. Motor current signature analysis (MCSA) is one of the
earliest fault diagnosis approaches in motor-driven equipment by monitoring the changes
in current readings [46]. However, as per our knowledge, integrating a current sensor
either individually or with other onboard sensors for condition monitoring applications in
mobile robots has not been explored.

1.3. Contributions
The key contributions of this study are listed below:

1.  Anunexplored and compelling heterogeneous sensor dataset-based CM framework
is developed for mobile robots using IMU and current sensors, resolving the short-
comings of individual sensors in detecting anomalous vibration class features.

2. Vibration-affected data are modeled by formulating an algorithm to ensure the tem-
poral data from IMU and current sensors are subscribed and fused concurrently.

3. Vibration data are trained by developing a simple, fast, and low-computation-cost 1D
CNN model for real-time prediction of the internal and external anomalous vibration
sources that cause system degradation and operational hazards.

4. Avibration source mapping framework is developed, which fuses the predicted vibra-
tion classes on the 2D occupancy grid of the environment in real time, generating a 2D
CbM map that enables prompt CbM or corrective actions for the robot’s workspace.

5. Based on the case study results, the proposed heterogeneous sensor-based CM frame-
work is ideal for mobile robots for real-time CbM applications, with a significant
improvement in prediction accuracy compared to previous works where IMU and
camera sensors were used individually.

The remainder of this paper is organized as follows. Section 2 shows an overview
of the proposed work. Section 3 elaborates on the experiments and results, including a
detailed comparison with previous works. Section 4 explains the field case studies for
real-time application, and a conclusion is presented in Section 5.

2. Overview of the Proposed Framework

The overview of the proposed heterogeneous sensor dataset-based anomalous vi-
bration source prediction framework for the CM of autonomous mobile indoor cleaning
robots enabling CbM is illustrated in Figure 1, and the details of each module are explained
as follows.
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Figure 1. Overview of the heterogeneous sensor dataset-based CM framework for mobile robots.

2.1. Mobile Robot Test Platform and Vibration Source Classes

An in-house-developed autonomous steam mopping and disinfection robot suitable
for large indoor workplaces is used in this study for data acquisition and real-time case
studies. The photos of this wheeled mobile robot with critical components are shown in
Figure 2. The maximum size of the robot is 45(L) x 40(W) x 38(H) cm and around 20 kg
weight, including the cleaning payload. The robot chassis is built using an aluminum plate
and extruded channels for a robust structure, and all the electromechanical and sensor
assemblies are fastened to the chassis for smooth and stable locomotion across all the
typical indoor floors. A differential wheel drive mechanism is used with two caster wheel
supports. Two Oriental motors of 24 V and 1.9 N-m torque brushless DC geared motors
(BLHMO15K-50) are used for each drive wheel with a closed-loop control function. An
RPLiDAR A2 scanner is mounted at the top of the robot with 360° coverage for localization
and mapping. A Vectornav VN-100 IMU sensor is firmly mounted on the aluminum base
plate at the center portion of the two-wheel axis, enabling navigation. A 24 V 40 Ah Li-ion
battery is used to power the whole system, and an NVIDIA Jetson AGX Xavier computer
is used to steer the entire operation and data storage. The robot operating system (ROS)
melodic framework is used and acts as the middleware to establish all communications.
More details of this robot are published in the system architecture paper [47]. A D-Link
4G/LTE mobile router is used for monitoring the robot’s health remotely. A temporary,
clear acrylic cover is used to observe the system deterioration during testing.

A wheeled mobile robot generates aberrant vibration as an early symptom of failure.
This could be due to various internal factors such as wear and tear, loose assembly, parts
displacement or misalignment, unbalanced weight, etc., raised from the robot itself by
continuous use or poor design and assembly. External factors are mainly unintended
or uneven and damaged terrain, collision with undetected or unseen objects, or forced
external interaction. Hence, by monitoring such abnormal vibration sources, as classified in
Figure 3, appropriate maintenance actions can be triggered promptly, avoiding total system
failure or incidents. Here, the Normal class is represented as the robot in healthy condition
and deployed at its intended smooth operational environments, and any minor natural
vibration generated is accepted.
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Figure 2. Test platform. Autonomous steam mopping robot.
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Figure 3. Vibration source classes in a wheeled mobile robot.

