
Citation: Anggraeni, W.; Supian, S.;

Sukono; Halim, N.A. Catastrophe

Bond Diversification Strategy Using

Probabilistic–Possibilistic Bijective

Transformation and Credibility

Measures in Fuzzy Environment.

Mathematics 2023, 11, 3513. https://

doi.org/10.3390/math11163513

Academic Editors: Babak Shiri

and Zahra Alijani

Received: 27 June 2023

Revised: 7 August 2023

Accepted: 9 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Catastrophe Bond Diversification Strategy Using
Probabilistic–Possibilistic Bijective Transformation and
Credibility Measures in Fuzzy Environment
Wulan Anggraeni 1,*, Sudradjat Supian 2, Sukono 2 and Nurfadhlina Abdul Halim 3

1 Doctoral Program of Mathematics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran,
Sumedang 45363, Indonesia

2 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran,
Sumedang 45363, Indonesia; sudradjat@unpad.ac.id (S.S.); sukono@unpad.ac.id (S.)

3 Faculty of Science and Technology, Universiti Sains Islam Malaysia,
Bandar Baru Nilai 71800, Negeri Sembilan, Malaysia; nurfadhlina@usim.edu.my

* Correspondence: wulan20003@mail.unpad.ac.id

Abstract: The variety of catastrophe bond issuances can be used for portfolio diversification. How-
ever, the structure of catastrophe bonds differs from traditional bonds in that the face value and
coupons depend on triggering events. This study aims to build a diversification strategy model
framework using probabilistic–possibilistic bijective transformation (PPBT) and credibility measures
in fuzzy environments based on the payoff function. The stages of modeling include identifying
the trigger distribution; determining the membership degrees for the face value and coupons using
PPBT; calculating the average face value and coupons using the fuzzy quantification theory; for-
mulating the fuzzy variables for the yield; defining the function of triangular fuzzy membership
for the yield; defining the credibility distribution for the triangular fuzzy variables for the yield;
determining the expectation and total variance for the yield; developing a model of the catastrophe
bond diversification strategy; the numerical simulation of the catastrophe bond strategy model; and
formulating a solution to the simulation model of the diversification strategy using the sequential
method, quadratic programming, transformation, and linearization techniques. The simulation
results show that the proposed model can overcome the self-duality characteristic not possessed by
the possibilistic measures in the fuzzy variables. The results obtained are expected to contribute to
describing the yield uncertainty of investing in catastrophe bond assets so that investors can make
wise decisions.

Keywords: catastrophe bond; payoff function; possibilistic–probabilistic bijective transformation;
credibility measures; fuzzy environment

MSC: 90B50; 90B60; 90C30; 90C90

1. Introduction

Hurricane Andrew caused eleven insurance companies to go bankrupt due to a lack
of reserves to meet claims. Under these conditions, therefore, catastrophe bonds were
developed in the mid-1990s [1]. Due to the economic effects of disasters, which are needed
by insurance firms, reinsurers, and governments but are insufficient, the issuance of catas-
trophe bonds has been rising up until now [2]. The variety of catastrophe bonds circulating
in the financial market can be used for valuable diversification that their investors cannot
ignore [3,4] due to higher returns and being uncorrelated with other stock or bond mar-
kets [5,6]. On the other hand, catastrophe bond assets have a high risk [2]. However, they
are suitable for aggressive investors who have high-risk–high-gain principles.

Research on the advantages of investing in portfolio diversification has been carried
out before. Carayannopoulos and Perez [4] analyzed the relationship between catastrophe
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bond assets, stocks, and corporate and government bond markets using multivariate
GARCH and hedge ratios. The results show that the assets of catastrophe bonds are a
useful source of diversification and have no effect on crises. Demers-Belanger and Lai [7]
examined the effects of catastrophe bonds on portfolio diversification by contrasting their
contribution to conventional assets utilizing the mean–variance (MV), dynamic conditional
correlation (DCC), and stochastic dominance efficiency (SSE). The end outcome was the
portfolio’s addition of catastrophe holdings, which added a frontier efficiency that had
never been attained. The results of the SSE study, however, demonstrate that the addition of
catastrophe bond assets resulted in inefficiency. The MV’s inability to detect the thickening
of the contribution distribution’s tail was the cause of the discrepancy in the results.

Drobetz et al. [8] investigated how portfolio diversification affected both the per-
formance of catastrophe bonds and how their structure changed over time. The copula-
GARCH approach, value at risk (VaR), diversification ratio, concentration ratio, volatility-
weighted average correlation of the assessed asset, co-moments time series data, and
mean–variance were used to test the dependence of the structure of catastrophe bonds
at various time variations. When compared to other traditional bonds, catastrophe bond
assets had the highest diversification weight, the highest risk, and the highest probability of
the lowest extreme covariation when compared to the benchmark portfolio. Haffar et al. [2]
examined the dependence of catastrophe bond structures on various time variations as well
as the performance of catastrophe bonds in portfolio diversification. The method used was
the copula-GARCH approach (testing the dependence of the structure of catastrophe bonds
at various time variations). The results show that catastrophe bond assets have the highest
risk, have the highest diversification weight when compared to other traditional bonds, and
increase the probability of the lowest extreme covariation against the benchmark portfolio.

The previous studies were focused on the effectiveness of catastrophe bond assets in
portfolio diversification in a variety of financial instruments, including traditional bonds,
stocks, and catastrophe bonds. However, they did not address the uncertainty of obtaining
a yield based on the face value and coupon payoff function. Therefore, this study aims to
develop a model framework for a specific diversification strategy for catastrophe bonds
based on yield uncertainty. This is interesting to develop because the amount of the yield
obtained can vary depending on the face value and the coupon payoff function. If the
triggering event occurs before maturity, the holder of the catastrophe bond will lose all or
part of the face value and coupon. However, if no triggering event occurs, the catastrophe
bond holder will receive the entire face value and coupon at maturity [9–13].

Yield uncertainty can be modeled using fuzzy variables. Fuzzy variables are proven
to be effective in dealing with fuzziness and uncertainty [14]. However, possibility mea-
sures have the disadvantage of not having self-duality [15,16]. An example is suppos-
ing that the rate of the yield on investment is described as a triangular fuzzy variable
ζ = (−0.3, 0.3, 1.3). When an investor wants a yield of no less than one, the possibilistic
level is 0.3 (Pos(ζ > 1) = 0.3), while the level of a possibilistic yield obtained by the in-
vestor that is less than one is one (Pos(ζ ≤ 1) = 1), thus confusing the investor. Liu and
Liu [17] used the idea of credibility in a fuzzy environment to overcome the non-self-duality
in fuzzy variables [18,19]. As a result, the credibility of the fuzzy variables was used in
calculating yield expectations.

The rest of this study is structured as follows: The literature review is featured in the
second section, examining earlier studies on the bond strategy model. The third section,
the framework, outlines the methods needed to create the catastrophe bond diversification
plan model. Modeling the credibility distribution of the yield, the fourth section includes
the identification of the distribution of triggers for catastrophe bonds, the calculation of the
probability of trigger events, the utilization of PPBT to ascertain the degree of membership
for fuzzy sets of the face value and coupon, the calculation of the average face value and
coupons using the fuzzy quantification theory, the definition of the yield’s fuzzy variables,
and the ascertainment of the credibility distribution of the yield. The catastrophe bond
strategy model is numerically simulated in the fifth section, the limitation of the proposed
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catastrophe bond strategy model is presented in the sixth section, and the conclusion is
presented in the seventh section. The findings should help investors and other scholars
determine the degree of portfolio diversification in catastrophe bond assets and build a
diversification strategy for catastrophe bond asset portfolios.

2. The Literature Review

Portfolio diversification is important for individual investors and financial man-
agers [20] by allocating investment funds to several financial instruments, involving capital
allocation in the hope of producing maximum profits and minimizing losses [21]. The mean–
variance (MV) portfolio diversification strategy model was pioneered by Markowitz [22].
The MV Markowitz model assumes that investors do not like risk and return on assets as
random variables. The expected return on the portfolio and the variance of the return are
called the return on investment. Currently, research on the MV model is still expanding.
Caldeira et al. [23] modeled the MV bond selection strategy using the yield curve dynamic
factor model. The data used were non-coupon bonds with different maturities, namely
1 year, 3 years, 5 years, 7 years, 9 years, and 10 years. The results show that the Sharpe ratio
of the MV model with a yield curve dynamic factor was better than that of the MV model.
Ortobelli et al. [24] formulated a bond diversification strategy using a two-step model,
i.e., a constant immunization measure over time and an immunization measure for bond
portfolio management, leading to a flexible immunization approach and maximizing the
risk–return framework and the constraints related to the maturity duration and convexity
of a linear programming form. The data used were the US Treasury and corporate bonds
in the period of 2002–2012. The results show that the selected bonds were low-risk bonds
with high returns. The use of the method described above requires a definite rate of return.
However, in catastrophe bonds, the magnitude of the return on the face value and coupons
is subject to uncertainty.