2.2. Vibration-Affected Heterogeneous Sensors Dataset Modeling

A wheeled mobile robot vibrates at different rates linearly or in angular motion
due to various vibration sources explained in the previous section. Similarly, a change
in power required is observed when the robot is exposed to such undesired vibration
sources, resulting in a higher current consumption compared to Normal class operation.
As the vibration-affected linear or angular-motion-related data from the IMU sensor and
the current consumption data from current sensors are heterogeneous, the final dataset
helps to fill the gaps of individual sensors in extracting the relevant vibration-affected
characteristics during various health states and exposures of the robot, which is vibration
source classes. The onboard Vectornav VN-100 IMU sensor is used to extract the rate of
linear and angular motion of the robot, which provides linear acceleration and angular
velocity from its built-in accelerometer and gyroscope. We also added angular acceleration,
calculated from angular velocity, to further strengthen the dataset features for training. A
low-cost ACHS-7124 Hall-effect-based isolated linear current sensor is used with left and
right drive motors and connected with an Arduino Mega 2560 microcontroller to measure
the current rate consumed. These proprioceptive sensors do not depend on each other,
and they are unaffected by the environment/light conditions, enabling higher accuracy in
vibration class prediction. The dataset acquisition scheme, including the circuit diagram for
the proposed approach, is depicted in Figure 4. (Only one current sensor motor assembly
is shown for illustration.)
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Figure 4. Heterogeneous sensor dataset acquisition scheme.

Here, the vibration-indicated data, mainly linear acceleration, angular velocity, and
angular acceleration based on the IMU readings and the current consumed data measured
from the current sensor connected with left and right drive wheel motors, all affected by
the various vibration sources, are expressed in (1). As two types of sensors with different
behavior are used in this study, the sequential data subscription rate is critical, and we set
80 Hz for IMU and set the same rate for the current sensor data by lowering the delay in
the Arduino program and confirmed the total number of samples data collected at any
particular time is same. This higher-frequency IMU subscription rate helps to reduce the
vibration class prediction time to half compared to the previous individual IMU-based
study without compromising the accuracy due to the complementary current sensor. The
linear acceleration is measured in the X-, Y-, and Z-axes of the robot and the corresponding
angular velocity and acceleration in roll (X), pitch (Y), and yaw (Z). Including the left and
right motor current sensor data, a total of 11 data features are considered, and each feature
is compiled with 128 temporal data (processing window size) over 1.6 s. Hence, one sample
data for the 1D CNN training and prediction is set as an array of [128 x 11], as given in
Expression (2).

Vibdata = [A[jn, Vung/ Aangr IL/ IR] (1)

Accrin(X)n, AccrLin(X) s, - Accrin(X) n2s
Accrin(Y)n, Accrin(Y)i, - Accrin(Y)
Accrin(Z)n, Accrin(Z)i2, - Accrin(Z) 1128
Vel png(X)11, Vel ang (X)t2, - Vel ang (X) 1128
Vel ang (Y)r1, Vel ang(Y)r2, ... Vel ang (Y ) 128

Vel ang(Z)n1, Vel ang(Z)12, - Vel ang(Z) 1128 ()
ACCAng(X)t ACCAn (X)tz,...ACCAng(X 1128
Accang(Y)n, Accang(Y)e2, .. AcCang (Y ) 128
Accang(Z)n, Accang(Z) 2, (2)
I(L)n, I(L) g, ...I(L) 128
I(R)n, I(R)s2, - I(R) 4128

8

og ©9
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2.3. 1D Convolutional Neural Network Modeling

A simple, effective, fast, and computationally low-cost neural network is crucial for
real-time condition monitoring and predicting the vibration source classes. Hence, we
adapted a 1D convolutional neural network model following the convolution operations
on data vectors as expressed in Equations (3) and (4) [48], simplified the model structure
with a minimum number of convolution layers, and opted for suitable hyperparameters to
fit with our fused dataset.

L-1

w(i)x(j—1i)+ b>,

j=0,1,.,N—1

Output layer ¢(j) = f ( ®)

i=0

This nonlinear activation function convolves the input vector to the output layer using
a filter vector. Here, x (of length N) = input data vector, w (of length L) = filter vector, term
b = bias to best fit for given data, and ¢ = output layer (of length N — L + 1).

Max-pooling output vector d = max(u(m x 1,s)c) 4)

The max-pooling output vector d is applied after convolution layers to detect the key
characteristics and reduce the number of parameters. Here, m x 1 is kernel size, u is a
window function, and s is a filter moving stride over input vector c.

The input vibration data for 1D CNN training is compiled into an array of [n x 128 x 11],
where n is the total number of samples. Hence, the compiled /fused dataset is flattened
into a 1D array [1 x 1408] and fed into 1D convolution. The convolution structure is made
simple with only four layers and uses 64 filters for the first two layers and 32 for the rest.
All layers used a convolution window (kernel) size of 3. The rectified linear activation unit
(ReLU) is applied to each convolutional layer to learn the complex nonlinear pattern of
vibration-affected heterogeneous sensor data. After each convolution layer, a max-pooling
layer with a stride size of 2 is added to reduce the computation time. Further, a dropout
layer is added at a rate of 0.2 for each layer to prevent over-fitting while training. Finally, the
pooled feature maps are converted to a 1D array using a flattening function in the output
layer to predict the multinomial probability of vibration source classes. The structure of
this 1D CNN-based model proposed is illustrated in Figure 5.

)

Current Sensors Data

S =

Input Layer

Normalisation Normalisation

L

Flattened
Input Sample Data
{1408, 1)

¥
Heterogeneous Sensors Dataset [n x 128 x 11], n= Number of Samples

I
Conv 1D-4, 32
Maxpool 1D-4

Maxpool 1D-3

4
Conv 1D-2, 64
Maxpool 1D-2
4
Conv 1D-3, 32

(1406, 64} | Conv 1D-1, 64
Maxpoal 1D-1

(703, 64)
(701, 64)
(350, 64)
(348, 32)
(174, 32)
(172, 32)
(86, 32)

. Output Class

( Output Layer 1 ( Convolution Layers ]

\ . ) \ Y /
Fully Connected Layer (100) Softmax Output (5)

Figure 5. One-dimensional (1D) CNN structure and data shape modeled for training.
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2.4. 2D CbM Map for Real-Time Condition Monitoring

A 2D CbM map is generated by developing a vibration source class mapping frame-
work to visually track the internal- and external-based anomalies in real time. This is mainly
achieved by preparing a 2D environment occupancy grid map for the robot” deployed
area using the onboard RPLidar scanner and applying a grid-based mapping algorithm
cartographer simultaneous localization and mapping (SLAM) with the Ceres-based scan
matcher [49]. The vibration source mapping algorithm extracts each anomalous vibration
class predicted and fused on the 2D occupancy grid map, as illustrated in Figure 6. Here,
the robot moves from a concrete floor to a small-pebble-paved area in a corridor, and
the system predicts the Terrain class continuously, which is fused on the 2D grid map
instantly at the exact location where it is detected, i.e., at the geometrical coordinates of
robot’s footprint, generating a 2D CbM map. The abnormal predicted classes are marked
on the grid map with a unique color for each class: blue, green, orange and red for the
Assembly, Structure, Terrain and Collision classes, respectively. The real-time position of
the robot’s footprint is obtained from the localization data. The maintenance team can
monitor remotely and trigger prompt maintenance or corrective actions based on the robot’s
or workspace’s condition using a mobile app connected through the message queuing
telemetry transport (MQTT) protocol.

Concrete Pebble Paved

Corridor with Different Terrain Features
e ° @

Terrain Class mapping on 2D Occupancy Grid Map

2D CbM Map: Fused the Predicted Terrain Class at Detected Points

Figure 6. Anomalous class prediction and 2D CbM map generation.