It was discovered that Zadeh’s [14] fuzzy set theory was especially effective in dealing
with fuzziness and uncertainty. Models of portfolio diversification techniques usually
incorporate it. Li et al. [25] used a possibilistic MV in which the mean describes the return
of the yield and the variance describes the risk. In addition, the constraints used were
value-at-risk (VaR) constraints. The mean calculation used a level set of the average upper
and lower fuzzy variables. Michalopoulos et al. [26] modeled portfolio diversification for
Greek government bonds. The step used was modeling the multi-period bond diversifi-
cation problem using multi-objective linear programming with the objective function of
maximizing return. The constraints were that the total percentage weight of each bond asset
was equal to one and that the weight of each bond asset set purchased was at the minimum
and maximum intervals of the bonds purchased according to the market scenario. The
optimization model was solved using the weighting method to become a single-objective
linear program. Furthermore, the objective function was modeled using fuzzy numbers
with trapezoidal membership functions. A multi-period portfolio diversification method
was modeled using fuzzy goal programming by Rodriguez et al. [27]. The membership
function of the returns and variances was triangular, with left–right-type fuzzy input
variables. Calvo et al. [28] proposed a diversification strategy model using fuzzy goal
programming with cardinality constraints and an algorithm that avoids high sensitivity
to the smallest variation developed by Calvo et al. [29]. Zhang et al. [30] considered a
multi-period diversification strategy using the mean and lower semi-variance to measure
the return and risk and using the entropy to measure portfolio-level diversification in
a fuzzy environment. The membership function in the earlier research used a conven-
tional triangular or trapezoidal membership function where the parameter values depend
on the investor’s preferences. This can lead to subjectivity and not necessarily optimal
diversification results.

Saborido et al. [31] and Vercher et al. [32] used the fittings of L-R fuzzy numbers for
uncertain portfolio parameters. Liagkouras and Metaxiatis [33] introduced a new multi-
objective evolutionary algorithm to solve a portfolio diversification strategy model with
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transaction costs in a fuzzy environment with membership functions using L-R fuzzy
numbers adopted from Vrecher et al. [34]. The results show that the proposed algorithm
is efficient because it requires a shorter time compared to other techniques, such as the
non-dominated sorting genetic algorithm (NSGAII) and the multi-objective evolutionary
algorithm based on decomposition (MOEA/D).

The weakness of the possibility measure is that it does not have self-duality [15,16], so
some researchers use credibility when calculating the expected total gains and losses in port-
folio diversification strategies. Li et al. [35] used credibility to calculate the expected profit,
variance, and total skewness. The optimization models used were non-linear programming
(NLP) and multi-objective non-linear programming (MONLP). The model developed has
four models. The first model is to maximize the total skewness with the constraints that the
profits exceed the desired target, the losses are less than the desired target, and the total
investment proportion is equal to one as well as with non-negative constraints. The second
model is to minimize losses with the constraints that the total profits and skewness exceed
the target and that the total investment proportion equals one as well as with non-negative
constraints. The third model is to maximize profits with the constraints that the losses
are less than the target, the skewness is greater than the target, and the total investment
proportion is equal to one as well as with non-negative constraints. The completion of the
optimization model uses the genetic algorithm method.

Li et al. [21] used credibility when calculating the total gains and losses in a portfolio
diversification strategy. The optimization model used was non-linear programming (NLP).
Two models were developed; the first model maximizes the total profit with a total loss of
less than 0.6, with a total proportion of capital allocation that is equal to one, and with the
constraint being non-negativity. The second model minimizes losses with the constraints
that the total profit target is greater than 1.5 and that the sum of the proportions of capital
allocation is equal to one, and the constraints are non-equal. The optimization model was
solved using a genetic algorithm. The results obtained were based on the use of an effective
genetic algorithm to complete the MV diversification strategy model based on credibility.
Jalota et al. [36] developed a single-period and multi-objective diversification strategy
model in a fuzzy environment with a credibility-based L-R fuzzy number membership
function. The developed model is advantageous because it automates the entire installation
process and is more meaningful in a credibility environment.

Deng et al. [15] used credibility when calculating gains, losses, and the total skewness.
The optimization model used was multi-objective non-linear programming (MONLP).
The objective function in the optimization model is to maximize the profits and skewness
and to minimize the losses for the fuzzy profit variable with the constraints that the total
proportion of capital allocation equals one. The proportion of each share corresponds to the
lower and upper limits of the proportion. The methods used in solving the optimization
model were the tolerantly complete layering method (TCLM) and the weighting method.
The results show that the skewness objective function can measure the level of asymmetry
of the profits. The proposed model, i.e., the TCLM, provides several optimal solutions that
reflect investors’ subjective preferences, while the weighting method can only produce
one solution.

A framework for a diversification strategy model is specifically intended for catastro-
phe bonds. The yield model created is not based on investor preferences but on the face
value and coupons. The goal of MONLP is to maximize profits and to minimize losses
under the constraint that the proportion of investment in catastrophe bond assets is one. It
is possible to estimate expectations and overall losses using the credibility hypothesis.

3. Catastrophe Bond Diversification Strategy Model Framework

The stages used in the framework of the catastrophe bond diversification strategy
model are presented in Figure 1.



Mathematics 2023, 11, 3513 5 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 31 
 

 

3. Catastrophe Bond Diversification Strategy Model Framework 
The stages used in the framework of the catastrophe bond diversification strategy 

model are presented in Figure 1. 

 
Figure 1. Stages of developing a catastrophe bond diversification strategy model. 

The description of each stage in Figure 1 is explained in Sections 3.1–3.9. 

3.1. Identifying the Trigger Distributions of the Face Value and Coupon Payoff Functions 
Trigger parameters play an important role in bond modeling because the acquisition 

of the face value and coupon depends on the triggering events. If a catastrophe-bond-
triggering event exceeds the threshold, the investor will lose all or part of the face value 
and coupons. However, the investor will receive the entire face value and the coupons if 
the triggering event does not occur until the maturity date. The triggers that can be used 
in a catastrophe bond include a single trigger using a loss [37–42], multiple triggers using 

Figure 1. Stages of developing a catastrophe bond diversification strategy model.

The description of each stage in Figure 1 is explained in Sections 3.1–3.9.

3.1. Identifying the Trigger Distributions of the Face Value and Coupon Payoff Functions

Trigger parameters play an important role in bond modeling because the acquisition
of the face value and coupon depends on the triggering events. If a catastrophe-bond-
triggering event exceeds the threshold, the investor will lose all or part of the face value



Mathematics 2023, 11, 3513 6 of 30

and coupons. However, the investor will receive the entire face value and the coupons if
the triggering event does not occur until the maturity date. The triggers that can be used in
a catastrophe bond include a single trigger using a loss [37–42], multiple triggers using the
number of deaths and the losses from the disaster [10,43,44], a single-parametric trigger
using the earthquake’s magnitude [45,46], a hybrid trigger using the earthquake’s magni-
tude and loss [47], and a double-parametric trigger using the depth and magnitude of the
earthquake [13,48]. When triggering events occur, parametric triggers have an advantage
over other triggers in terms of high transparency and quicker payment regulation. Due
to this, the diversification strategy model merely employs a parametric trigger type of
catastrophe bond price model.

The generalized extreme value (GEV), the generalized Pareto distribution (GPD), and
Archimedean copulas (AC) are several models for extreme event distribution that can be
applied. Equation (1) defines the cumulative distribution function (CDF) of the GEV.

F1(M) = e−(1+κ(
M−µ

σ ))
− 1

κ

, for κ 6= 0 (1)

where κ, µ, and σ represent the shape, located, and scale parameters [49].
The CDF of the GPD is defined in Equation (2).

F2(M) = 1−
(

1 + κ

(
M− µ

σ

))− 1
κ

, for κ 6= 0 (2)

where κ, µ, and σ represent the shape, located, and scale parameters [50]. The AC generator
functions are presented in Table 1.

Table 1. Archimedean copula class.

Copula Class Generator γ(t) C(m,d) τ Description

Clayton 1
θ

(
t−θ − 1

) (
m−θ + d−θ − 1

)− 1
θ θ

θ+2 θ ≥ 0

Frank ln
(

e−θ−1
e−θt−1

)
− 1

θ ln
(

1 +
(
(e−θm−1)(e−θd−1)

e−θ−1

))
1− 4

θ [1− D1(θ)] θ 6= 0

Gumbel (−ln(t))θ
e−((−lnm)θ+(−lnm)θ)

1
θ θ−1

θ
θ ≥ 1

Where D1(θ) is the Debye function [51,52], the parameter of the AC is denoted by θ, and the Kendal correlation is
denoted by τ.