3. Experiments, Results, and Discussion

This section elaborates on the data acquisition and visualization, 1D CNN training,
evaluation and results, and comparative study with previous works and discussions.

3.1. Training Dataset Preparation and Visualization

Preparing a qualitative and quantitative training dataset representing each vibration
source class for 1D CNN training and evaluation is critical in this study. Hence, we modified
and exposed the robot inducing the four abnormal vibration classes. For Terrain class data,
we drove the robot through typical but undesired terrain features for an indoor robot,
such as small-pebble-paved and uneven/unstructured /damaged indoor floors. Similarly,
exposed colliding with potentially unseen/undetected common static obstacles such as
table bases, thin legs of tables, and glass doors, also externally applied forces such as
collision with dynamic objects, to collect the collision-induced data. Further, various critical
components were loosened for the Assembly class, such as wheel couplings, mounting
brackets, and mopping heads. Finally, the robot was modified by shifting the heavy
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components, such as the battery, boiler assembly, etc., from their designed location, also
causing an unbalanced system with a more worn-out wheel for collecting unstable Structure
class vibration-affected data. The Normal class data were collected, deploying the robot
in good condition in terms of the robot’s health and deployed workspace. Some of the
modified and exposed cases for anomalous classes are illustrated in Figure 7. As the robot
is used for steam mopping and disinfection, all the tests were performed by driving at the
intended linear speed of 0.05 m/s and angular speed of 0.4 rad /s with typical cleaning
patterns, mainly straight and zig-zag.

Terrain: Pebble Paved Floor Collision: Unseen Obstacle

AR

Assembly: Loose Wheel Coupling Structure: Shifted Battery/Worn Wheel

Figure 7. Robot set-up for vibration-affected training data acquisition for abnormal classes.

The raw data collected from both IMU and current sensors are visually represented,
plotting time-amplitude and time—current graphs for each vibration source class, as shown
in Figures 8 and 9. This depicts the change in linear and angular motion and current
consumed across the different classes. For IMU data features, the three axes” data are
plotted in the same graph, and here, the linear acceleration in the Z-axis is brought to the
same scale for plotting and visualization. Similarly, current data readings from the left and
right motor are plotted in the same graph. In both plots, randomly selected sample data,
i.e., 128 temporal data acquired over 1.6 s, are used.

Data normalization preprocessing was performed to bring the data x into a stan-
dard scale without losing information for better convergence during 1D CNN training.
Based on the data characteristics the IMU data were normalized into —1 to +1 and for the
current sensor 0 to 1 using Equations (5) and (6), respectively. A total of 2500 samples
[2500 x 128 x 11] for each vibration source class were collected and split into 80% for
training and 20% for validation of the 1D CNN model. Additionally, 500 data samples were
recorded for each class to evaluate the trained model.

x —min(x
IMU Dataset : XNormatised = Zmax(x) — ngm)(x) -1 (5)
x — min(x)
Current Sensor Dataset : Xpopmatised = (6)

max(x) — min(x)
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Figure 9. Vibration-affected data from current sensor for each class.

3.2. 1D CNN Training and Evaluation

A supervised learning strategy was applied to train the unique dataset, compiled as
explained in the previous sections, using the Tensorflow DL-library [50] and the Nvidia
GeForce GTX 1080 Ti-powered workstation. A K-fold (K = 5) cross-validation technique
was applied for generalization and to avoid over-learning to ensure the dataset quality.
Here, the datasets were split into k subsets, where k — 1 subsets are to train the model and
the remaining to evaluate the model’s performance. Momentum with gradient descent
optimization strategy was applied to speed up learning and help not to get stuck with
local minima. We tested with different hyperparameters for training for optimum results
and opted as follows. An adaptive moment optimization (Adam) optimizer [51] with
a learning rate of 0.001 and an exponential decay rate of 0.9 for the first and 0.999 for
the second moment was used. A categorical cross-entropy loss function was applied to
assure minimum loss while compiling the model, which fits better for this multinomial
classification and probability prediction. The model with a batch size of 32 and an epoch
size of 80 showed better performance, as plotted in Figure 10, showing the loss and accuracy
curve graphs for training and validation.
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Figure 10. Loss and Accuracy curves for Training and Validation.

Further, the prediction accuracy of the 1D CNN model was evaluated with 500 samples
that were not used during training. The assessment was performed based on the statistical
metrics Accuracy, Precision, Recall, and F1 Score, as per Equations (7)—(10) [52], following
the confusion matrix. Here, TP = true positive, TN = true negative, FP = false positive,
and FN = false negative. This offline test statistical measure results are listed in Table 1,
with an average accuracy measured as 98.4%. The approximate inference time to predict
a given sample’s class measured is 0.196 milliseconds. We also tested training only with
the current sensor data to understand the performance of the current sensors in predicting
the vibration classes instead of the heterogeneous sensor dataset. However, the model did
not converge effectively, ending with inferior accuracy of an average of 79.6% only. The
offline test result (Accuracy) of each class using the current-sensor-based training is listed
in Table 2.

TP+ TN

Accuracy = TP+ FP+ TN L EN 7)
. TP
Precision = TP+ EP 8)
TP
Recall = TP EN 9)

2 X Precision x Recall
F1Score = Precision + Recall (10)

Table 1. One-dimensional (1D) CNN model evaluation result: IMU and current sensor heterogeneous
dataset based.

Vibration Class Precision Recall F1 Score Accuracy
Normal 0.99 0.98 0.99 0.99
Terrain 0.98 0.96 0.98 0.98

Collision 0.99 0.99 0.98 0.99
Assembly 0.99 0.96 0.97 0.98
Structure 0.98 0.97 0.99 0.98

Table 2. One-dimensional (1D) CNN model evaluation result: only current sensor based.

Vibration Class Normal Terrain  Collision  Assembly  Structure
Accuracy Prediction (%) 78 85 81 74 80
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As mentioned in the related works, the studies other than our previous IMU and
camera-based CM studies were mainly for terrain classification, i.e., not considering the
collision-related abnormality and internal health degradation, such as loose assembly
and unbalanced structure. Hence, a direct comparison with such IMU-based existing
terrainability studies is not appropriate. However, if only the Terrain class results of the
proposed research are chosen, the prediction accuracy (98%) is much better than the works
mentioned in existing terrain classification studies [39-43].

Beyond, we conducted a comparison study to assess the performance of the pro-
posed 1D CNN model with other Al models, mainly SVM, MLP, LSTM, and CNN-LSTM,
in terms of prediction accuracy and inference time. The same training and evaluation
dataset and processing resources applied for the 1D CNN model are used here for a fair
comparison. The TensorFlow library is used for training MLP, LSTM, and CNN-LSTM,
whereas the Scikitlearn package is used for the SVM model. Other than for SVM, the key
hyperparameter functions/values such as the Adam optimizer, a learning rate of 0.001, and
categorical cross-entropy loss function are used the same as the 1D CNN model. The key
parameters for the SVM model are set as C = 100 and gamma = 0.01 and applied radial
basis function (RBF) kernel. The test results, prediction accuracy (average of five classes) in
%, and inference time to process one sample data in milliseconds for each model, including
the proposed 1D CNN model, are listed in Table 3. The comparison studies show that the
selection of the optimum model depends on the application, characteristics of the data
for each class identified, how the data are compiled for training, the necessity of real-time
prediction, etc. Hence, a 1D CNN model is ideal for this proposed IMU—current sensor
heterogeneous data-based CM framework.

Table 3. Comparison with other Al models.

Model Accuracy (%) Inference Time (ms)
1D CNN 98.4 0.196
CNN-LSTM 94.2 0.368
LSTM 90.6 0.314
MLP 84.3 0.205
SVM 82.9 1.985

3.3. Comparative Study with Our Previous CM Studies and Discussion

This section provides a performance comparison of the proposed IMU—current sensor
heterogeneous dataset-based CM framework with our previous two similar but individual
sensor-based CM works developed for mobile indoor robots, i.e., using a proprioceptive
sensor IMU [18] and an exteroceptive sensor monocular camera [19]. The comparison
study was performed based on three factors: the average prediction accuracy of the five
vibration source classes, the total time from collecting a new sample data until predicting
the class, and the suitability to fit with the deployed environmental conditions, mainly light
and dust.