Equations (1) and (2) use the Easyfit application for parameter estimation, while Table 1
uses the RSTudio application. The Kolmogorov–Smirnov (KS) test is used to determine
whether the sample data distribution and the GEV or GPD are compatible, whereas the
Akaike information criterion test (AIC) is used to determine whether the Archimedean
copula family is compatible.

3.2. Determining the Degree of Membership of the Set of the Face Value and Coupons Based on the
Payoff Function

Let I be the number of intervals in the face value payoff function (i = 1, . . . , I) and n
be the number of catastrophe bond assets (ϑ = 1, . . . , n). The calculation of the membership
degree of the face value for each i in the payoff function µϑi

(
FVϑi

)
uses PPBT [53]. Let pϑi be

the probability of obtaining FVϑi . p(FV)ϑo(j)
is p(FV)ϑi

, which is ordered from high to low

(pϑo(1)
> pϑo(2)

> . . . > pϑo(j)
). The membership degree of FVϑi is defined in Equation (3).

µ(FV)ϑj
= jp(FV)ϑo(j)

+ ∑I
l=j+1 p(FV)ϑo(l)

(3)

After sorting by pϑi , the ranking of the new FVϑi is presented by j.
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Let K be the number of intervals in the coupon payoff function (k = 1, 2, . . . , K) and n
be the number of catastrophe bonds, which can diversify (ϑ = 1, . . . , n). The calculation of
the membership degree of the coupon for each k in the payoff function

(
µϑi

(
FVϑi

))
also

uses PPBT [53]. Let pϑk be the probability of obtaining Cϑk . p(C)ϑo(j)
is p(FC)ϑi

, which is

ordered from high to low (pϑo(1)
> pϑo(2)

> . . . > pϑo(g)
). The membership degree of Cϑk is

defined in Equation (4).

µ(C)ϑg
= jp(C)ϑo(g)

+ ∑I
l=g+1 p(C)ϑo(l)

(4)

After sorting by pϑk , the ranking of the new CVϑk is presented by g.

3.3. Calculation of the Average of the Face Value and Coupons Using the Fuzzy
Quantification Theory

The average face value obtained by investors is modeled using the average fuzzy
quantification theory [54], which is formulated in Equation (5).

m(FV)ϑ =
1

∑I
j=1 µ(FV)ϑj

∑I
j=1 FVϑj µ(FV)ϑj

, ∀ϑ, ϑ = 1, . . . , n (5)

The average coupon obtained by investors is formulated in Equation (6).

m(C)ϑ =
1

∑K
g=1 µ(C)ϑg

∑K
g=1 Cϑg µ(C)ϑg

, ∀ϑ, ϑ = 1, . . . , n (6)

3.4. Defining Triangular Fuzzy Variables for the Yield of Catastrophe Bond Investing

Let the investor want to invest in ϑth catastrophe bonds. The investor will suffer
a loss equal to the bond’s price in the event that a bond-triggering event takes place
(−Pϑ). However, if no bond-triggering event occurs, the investor will receive all of the
face value (FV)ϑ and coupons A(CT)ϑ = ∑T

i=1 (ci)ϑ. Therefore, the yield is the difference
between the sum of all of the face value and coupons (FVϑ + A(CT)ϑ) and the bond price
(Pϑ). Other possible yields are obtained from the difference between the sum of the
average face value and coupon (m(FV)ϑ + m(C)ϑ) and the bond price (Pϑ). Based on this
description, the yield’s triangular fuzzy variable is defined as Hϑ = (aϑ, αϑ, βϑ), where
aϑ = m(FV)ϑ +m(C)ϑ − Pϑ, αϑ = m(FV)ϑ +m(C)ϑ, and βϑ = A(CT)ϑ + FVϑ −m(FV)ϑ −
m(C)ϑ. The visualization of the triangular fuzzy membership function of the yield is
presented in Figure 2.
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Figure 2 shows that the membership degree of−Pϑ and A(CT)ϑ + FVϑ−m(FV)ϑ−m(C)ϑ
is zero, while that of m(FV)ϑ + m(C)ϑ − Pϑ, m(FV)ϑ is one.
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3.5. Formulating the Triangular Fuzzy Function for the Yield of Catastrophe Bond Investing

Based on Figure 2, the membership function is obtained, which is formulated in
Equation (7).

µ(H)ϑ =


hϑ+Pϑ

m(FV)ϑ+m(C)ϑ
, if − Pϑ ≤ hϑ ≤ m(FV)ϑ + m(C)ϑ − Pϑ

hϑ−A(CT)ϑ−FVϑ+Pϑ

m(FV)ϑ+m(C)ϑ−A(CT)ϑ−FVϑ
, if m(FV)ϑ + m(C)ϑ − Pϑ ≤ hϑ ≤ A(CT)ϑ + FVϑ − Pϑ

0, if Otherwise.

(7)

where m(FV)ϑ is formulated in Equation (5) and where m(C)ϑ is formulated in Equation (6).

3.6. Formulating the Credibility Distribution for a Triangular Fuzzy Variable of the Yield

Credibility measures are used to overcome non-self-duality in the possibility measure [18].

Definition 1. Let Θ be a non-empty set, while P is the power set of Θ. Every element of P is an
occurrence, with H being the member of P . The credibility of H is denoted by Cr(H) with the
fulfillment of the following four axioms [24]:
Axioma 1. (Normality) Cr(Θ) = 1.
Axioma 2. (Monotonicity) Cr{H1} ≤ Cr{H2}.
Axioma 3. (Self-Duality) Cr{H}+ Cr{Hc} = 1, ∀A.
Axioma 4. (Maximality) Any occurrence of {Hϑ} with supiCr{Hϑ} < 0.5 produces Cr{∪i Hϑ} =
supϑCr{Hϑ}.

Definition 2. Let ξ be a fuzzy variable with a membership function denoted by µ, then credibility
ξ, which is less than Hϑ [24,55], can be defined using Equation (8).

Cr{ξ ≤ Hϑ } =
1
2

(
sup

y≤Hϑ

µ(y) + 1− sup
y>Hϑ

µ(y)

)
, ∀Hϑ ∈ < (8)

The distribution of credibility in Equation (7) is defined in Equation (9).

Φ(Hϑ) =


0, if hϑ ≤ −Pϑ,

hϑ+Pϑ
2(m(FV)ϑ+m(C)ϑ)

, if − Pϑ ≤ hϑ ≤ m(FV)ϑ + m(C)ϑ − Pϑ,
hϑ+(A(CT)ϑ+FVϑ−Pϑ)−2(m(FV)ϑ+m(C)ϑ−Pϑ)

2(A(CT)ϑ+FVϑ−m(FV)ϑ−m(C)ϑ)
, if m(FV)ϑ + m(C)ϑ − Pϑ ≤ hϑ ≤ A(CT)ϑ + FVϑ − Pϑ,

1, if hϑ ≥ A(CT)ϑ + FVϑ − Pϑ.

(9)

A visualization of the credibility distribution in Equation (9) is presented in Figure 3.
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Definition 3. Let ξ be a fuzzy variable with a credibility distribution Φ; the inverse function for Φ
is denoted by Φ−1 [56]. The inverse of Equation (9) is formulated in Equation (10).

Φ−1(α) ={
α(2(m(FV)ϑ + m(C)ϑ))− Pϑ, α < 0.5,

α(2(A(CT)ϑ + FVϑ −m(FV)ϑ −m(C)ϑ))− (A(CT)ϑ + FVϑ) + 2(m(FV)ϑ + m(C)ϑ)− Pϑ, α ≥ 0.5.
(10)

A visualization of Equation (10) is presented in Figure 4.
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Theorem 1. Let Hϑ be a fuzzy variable with an inverse credibility distribution (Φ−1(α)). If
the expected value exists, then the expectation and variance of Hϑ can be formulated using
Equations (11) and (12) [56,57].

E(Hϑ) =
∫ 1

0
Φ−1(α)dα (11)

Var(Hϑ) =
∫ 1

0

(
Φ−1(α)− E(Hϑ)

)2
dα (12)

Based on Theorem 1, the expectation and variance of Hϑ are described as follows.