Regarding the prediction accuracy, the IMU sensor-based work found the lowest
accuracy of 92.2% due to poor prediction of the Collision and Structure classes. This will
raise a minor probability of triggering a wrong maintenance action, adversely affecting cost
and downtime. This approach was found computationally less complex with the fastest
inference time (0.162 ms) due to fewer data features and processes involved. However,
the IMU subscription rate was finally set to 40 Hz to improve prediction accuracy because
a higher subscription rate further reduced the accuracy. Hence, it is required to wait for
a more extended period of 3.2 s to compile one data set for real-time prediction. The
performance of this approach is independent of environmental conditions.

The monocular camera sensor-based study was a novel approach in terms of optical
flow application for condition monitoring in mobile robots. Here, the vibration source
prediction accuracy was slightly better (93.8%) than that of the IMU. However, there are
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still risks involved in real-time deployment, considering the few chances of triggering
improper maintenance action and the consequences. This approach is computationally
more complex in deriving the displacement vector data from each image frame and thereby
a higher inference time from the given data sample (7.9 ms). However, the total time taken
for real-time data recording and predicting a class, with a recording rate of 30 frames per
second (fps), was observed the fastest around 0.2 s only. Another factor noted was the
accuracy of the camera approach is affected by poor light and a dusty environment. The
system fails to collect accurate vector data representing the particular class at an illuminance
of less than 50 lux. Hence, the camera-based approach is not advised for places with dark
shades and poorly illuminated rooms/confined areas. Also, the lens glass cover cleanliness
should be assured while the robot operates in a dusty environment.

In the proposed IMU—current sensor heterogeneous dataset approach, the current
sensors complement the IMU sensor’s shortcomings in accuracy and total prediction
time. The distinctive higher current consumption while the robot was trying to overcome
uneven terrain, obstacles, and unbalancing factors helped to extract the vibration-affected
features of classes more effectively and improved the prediction accuracy of all the vibration
classes. This heterogeneous dataset approach also helped to increase the IMU subscription
rate twice (80 Hz) without compromising the accuracy; hence, the total time to predict a
class from recording a data sample is reduced to half (1.6 s) compared to the individual
IMU sensor model. Though the number of features added with two current values, the
inference time (0.196 ms) is still close to the previous IMU work. Also, as both IMU and
current sensors are proprioceptive, environmental changes such as light and dust are
unaffected. Hence, the proposed IMU—current sensor heterogeneous sensor dataset-based
CM framework is more promising for real-time deployment, especially regarding accuracy
and environmental conditions. These observations and discussions are summarized in
Table 4. Here, Sensor type is the sensor used indicating a single sensor or multiple sources;
Accuracy is the average accuracy of five classes from model evaluation; Time taken is
the approximate time consumed to predict a class, including data recording time for one
sample; and Environment fit is the suitability of the approach irrespective of light and dust.

Table 4. Performance comparison with previous works proposed.

Sensor Type Accuracy Time Taken Environment Fit
IMU + current sensor 98.4% 1.6s Excellent
Monocular camera [19] 93.8% 02s Fair
IMU [18] 92.2% 32s Excellent

The proposed combination of IMU and current-sensor-based study shows a signifi-
cant improvement in prediction accuracy of the vibration source classes compared to our
previous individual IMU and camera-based studies. The higher prediction accuracy is vital
for the CM applications to avoid false positive predictions and trigger improper mainte-
nance or corrective actions. Though the camera-based work can make eight times more
predictions in 1.6 s, due to the different data subscriptions and methodology developed,
the close ground truth comparison study shows that such predictions are the same as the
single prediction of the proposed study. Also, compared to the robot’s operating speed
of 0.05 m/s, the 1.6 s for a single prediction had less impact and was acceptable from the
real-time case studies conducted. Though cost-wise, the IMU sensor is expensive. It is an
inevitable sensor for autonomous robots; hence, this additional application is proposed as
a CM sensor together with current sensors.