E(Hϑ) =
∫ 1

0 Φ−1(α)dα

=
∫ 0.5

0 (α(2(m(FV)ϑ + m(C)ϑ))− Pϑ)dα +
∫ 1

0.5(α(2(A(CT)ϑ + FVϑ −m(FV)ϑ −m(C)ϑ))− (A(CT)ϑ + FVϑ)+
2(m(FV)ϑ + m(C)ϑ)− Pϑ)dα

=
[
α2(m(FV)ϑ + m(C)ϑ) + αa

]0.5
0 +

[
α2(A(CT)ϑ + FVϑ −m(FV)ϑ −m(C)ϑ) + α(2(m(FV)ϑ + m(C)ϑ − Pϑ)−

(A(CT)ϑ + FVϑ − Pϑ))]
1
0.5

=
A(CT)ϑ+FVϑ+2m(FV)ϑ+2m(C)ϑ−4Pϑ

4
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Var(Hϑ) =
∫ 1

0
(
Φ−1(α)− E(Hϑ)

)2dα

=
∫ 0.5

0

(
α(2(m(FV)ϑ + m(C)ϑ))− Pϑ −

(
2(m(FV)ϑ+m(C)ϑ)+A(CT)ϑ+FVϑ−4Pϑ

4

))2
dα +

∫ 1
0.5(α(2(A(CϑT) + FVϑ−

m(FV)ϑ −m(C)ϑ))− (A(CT)ϑ + FVϑ) + 2(m(FV)ϑ + m(C)ϑ)− Pϑ−(
2(m(FV)ϑ+m(C)ϑ)+A(CT)ϑ+FVϑ−4Pϑ

4

)
)2dα

=


(
(2(m(FV)ϑ+m(C)ϑ−Pϑ)−2(−Pϑ))γ+

3(−Pϑ)−2(m(FV)ϑ+m(C)ϑ−Pϑ) −9A(CT)ϑ
+FVϑ−Pϑ)

4

)2

6(m(FV)ϑ+m(C)ϑ−Pϑ−(−Pϑ )


0.5

0

+


(

2(A(Cϑ T)+FVϑ−Pϑ)−2(m(FV)ϑ+m(C)ϑ−Pϑ))γ+
3(m(FV)ϑ+m(C)ϑ−Pϑ)

2 +
Pϑ
4 −

A(CT)ϑ
+FVϑ−Pϑ
4

)3

6( A(CT)ϑ+FVϑ−Pϑ)−(m(FV)ϑ+m(C)ϑ−Pϑ))


1

0.5

=
5(m(FV)ϑ+m(C)ϑ)

2

48 +
6(m(FV)ϑ+m(C)ϑ)(A(CT)ϑ+FVϑ−m(FV)ϑ−m(C)ϑ

48

)
+

5(A(CT)ϑ+FVϑ−m(FV)ϑ−m(C)ϑ)
2

48

3.7. Formulating the Diversification Strategy Model on Catastrophe Bond Assets

Let the number of choices of catastrophe bonds to be diversified be n, where E(Hϑ)
and Var(Hϑ) are formulated using Equations (11) and (12). The diversification strategy
model on catastrophe bonds is formulated in Equation (13).

MONLP :=


maxE(∑n

ϑ=1 ωϑ Hϑ)
minVar(∑n

ϑ=1 ωϑ Hϑ)

s.t ∑n
ϑ=1 ωϑ = 1

0 ≤ ωϑ ≤ 1

(13)

If Hϑ = (aϑ, αϑ, βϑ) is a triangular fuzzy variable, then ∑n
ϑ=1 ωϑ Hϑ = (∑n

ϑ=1 ωϑaϑ ,
∑n

ϑ=1 ωϑαϑ, ∑n
ϑ=1 ωϑβϑ) is also a triangular fuzzy variable [14]. E(∑n

ϑ=1 ωϑ Hϑ) and
Var(∑n

ϑ=1 ωϑ Hϑ) are formulated in Equations (14) and (15).

E
(
∑n

ϑ=1 ωϑ Hϑ

)
=

∑n
ϑ=1(4aϑ + βϑ − αϑ)ωϑ

4
(14)

Var
(
∑n

ϑ=1 ωϑ Hϑ

)
=

10(∑n
ϑ=1 ωϑβϑ)

2 + 10(∑n
ϑ=1 ωϑαϑ)

2 + 12(∑n
ϑ=1 ωϑαϑ)(∑n

ϑ=1 ωϑβϑ)

96
(15)

Equations (14) and (15) can be described as follow:

E(∑n
ϑ=1 ωϑ Hϑ) =

∫ 1
0

∫ 1
0 Φ−1(α)dα

=
∫ 1

2
0 ∑n

ϑ=1 ωϑaϑ + (2α− 1)∑n
ϑ=1 ωϑαϑdα +

∫ 1
1
2

∑n
ϑ=1 ωϑaϑ + (2α− 1)∑n

ϑ=1 ωϑβϑdα

=
∫ 0.5

0 (∑n
ϑ=1 ωϑaϑ −∑n

ϑ=1 ωϑαϑ) + 2α ∑n
ϑ=1 ωϑαϑdα +

∫ 1
1
2
(∑n

ϑ=1 ωϑaϑ −∑n
ϑ=1 ωϑβϑ) + 2 ∑n

ϑ=1 ωϑβϑαdα

=
[
(∑n

ϑ=1 ωϑaϑ −∑n
i=1 ωϑαϑ)α + ∑n

ϑ=1 ωϑαϑα2] 1
2
0 +

[
(∑n

ϑ=1 ωϑaϑ −∑n
i=1 ωϑβϑ)α + ∑n

ϑ=1 ωϑβϑα2]1
1
2

= 1
2 (∑

n
ϑ=1 ωϑaϑ −∑n

ϑ=1 ωϑαϑ) +
1
4 ∑n

ϑ=1 ωϑαϑ + (∑n
ϑ=1 ωϑaϑ −∑n

ϑ=1 ωϑβϑ + ∑n
ϑ=1 ωϑβϑ)−

(
1
2 ∑n

ϑ=1 ωϑaϑ−
1
2 ∑n

i=1 ωϑβϑ + 1
4 ∑n

ϑ=1 ωϑβϑ

)
= 1

2 ∑n
ϑ=1 ωϑaϑ − 1

2 ∑n
ϑ=1 ωϑαϑ + 1

4 αϑ + ∑n
ϑ=1 ωϑaϑ − 1

2 ∑n
ϑ=1 ωϑaϑ + 1

2 ∑n
ϑ=1 ωϑβϑ − 1

4 ∑n
i=1 ωϑβϑ

= ∑n
ϑ=1 ωϑ βϑ−∑n

ϑ=1 ωϑαϑ+4 ∑n
ϑ=1 ωϑ aϑ

4
= ∑n

ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4

Var(∑n
i=1 ωϑ Hϑ) =

∫ 1
0

(
Φ−1(α)− E(ζϑ)

)2dα

=
∫ 0.5

0

(
∑n

ϑ=1 ωϑaϑ + (2α− 1)∑n
ϑ=1 ωϑαϑ − ∑n

ϑ=1(4aϑ+βϑ−αϑ)ωϑ
4

)2
dα +

∫ 1
0.5(∑

n
ϑ=1 ωϑaϑ + (2α−

1)∑n
ϑ=1 ωϑβϑ − ∑n

ϑ=1(4aϑ+βϑ−αϑ)ωϑ
4

)
2dα
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The integral for the first part of Var(∑n
ϑ=1 ωϑ Hϑ) is described as follows:

If u = ∑n
ϑ=1 ωϑaϑ + (2α− 1)∑n

ϑ=1 ωϑαϑ − ∑n
ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4 , then du
dα = 2 ∑n

ϑ=1 ωϑαϑ

→ dα = 1
2 ∑n

ϑ=1 ωϑαϑ
du , so that the following is true:

For α = 0,

u = ∑n
ϑ=1 ωϑaϑ + (−1)∑n

ϑ=1 ωϑαϑ − ∑n
ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4

= ∑n
ϑ=1 ωϑaϑ −∑n

ϑ=1 ωϑαϑ − ∑n
ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4

=
4 ∑n

ϑ=1 ωϑaϑ−4 ∑n
ϑ=1 ωϑαϑ−∑n

ϑ=1 ωϑ βϑ+∑n
ϑ=1 ωϑαϑ−4 ∑n

ϑ=1 ωϑaϑ
4

=
−3 ∑n

ϑ=1 ωϑαϑ−∑n
ϑ=1 ωϑ βϑ

4

For α = 0.5,

u = ∑n
ϑ=1 ωϑaϑ + (2(0.5)− 1)∑n

ϑ=1 ωϑαϑ − ∑n
ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4

= ∑n
ϑ=1 ωϑaϑ − ∑n

ϑ=1(4aϑ+βϑ−αϑ)ωϑ
4

=
4 ∑n

i=1 ωiai−∑n
i=1 ωi βi+∑n

i=1 ωiαi−4 ∑n
i=1 ωiai

4

= ∑n
ϑ=1 ωϑαϑ−∑n

ϑ=1 ωϑ βϑ
4

Therefore,

∫ 0.5
0

(
∑n

ϑ=1 ωϑαϑ + (2α− 1)∑n
ϑ=1 ωϑαϑ −

∑n
ϑ=1 (4aϑ+βϑ−αϑ)ωϑ

4

)2
dα = 1

2∑n
ϑ=1 ωϑαϑ

∫ ∑n
ϑ=1 ωϑ αϑ−∑n

ϑ=1 ωϑ βϑ
4

−3∑n
ϑ=1 ωϑ αϑ−∑n

ϑ=1 ωϑ βϑ
4

u2du

= 1
2∑n

ϑ=1 ωϑαϑ

[
1
3 u3
] ∑n

ϑ=1 ωϑ αϑ−∑n
ϑ=1 ωϑ βϑ

4
−3∑n

ϑ=1 ωϑ αϑ−∑n
ϑ=1 ωϑ βϑ

4

= 1
6∑n

ϑ=1 ωϑαϑ

((
∑n

ϑ=1 ωϑαϑ−∑n
ϑ=1 ωϑ βϑ

4

)3
− (−3∑n

ϑ=1 ωϑαϑ −∑n
ϑ=1 ωϑ βϑ)

3
)

=
7(∑n

ϑ=1 ωϑαϑ)
2
+3(∑n

ϑ=1 ωϑ βϑ)
2
+6(∑n

ϑ=1 ωϑαϑ)(∑n
ϑ=1 ωϑ βϑ)

96

The integral for the second part of Var(∑n
i=1 ωϑ Hϑ) is described as follows:

If u = ∑n
ϑ=1 ωϑαϑ + (2α− 1)∑n

ϑ=1 ωϑβϑ − ∑n
ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4 , then du
dα = ∑n

ϑ=1 ωϑβϑ

→ α = 1
2 ∑n

ϑ=1 ωϑ βϑ
dα , so that the following is true:

For α = 0.5,

u = ∑n
ϑ=1 ωϑαϑ + (2(0.5)− 1)∑n

ϑ=1 ωϑβϑ − ∑n
ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4

= ∑n
ϑ=1 ωϑαϑ−∑n

ϑ=1 ωϑ βϑ
4

For α = 1, if u = ∑n
ϑ=1 ωϑαϑ + (2(1)− 1)∑n

ϑ=1 ωϑβϑ − ∑n
ϑ=1 (4aϑ+βϑ−αϑ)ωϑ

4

=
3∑n

ϑ=1 ωϑ βϑ+∑n
ϑ=1 ωϑαϑ

4 , then

∫ 1
0.5

(
∑n

ϑ=1 ωϑαϑ + (2α− 1)∑n
ϑ=1 ωϑβϑ − ∑n

ϑ=1(4aϑ+βϑ−αϑ)ωϑ

4

)2
dα = 1

2 ∑n
ϑ=1 ωϑ βϑ

∫ 3 ∑n
ϑ=1 ωϑ βϑ+∑n

ϑ=1 ωϑ αϑ
4

∑n
ϑ=1 ωϑ αϑ−∑n

ϑ=1 ωϑ βϑ
4

u2du

= 1
6 ∑n

ϑ=1 ωϑ βϑ

[
u3] 3 ∑n

ϑ=1 ωϑ βϑ+∑n
ϑ=1 ωϑ αϑ

4
∑n

ϑ=1 ωϑ αϑ−∑n
ϑ=1 ωϑ βϑ

4

= 1
6 ∑n

ϑ=1 ωϑ βϑ

((
3 ∑n

ϑ=1 ωϑ βϑ+∑n
ϑ=1 ωϑαϑ

4

)3
−
(

∑n
ϑ=1 ωϑαϑ−∑n

ϑ=1 ωϑ βϑ

4

3
)

=
7(∑n

ϑ=1 ωϑ βϑ)
2+6(∑n

ϑ=1 ωϑαϑ)(∑n
ϑ=1 ωϑ βϑ)+3(∑n

ϑ=1 ωϑαϑ)
2

96

Therefore,

Var(∑n
i=1 ωϑ Hϑ) =

7(∑n
ϑ=1 ωϑαϑ)

2+3(∑n
ϑ=1 ωϑ βϑ)

2+6(∑n
ϑ=1 ωϑαϑ)(∑n

ϑ=1 ωϑ βϑ)
96 +

7(∑n
ϑ=1 ωϑ βϑ)

2+6(∑n
ϑ=1 ωϑαϑ)(∑n

ϑ=1 ωϑ βϑ)+3(∑n
ϑ=1 ωϑαϑ)

2

96

=
10(∑n

ϑ=1 ωϑ βϑ)
2+10(∑n

ϑ=1 ωϑαϑ)
2+12(∑n

ϑ=1 ωϑαϑ)(∑n
ϑ=1 ωϑ βϑ)

96

=
5(∑n

ϑ=1 ωϑ βϑ)
2+5(∑n

ϑ=1 ωϑαϑ)
2+6(∑n

ϑ=1 ωϑαϑ)(∑n
ϑ=1 ωϑ βϑ)

48
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3.8. Numerical Simulation

The bond pricing model used for the simulation was adopted from research by Zim-
bidis et al. [45], a modified model from Anggraeni et al. [13], where the coverage area is not
decomposed and the face value payoff function is in binary form. As for each catastrophe
bond pricing model formulated in Equations (16)–(18), the assumption used is that the
trigger distribution model for Equation (16) is the GEV, that for Equation (17) is the GPD,
those for Equation (18) are the Archimedean copula and GP, and the interest rate is fixed.

P1 = EQ(e−(r+e)T
T
∑

t=1
FVT f (Rl , Ml),

f (Rl , Ml) =


(3Rl)1[0<M1≤5.4] + (2Rl)1[5.4<M1≤5.8] + (Rl).1[5.8<M1≤6.2],

l = 1, 2, . . . , T − 1
(3Rl)1[0<M1≤5.4] + (2Rl)1[5.4<M1≤5.8] + (Rl).1[5.8<M1≤6.2] + K.1[0<max(M1)≤6.6]

+ 2
3 K.1[6.6<max(M1)≤7] +

1
3 K.1[7<max(M1)≤7.4], l = T

.

(16)

P2 = e−(∑
T
s=1

1
T+1 A(Rs)+ep)

 1
T+1

T
∑

s=1
A(Cs)e

−λs((1+κz(
mTqz

−ξz
σz ))

− 1
κ
)

b

mTq + Y(K, M)

[(
1 + κz

(
mTqz−ξz

σz

))− 1
κ

]b

mTq


Y(C, K)t =

{
Ct.K, if M < mTq

0, if M ≥ mTq .

Y(K, M) =

{
K, If M < mTq

0, If M ≥ mTq .

(17)

P3 = e−(∑
T
s=1

1
T+1 A(Rs)+ep)

 1
T+1

T
∑

s=1
A(Cs)e

−λs ∑Z
z=1

n(Gz)
n(W)

((1+κz(
mTqz

−ξz
σz ))

− 1
κ
)
+

11
∑

i=1
S(K)i

Z
∑

z=1

n(Gz)
n(W)

F(Mz, Dz)i



S(K) =



K, if M < 5 and D > 0,
f1K, if M ∈ [5, 6) and D ≥ 300,
f2K, if M ∈ [5, 6) and D ∈ [70, 300),
f3K, if M ∈ [5, 6) and D ∈ [0, 70),
f4K, if M ∈ [6, 7) and D ≥ 300,
f5K, if M ∈ [6, 7) and D ∈ [70, 300),
f6K, if M ∈ [6, 7) and D ∈ [0, 70),
f7K, if M ∈ [7, 8) and D ≥ 300,
f8K, if M ∈ [7, 8) and D ∈ [70, 300),
f9K, if M ∈ [7, 8) and D ∈ [0, 70),

0, if M ∈ [8, 10) and D > 0).

Y(C, K)t =

{
Ct.K, if M < mTq

0, if M ≥ mTq

(18)

In Equation (16), the bond pricing is denoted by P1; the time maturity is denoted by T;
the payoff function that will be received by the investor when l = 1, 2, . . . , T is denoted
by f (Rl , Ml); the coupon at time l is denoted by Rl ; the magnitude of the earthquake that
occurred at time l is denoted by Ml ; the interest rate at time l is denoted by r; the extra
premium is denoted by e; and the face value is denoted by K.

In Equation (17), the face value is denoted by K, the amount of the coupon at time t is
denoted by Ct, the coupon payoff function at time t is denoted by Y(C, K)t, the threshold
of the earthquake’s magnitude is denoted by mTq , the accumulation of the interest rate at
time s is denoted by A(Rs), the payoff function of the face value is denoted by S(K), the



Mathematics 2023, 11, 3513 13 of 30

maximum magnitude of the earthquake is denoted by b, the time maturity is denoted by T,
and the magnitude of the earthquake is denoted by M.