4. Real-Time Field Case Studies

The proposed IMU—current-sensor-based CM framework is validated by conducting
real-time case studies at four different types of indoor environments at the SUTD campus,
which are the canteen and pantry area, glass-walled lobby hallway, pebble-paved indoor
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corridor, and our robotics lab area. It is also assured that none of these areas was used
during training data sample collection.

There are two pre-works conducted for these field trials. The first is developing an
Inference Engine to apply the 1D CNN model’s knowledge for inferring every new data
sample in real time. Inference Engine Algorithm 1 shows the way 128 temporal data (Data)
and a total of 11 sensor features (Feature) are acquired, forming a new dataset [128 x 11]
for prediction. Here, a placeholder TemporalBuffer is used while collecting the dataset, and
InferenceBuffer holds one complete dataset as 1D CNN input and returns the predicted
vibration source class.

Algorithm 1 Inference Engine

while Feature, Data are not empty do
Temporal Buf fer = call Sensor(Feature, Data)
Format Temporal Buf fer to have shape (11,128)
Append Temporal Buf fer to InferenceBuf fer
counterFeature = counterFeature + 1
counterData = counterData + 1
if counterFeature == 11, counterData == 128 then
InferredClass = Call IDCNN (InferenceBuf fer)
counterFeature = 0
counterData = 0
Clean InferenceBuf fer
end if
end while

Secondly, a cartographer SLAM-based 2D occupancy grid map was created for each
test area. Then, a vibration source mapping algorithm (Algorithm 2) was developed, which
maps the predicted abnormal vibration classes (PC) with the unique color at the center of
the robot’s footprint (RFP) on the 2D grid map (map) where the class was predicted, and
saved the real-time 2D CbM map with time stamp for each class fused. All the field case
studies were conducted in autonomous mode at the intended speed of 0.05 m/s in a zig-zag
travel pattern, ensuring a sufficiently charged battery; also, each test started verifying the
robot was healthy.

Algorithm 2 Vibration Source Mapping

PC < [Terrain, Collision, Assembly, Structure]
map <— 2Dgridmap
RFP « [x,y]
DT <« [Date, Time]
if PC is Normal then Donothing
else if PC is Abnormal then
if PC is Terrain then
Color < Orange
else if PC is Collision then
Color < Red
else if PC is Assembly then
Color < Blue
else if PC is Structure then
Color <+ Green
map|RFP.x][RFP.y] < color
end if
end if
saveMap < map, DT
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The first case study was conducted considering a moderately crowded place with
different furniture and floor types and selected SUTD canteen and an office pantry room.
The canteen floor is built with various flooring materials and features such as smooth
concrete, tactile pavements, uneven wooden floors, and tables with flat bases. The canteen
area was messed up with temporary cable routing, misplaced furniture, etc. Two classes
of abnormal vibrations were noticed after driving through the canteen space: terrain and
collision induced. The Terrain class was mainly due to the cable routing, tactile pavement,
and uneven wooden floor, while the unseen table base caused the Collision class. Next, it
was tested in the office pantry area with a smooth tiled floor and tall and thin metal-legged
chairs. During this testing, collision-induced vibrations were predicted when the robot
collided with a chair as the RPLiDAR could not detect the thin long metal leg of the chair.
The robot tried to push the chair further but was blocked by a pillar with a higher current
consumption, matching the training characteristics of the Collision class, though no obvious
angular motion vibrations were noticed. Some of these classes fused on the SLAM map
generating a 2D CbM map with the relevant trial run photos are shown in Figure 11.

T [
| Canteen

-E"'H;-_

® : Collision

® : Collision

Figure 11. Two-dimensional (2D) CbM map. Canteen and Pantry area: Case study 1.