In Equation (18), the face value is denoted by K; the payoff function of the face value
is denoted by S(K); the proportion of the face value is denoted by fr, where f9 < f8 < f7 <
f6 < f5 < f4 < f3 < f2 < f1; M = max(Mz), z = 1, 2, . . . , Z, where Mz represents the
earthquake’s magnitude in zone z at interval time (t, t + 1); the depth of the earthquake is
denoted by D as follows M; the number of earthquakes in zone z is denoted by n(Z); the
number of earthquakes in a covered region is denoted by n(W); and the distribution of the
magnitude and depth of the earthquake in zone z is denoted by F(Mz, Dz).

3.9. Finding the Solutions to the Catastrophe Bond Diversification Strategy Model

Equation (13) has more than one objective function and is solved using the weighting
method to transform it into the SONLP form. The idea of the weighting method is that
the weight of the function represents each goal [58]. Let MONLP have n goals, which is
formulated in Equation (19).

min Gi, i = 1, 2 . . . , n (19)

The combination of the objective functions uses the weighting method, which is
defined in Equation (20).

min z = b1G1 + b2G2 + . . . bngn (20)

The parameter of bi, i = 1, 2, . . . , n, is a positive weight that reflects the decision
maker’s (DM) preference for the relative decisions of each goal. The results of
Equation (13)’s transformation using the weighting method are formulated in Equation (21).

SONLP :=


min(b1Var(∑n

ϑ=1 ωϑ Hϑ)− b2E(∑n
ϑ=1 ωϑ Hϑ))

s.t
∑n

ϑ=1 ωϑ = 1
b1 + b2 = 1
0 ≤ ωϑ ≤ 1

(21)

Equation (21) can be solved using sequential quadratic programming (SQP) or trans-
formation and linearization techniques.

(1) Sequential Quadratic Programming

When given an NLP that follows Equation (22), the following is true:

The objective function is as follows :
z = min f (x)
which is subject to the following :
gi(x) = 0, for i = 1, 2, . . . , m

(22)

The Lagrange multiplier function is formulated in Equation (23).

L(x, λ) = f (x)− λT g(x) (23)

The first-order necessary condition for x to be a local solution for Equation (22) is
∇L(x, λ) = 0, and this uses partial derivative operations that are formulated in
Equation (24).

∇L(x, λ) = ∇ f (x)− λT∇g(x) = 0 (24)

The Hessian matrix from Equation (22) is non-singular, so the formula for Newton’s
method is formulated in Equation (25).[

xk+1
λk+1

]
=

[
xk
λk

]
+

[
pk
vk

]
(25)
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where pk and vk are obtained by solving Equation (26).

∇2L(xk, λk)(pk, vk) = −∇L(xk, λk)[
∇2

xx(xk, λk) −∇g(xk)

−∇g(xk)
T 0

][
pk
vk

]
= −

[
∇xL(xk, λk)
−g(xk)

]
(26)

Let
Uk = ∇x f (xk)−∑n

i=1(λk)i∇xg(xk) (27)

Wk = ∇2
x f (xk)−∑n

i=1(λk)i∇
2
xg(xk) (28)

Yk =


∇x(g1(xk))
∇x(g2(xk))

...
∇x(gm(xk))

 (29)

Tk = ∇x f (xk) (30)

Gk =
[
g1(xk) g2(xk) . . . gm(xk)

]T (31)

Based on Equations (27) to (31), Equation (26) becomes Equation (32).[
Wk −Yk
−Yt

k 0

][
pk
vk

]
= −

[
Uk
−Gk

]
[

Wk −Yk
−Yt

k 0

][
pk
vk

]
= −

[
Ykλk − Tk

Gk

] (32)

Assuming the first derivative of the transposed matrix of the constraint (Y) is a full
column rank, the matrix of ∇2

xxL(x, λ) is definitively positive where ZT∇2
xxL(x, λ)Z > 0

for all Z values, and the Z matrix basis of the null space is YT . Therefore, Equation (32)
becomes Equation (33).

Wk p + Tk = Ykλk+1
YT

k p = −Gk
(33)

Based on Equation (33) and referring to Griva et al. [59], the approximation system
that meets the first-order requirement is in the form of a quadratic program, which is
formulated in Equation (34).

The objective function is as follows:

z = min
1
2

pT [Wk]p + pT [Tk] (34)

which is subject to the following:

[Yk]
T p + Gk = 0

Equation (34) can be solved using Equation (32).[
Wk −Yk
−Yt

k 0

][
pk
vk

]
= −

[
Uk
−Gk

]
[

pk
vk

]
= −

[
Wk −Yk
−Yt

k 0

]−1[ Uk
−Gk

]
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[
xk+1
λk+1

]
=

[
xk
yk

]
−
[

Wk −Yk
−Yt

k 0

]−1[ Uk
−Gk

]
By using xk+1 and λk+1, we can calculate Wk+1, Tk+1, Gk+1, Yk+1, and Uk+1. The calcu-

lation process will stop when pk ≈ 0 or pk < ε. For each iteration, we use (pk+1, λk+1) to
obtain a new xk+1 and λk+1, and then xk+1 and λk+1 are used in the next iteration.

(2) Transformation and Linearization Technique

The earthquake bond diversification strategy model in Equation (21) is in the
NLP form, requiring a longer computation time than the LP solution [60]. Therefore,
Equation (21) is transformed into the LP form by performing transformation and lineariza-
tion techniques [55].

Let x1 and x2 be continuous variables, where l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2; for the
multiplication of two continuous variables x1x2, it is necessary to make an example of y1
and y2 following Equations (35) and (36).

y1 =
1
2
(x1 + x2) (35)

y2 =
1
2
(x1 − x2) (36)

The multiplication of two continuous variables x1x2 can be replaced by a separable
function as in Equation (37).

x1x2 = y2
1 − y2

2 (37)

By assuming z1 = y2
1 − y2

2, provided that x1 and x2 are non-negative, it is necessary to
add Equation (38) [55] to the constraint function.

l1x1 ≤ z1 ≤ u1x2 (38)

Let x1 be a continuous variable, where l1 ≤ x1 ≤ u1; to linearize the quadratic function
x2

1, it is necessary to divide z2 = x2
1 and to add Equation (39) to the constraint function.

l2
1 ≤ z2 ≤ u2

1
z2 ≤ x1, 0 ≤ x1 ≤ 1

(39)

4. Yield Credibility Distribution

The fundamental difference between traditional bonds and catastrophe bonds is the
face value and the coupons the investors get at maturity, which depend on the triggering
event. If the triggering event occurs before maturity, the investor will lose all or part of
the face value and coupons. However, if no triggering event occurs, the catastrophe bond
investors will get the entire face value and coupon at maturity [9–13]. The catastrophe
bond payoff function can be formulated in a binary or piecewise linear function. Because
the face value and coupons depend on the triggering event, the possibility of obtaining
different yields makes it interesting to model. The following is a model for determining the
yield for each payoff function that corresponds to Equations (16)–(18).
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4.1. Modeling the Distribution of the Yield Credibility on the First catastrophe Bonds

The trigger distribution in Equation (16) is the GEV, which is formulated in Equation (1).
For κ 6= 0, the probability function of the face value is formulated in Equation (40).

p(FV)1 =



[
e−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂

]6.6

0

, if FV = K[
e−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂

]7

6.6

, if FV = 2
3 K[

e−(1+κ̂(
M−µ̂

σ̂ ))
− 1

κ̂

]7.4

7

, if FV = 1
3 K

lim
b→∞

[
e−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂

]b

7.4

, if FV = 0

(40)

Equation (40) shows the probability of a possible face value (FV). Let p1i (i = 1, 2, ..4)
be the probability of obtaining FV1i . p(FV)1o(j)

is p(FV)1i
, which is ordered from high

to low (p1o(1)
> p1o(2)

> · · · > p1o(j)
). The membership degree of FV1i is defined in

Equation (41).
µ(FV)1j

= jp(FV)1o(j)
+ ∑4

l=j+1 p(FV)1o(l)
(41)

Based on Equation (5), the average of the face value in Equation (16) is formulated in
Equation (42).

m(FV)1 =
1

∑4
j=1 µ(FV)1j

4

∑
j=1

FV1j µ(FV)1j
(42)

The scenario of receiving a coupon in Equation (16) in this study is that investors will
receive a coupon of 3RT if the earthquake occurs at a maturity of less than 5.4 SR. Investors
will receive (3R(T − 1) + 2R) if the earthquake occurs within a magnitude of 5.4 SR to
5.8 SR at (T − 1), or the investor could lose all of their coupons if the earthquake is more
than 6.2 SR in the first year. Based on this scenario, the probability of each possible coupon
is presented in Equation (43).

p(C)1 =



n(3RT)
n(KC) , if C = 3RT

n(3RT−1)
n(KC) , if C = 3RT − 1

n(3RT−2)
n(KC) , if C = 3RT − 2

...
...

n(0)
n(KC) , if C = 0

(43)

.
The number of possibilities for obtaining a coupon is 3RT, which is denoted by n(3RT),

and so on until the number of possibilities for not obtaining a coupon is denoted by n(0).
Meanwhile, the number of possibilities for obtaining a coupon is denoted by n(KC). Based
on Equation (4), the membership degree of (C)1i

is formulated in Equation (44).
Let pϑk be the probability of obtaining Cϑk . p(C)ϑo(j)

is p(FC)ϑi
, which is ordered from

high to low (pϑo(1)
> pϑo(2)

> . . . > pϑo(g)
). The membership degree of Cϑk is defined in

Equation (44).
µ(C)1g

= gp(C)1o(g)
+ ∑I

l=g+1 p(C)1o(l)
(44)

Based on Equation (6), the average of the face value in Equation (16) is formulated in
Equation (45).

m(C)1 =
1

∑4
k=1 µ(C)1k

∑4
k=1 C1k µ(C)1k

(45)
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Next, we define the yield’s triangular fuzzy variable, namely H1 = (m(FV)1 + m(C)1
−P1, m(FV)1 + m(C)1, A(CT)1 + FV1 −m(FV)1 −m(C)1), with m(FV)1 being formulated
in Equation (42), and m(C)1 being formulated in Equation (45). Based on Equation (7), the
fuzzy triangular function for H1 is formulated in Equation (46).

µ(H)1 =


h1+P1

m(FV)1+m(C)1
, if− P1 ≤ h1 ≤ m(FV)1 + m(C)1 − P1

h1−A(CT)1−FV1+P1
m(FV)1+m(C)1−A(CT)1−FV1

, if m(FV)1 + m(C)1 − P1 ≤ h1 ≤ A(CT)1 + FV1 − P1

0, if Otherwise

(46)

Based on Equation (9), the credibility distribution of the triangular fuzzy variable of
H1 is formulated in Equation (47).

Φ(H1) =


0, if h1 ≤ −P1

h1+P1
2(m(FV)1+m(C)1)

, if − P1 ≤ h1 ≤ m(FV)1 + m(C)1 − P1
h1+(A(CT)1+FV1−P1)−2(m(FV)1+m(C)1−P1)

2(A(CT)1+FV1−m(FV)1−m(C)1)
, if m(FV)1 + m(C)1 − P1 ≤ h1 ≤ A(CT)1 + FV1 − P1

1, if h1 ≥ A(CT)1 + FV1 − P1

(47)

4.2. Modeling the Distribution of the Yield Credibility on the Second Catastrophe Bonds

The trigger distribution in Equation (17) is the GPD, which is formulated in
Equation (2). For κ 6= 0, the probability function of the face value is formulated in
Equation (48).

p(FV)2 =


[

1−
(

1 + κ̂
(

M−µ̂
σ̂

))− 1
κ̂

]mTq

0
, FV = K

lim
b→∞

[
1−

(
1 + κ̂

(
M−µ̂

σ̂

))− 1
κ̂

]b

mTq

FV = 0
(48)

Because p(FV)21
> p(FV)22

and referring to Equation (3), p(FV)21
= 1 and p(FV)22

=

2 lim
b→∞

[
1−

(
1 + κ

(
M−µ

σ

))− 1
κ

]b

mTq

Based on Equation (5), the average of the face value in Equation (17) is formulated in
Equation (49).

m(FV)2 =
FV

1 + 2 lim
b→∞

[
1−

(
1 + κ̂

(
M−µ̂

σ̂

))− 1
κ̂

]b

mTq

(49)

The probability function of the coupon is formulated in Equation (50).

p(C)2 =



1
T+1 e−λ(T)(1−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂ ), K∑T

i=1 ĉi

1
T+1 e−λ(T−1)(1−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂ ), K∑T−1

i=1 ĉi

1
T+1 e−λ(T−2)(1−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂ ), K∑T−2

i=1 ĉi
...

...
1

T+1 P(N1(1)− N1(0) = 1), 0

(50)

The accumulation of coupons at time T is denoted by ∑T
i=1 ĉi, the earthquake is denoted

by λ, and the earthquake’s magnitude being higher than the threshold
(M > mTq) is denoted by N1. Based on Equation (4), the membership of (C)2i

is for-
mulated in Equation (51).

µ(C)2g
= gp(C)2o(g)

+ ∑I
l=g+1 p(C)2o(l)

(51)
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Based on Equation (6), the average of the coupon in Equation (17) is formulated in
Equation (52).

m(C)2 =
1

∑n
k=1 µ(C)2k

) ∑n
k=1 C2k µ(C)2k

(52)

Next, we define the yield’s triangular fuzzy variable, namely H2 = (m(FV)2 + m(C)2
−P2, m(FV)2 + m(C)2, A(C2T) + FV2 −m(FV)2 −m(C)2), with m(FV)2 being formulated
in Equation (49) and m(C)2 being formulated in Equation (52). Based on Equation (7), the
triangular fuzzy function of H2 is formulated in Equation (53).

µ(H)2 =


h2+P2

m(FV)2+m(C)2
, if− P2 ≤ h2 ≤ m(FV)2 + m(C)2 − P2

h2−A(CT)2−FV2+P2
m(FV)2+m(C)2−A(CT)2−FV2

, if m(FV)2 + m(C)2 − P2 ≤ h2 ≤ A(CT)2 + FV2 − Pϑ

0, if otherwise.

(53)

Based on Equation (9), the credibility distribution for H1 is formulated in Equation (54).

Φ(H2) =


0, if h2 ≤ −P2

h2+P2
2(m(FV)2+m(C)2)

, if − P2 ≤ h2 ≤ m(FV)2 + m(C)2 − P2
h2+(A(CT)2+FV2−P2)−2(m(FV)2+m(C)2−P2)

2(A(C2T)+FV2−m(FV)2−m(C)2)
, if m(FV)2 + m(C)2 − P2 ≤ h2 ≤ A(CT)2 + FV2 − P2

1, if h2 ≥ A(CT)2 + FV2 − P2 .

(54)

4.3. Modeling the Distribution of the Yield Credibility on the Third Catastrophe Bonds

The trigger distribution in Equation (18) is the GPD for the coupon payoff function
and the Archimedean copula for the face value payoff function. The probability function of
the face value is formulated in Equation (55).

p(FV)3 =



∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M<5 dan D>0), if FV = K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[5,6)dan D≥300), if FV = f1K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[5,6)dan D∈[70,300)), if FV = f2K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )M∈[5,6) dan D∈[0,70), if FV = f3K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[6,7) dan D≥300), if FV = f4K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[6,7)dan D∈[70,300)), if FV = f5K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[6,7) dan D∈[0,70)), if FV = f6K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[7,8) dan D≥300), if FV = f7K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[7,8) dan D∈[70,300)), if FV = f8K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[7,8)dan D∈[0,70)), if FV = F9K

∑Z
z=1

n(Gz)
n(W)

F(M∗z , D∗z )(M∈[8,10)dan D>0)) if FV = 0

(55)

In the earthquake bond pricing model in Equation (18), the coverage area is decom-
posed based on its seismic conditions, where the results of the decomposition are denoted
by z, the number of earthquakes that occur in zone z is denoted by n(Gz), and the total
number of earthquakes is denoted by n(W).

Let p3i (i = 1, 2, ..11) be the probability of obtaining FV3i . p(FV)3o(j)
is p(FV)3i

, which

is ordered from high to low (p3o(1)
> p3o(2)

> . . . > p3o(j)
). Based on Equation (3), the

membership degree of FV3i is defined in Equation (56).

µ(FV)3j
= jp(FV)3o(j)

+ ∑11
l=j+1 p(FV)3o(l)

(56)
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Based on Equation (5), the average face value in Equation (18) is formulated in
Equation (57).

m(FV)3 =
1

∑11
j=1 µ(FV)3j

∑11
j=1 FV3j µ(FV)3j

(57)

The probability function of the coupons is formulated in Equation (58).

p(C)3 =



1
T+1 e−λ(T)(1−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂ ), if K∑T

i=1 ĉi

1
T+1 e−λ(T−1)(1−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂ ), if K∑T−1

i=1 ĉi

1
T+1 e−λ(T−2)(1−(1+κ̂(

M−µ̂
σ̂ ))

− 1
κ̂ ), if K∑T−2

i=1 ĉi
...

...
1

T+1 P(N1(1)− N1(0) = 1), if 0

(58)

The accumulation of coupons at time T is denoted by ∑T
i=1 ĉi, the earthquake is denoted

by λ, and the earthquake’s magnitude being higher than the threshold
(M > mTq) is denoted by N1. Based on Equation (4), the membership of (C)3i

is for-
mulated in Equation (59).