® :Terrain
7%

The second case study was tested in a carpeted lobby hallway where one wall was
built using transparent rugged glass. During the robot’s drive near the glass wall, the
RPLiDAR did not precisely detect the transparent glass wall, resulting in occasionally
hitting the wall. We stopped the robot to avoid damage to the robot, glass wall, and other
potential hazards. Next, the robot was driven in a mixed concrete and small-pebble-paved
corridor for the third field trial. During the trial runs, the Terrain-induced vibration class is
predicted and fused on the map whenever the robot moves to the pebble-paved floors. As
it was an isolated area with no workspace hazards, we continued the testing on the same
pebble-paved floor without any maintenance action. However, after six days, intermittent
Assembly-induced vibration classes were observed along with the Terrain class, mainly
due to the loose assembly of wheel couplings with motors. Figure 12 shows the 2D CbM
maps for case studies at the lobby and corridor, indicating some of the randomly selected
fused vibration classes in real-time towards the end of the test, also the workspace photos.
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Figure 12. Two-dimensional (2D) CbM maps. Lobby and Corridor area: Case Studies 2 and 3.

Finally, we conducted a long-term test drive by isolating a small area (around 9 x 6 m?)
of the robotics lab with a vinyl floor and removing all obstacles, i.e., tested with no potential
external factors. The robot ran continuously with timely recharging for 21 days without any
abnormal classes predicted. However, apparent wheel wobbling was later observed, and
Assembly-induced vibrations were fused on the SLAM map concurrently. We continued
the test without any maintenance; hence, the condition worsened. Detaching the battery
bracket and mopping pad assembly resulted in parts shifting and Structure-induced class
prediction. These intermittent Assembly and Structure classes predicted /fused for the last
few samples before stopping the robot are shown in the 2D CbM map Figure 13 with the
lab test area photo.

e

Figure 13. Two-dimensional (2D) CbM map. Robotics Lab area: Case Study 4.

We closely observed the robot’s behavior during these field trials, especially when it
started predicting abnormal classes, and randomly collected 400 samples for each class,
i.e., during Normal and all Abnormal classes, for assessing real-time prediction accuracy.
The results show an average accuracy of 98.0 %. The individual class accuracy is listed in
Table 5. This indicates very close prediction accuracy as the offline evaluation test results.
The consistent and high prediction accuracy during the field trials shows the fitness of
this proposed method for real-time deployment in professional cleaning robots for health
monitoring, promptly triggering the right maintenance action and ensuring operational safety.

Table 5. Real-time prediction accuracy of vibration sources.

Vibration Class Normal Terrain  Collision  Assembly  Structure
Accuracy Prediction (%) 99 98 99 98 96

5. Conclusions

An automated maintenance strategy for mobile cleaning robots is essential to assure
productivity and safety. The proposed heterogeneous sensor dataset-based condition mon-
itoring framework using IMU and current sensors fills such research gaps by predicting
the anomalous internal and external vibration sources, which cause system degradation
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or potential hazards, with high accuracy for real-time deployment. The distinctive data
features of these two proprioceptive sensors were modeled as vibration data, which com-
plement each other to sort out the flaws of individual use, resulting in a higher accuracy
prediction. Also, the proposed simple, fast and low computation cost four-layer 1D CNN
model was validated through four field case studies as an ideal neural network model
for real-time condition monitoring applications in mobile robots by accurately predicting
the abnormal vibration sources, using the proposed temporal fused dataset. Compared
to similar previous works developed, the proposed work excels in accuracy, time, and
fit for the environment. The IMU—current sensor heterogeneous dataset model results in
6.2% higher accuracy, and the prediction time is reduced to half compared to individual
IMU sensor work. Similarly, it is 4.6% more accurate and does not affect any environment
light and dust compared to the camera sensor-based study. The 2D CbM map fusing the
predicted abnormal vibration source class on a SLAM-generated environment map helps
the maintenance team track the system degradation of the robot, identify any operational
hazards in advance, and trigger prompt maintenance or corrective actions, enabling a
real-time CbM strategy. The proposed framework will also help robot manufacturers and
cleaning contract companies review their maintenance and rental strategies, design and
assembly processes, and plan for robot-friendly workspaces. We plan automated CM
frameworks for outdoor mobile robots to extend this research.
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