µ(C)3g
= gp(C)3o(g)

+ ∑I
l=g+1 p(C)3o(l)

(59)

Based on Equation (6), the average of the coupon in Equation (18) is formulated in
Equation (60).

m(C)3 =
1

∑n
k=1 µ(C)3k

∑n
k=1 C3k µ(C)3k

(60)

Next, we define the yield’s triangular fuzzy variable, namely H3 = (m(FV)3 + m(C)3
−P3, m(FV)3 + m(C)3, A(C3)T + FV3 −m(FV)3 −m(C)3), with m(FV)3 being formulated
in Equation (57) and m(C)3 being formulated in Equation (60). Based on Equation (7), the
fuzzy triangular function for the yield H3 is formulated in Equation (61).

µ(H)3 =


h3+P3

m(FV)3+m(C)3
, if − P3 ≤ h3 ≤ m(FV)3 + m(C)3 − P3

h3+P3
m(FV)3+m(C)3−A(CT)3−FV3

, if m(FV)3 + m(C)3 − P3 ≤ h3 ≤ A(CT)3 + FV3 − P3

0, if Otherwise.

(61)

Based on Equation (9), the credibility distribution of the triangular fuzzy function for
the yield is formulated in Equation (62).

Φ(H3) =


0, if h3 ≤ −P3
h3−(m(FV)3+m(C)3−P3)

2(m(FV)3+m(C)3)
, if − P3 ≤ h3 ≤ m(FV)3 + m(C)3 − P3

h3+(A(C3T)+FV3−P3)−2(m(FV)3+m(C)3−P3)
2(A(CT)3+FV3−m(FV)3−m(C)3)

, if m(FV)3 + m(C)3 − P3 ≤ h3 ≤ A(CT)3 + FV3 − P3

1, if h3 ≥ A(CT)3 + FV3 − P3.

(62)

5. Numerical Simulation of the Catastrophe Bond Diversification Strategy Model

If there are three catastrophe bonds, they will be diversified in which the bond pricing
model sequentially formulates in Equations (16)–(18), where the triangular fuzzy vari-
able yield is defined as Hϑ = (m(FV)ϑ + m(C)ϑ − Pϑ, m(FV)ϑ + m(C)ϑ, A(CT)ϑ + FVϑ−
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m(FV)ϑ −m(C)ϑ), ϑ = 1, 2, 3. Based on Equations (14) and (15), Equation (21) becomes
Equation (63).

SONLP :=


min

b1
10(∑3

ϑ=1 ωϑ βϑ)
2
+10(∑3

ϑ=1 ωϑαϑ)
2
+12(∑3

ϑ=1 ωϑαϑ)(∑3
ϑ=1 ωϑ βϑ)

96

−b2
∑3

ϑ=1(4aϑ+βϑ−αϑ)ωϑ
4


s.t

∑3
ϑ=1 ωϑ = 1

b1 + b2 = 1
0 ≤ ωϑ ≤ 1

(63)

where aϑ = m(FV)ϑ + m(C)ϑ − Pϑ, αϑ = m(FV)ϑ + m(C)ϑ and βϑ = A(CT)ϑ + FVϑ −
m(FV)ϑ − m(C)ϑ with m(FV)1, m(C)1, and P1 being formulated in Equations (42), (45),
and (16), respectively; m(FV)2, m(C)2, and P2 being formulated in (49), (52), and (17),
respectively; and m(FV)3, m(C)3, and P3 being formulated in Equations (57), (60), and (18).

The price of catastrophe bonds was obtained from the earthquake data in West Java
Province by assuming the cash value used is IDR 1,000,000, the extra premium is 5%, the
time maturity is 3 years, the coupon rate is 0.645%, and the interest rate is 3.429%.

(1) Catastrophe Bond Pricing

The earthquake data used in calculating bond prices is West Java earthquake data
from 2009 to 2021 obtained from the Meteorology, Climatology, and Geophysics Agency
(BMKG). Data on the depth and magnitude of earthquakes with more than 2.9 on the Scala
Richter (SR) are presented in Figure 5.
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(a) Catastrophe Bond Pricing for Equation (16)

Equation (16) assumes that the distribution of triggering events is the GEV. For this
reason, it is necessary to do a fit test to find out whether the earthquake magnitude data
from West Java Province match the GEV distribution. Before the goodness-of-fit process
begins, and the GEV distribution parameters are estimated using the EasyFit application.
The results obtained are κ̂ = 0.37692, µ̂ = 4.8279, and σ̂ = 0.43879. The goodness-of-fit
test used is the Kolmogorov–Smirnov test, with the help of the EasyFit application. The
empirical distribution of the earthquake magnitude in West Java Province fit to the GEV
distribution, with a significance level of 0.01, a test statistic value of 0.53135, and a critical
value of 6.6349. This indicates that the GEV distribution is suitable for modeling the
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distribution of earthquake magnitudes in West Java Province. The cumulative distribution
function (CDF) is defined in Equation (64).

F2(M|κ, σ, µ) = e−(1+0.37692( M−4.8279
0.43879 ))

−2.65308
(64)

The magnitude of the earthquake domain in Equation (64) is M > 3.708753762.
Equation (65) contains the probability function of the face value of the catastrophe bonds
upon maturity.

p(FV)1 =


0.914, if FV = 1, 000, 000
0.024, if FV = 666, 667
0.016, if FV = 333, 333
0.046, if FV = 0.

(65)

The probability function of coupons until the maturity date is given in Equation (66).

p(C)1 =



0.06, if C = 58, 050
0.06, if C = 51, 600
0.11, if C = 45, 150
0.17, if C = 38, 700
0.17, if C = 32, 250
0.17, if C = 25, 800
0.11, if C = 19, 350
0.06, if C = 12, 900
0.06, if C = 6450
0.06, if C = 0.

(66)

Based on Equations (16), (65), and (66), the bond price is IDR 750,003.

(b) Catastrophe Bond Pricing for Equation (17)

Equation (17) assumes that the distribution of triggering events is the GPD. For
this reason, it is necessary to do a fit test to find out whether the earthquake magnitude
data for West Java Province match the GPD. Before the goodness-of-fit test begins, the
GPD distribution parameters are estimated using the EasyFit application. The results are
κ̂ = −0.04507, µ̂ = 2.962, and σ̂ = 0.67816. The empirical distribution of earthquake mag-
nitudes matches the distribution of the GPD, with a significance level of 0.01, a statistical
test result of 8.411, and a critical value of 20.09. This indicates that the GPD is suitable for
modeling the distribution of earthquake magnitudes in West Java Province. The CDF of
the magnitude distribution in West Java Province is presented in Equation (67).

F1(M|κ, σ, µ) = 1−
(

1− 0.04507
(

M− 2.962
0.67816

))22.18771
(67)

The earthquake magnitude domain in Equation (67) is 2.962 ≤ M ≤ 18.009, and the
triggering event threshold is mTq = 7.13 SR (determined based on an earthquake magnitude
return period of 500 years; for full details, see [13]). The probability function of the face
value is formulated in Equation (68).

p(FV)2 =

{
0.9933, if 1, 000, 000
0.0007, if 0.

(68)

In the scenario of receiving coupons for Equation (17), if the bond-triggering event
occurs in the first year, the investor will lose all of the coupons. If the bond-triggering event
occurs in the second year, the investor will earn one coupon. However, if no triggering
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events occur until maturity, the investor will receive all of the coupons. The probability
function of the coupons is formulated in Equation (69).

p(C)2 =


0.25, if C = 19, 350
0.25, if C = 12, 900
0.25, if C = 6, 450
0.25, if C = 0.

(69)

Based on Equations (17), (68), and (69), the bond price is IDR 778,826.

(c) Catastrophe Bond Pricing for Equation (18)

Equation (70) contains the probability function of the face value upon maturity.

p(FV)3 =



0.500, ifFV = 1, 000, 000
0.031, if FV = 900, 000
0.036, if FV = 800, 000
0.033, if FV = 700, 000
0.034, if FV = 600, 000
0.035, if FV = 500, 000
0.030, if FV = 400, 000
0.038, if FV = 300, 000
0.034, if FV = 200, 000
0.028, if FV = 100, 000
0.200, if FV = 0.

(70)

The scenario of receiving coupons in Equation (18) is that if the bond-triggering event
occurs in the first year, investors will lose all of the coupons. Meanwhile, if the bond-
triggering event occurs in the second year, investors will earn one coupon. However, if
no triggering events occur until maturity, investors will receive all of the coupons. The
probability of obtaining the cash value is formulated in Equation (71).

p(C)3 =


0.25, if C = 19, 350
0.25, if C = 12, 900
0.25, if C = 6450
0.25, if C = 0.

(71)

Based on Equations (18), (70), and (71), the catastrophe bond price is IDR 513,083.
The price of catastrophe bonds depends on the area of coverage; an area of coverage

with a low disaster risk is offered at a high price [61]. In addition, determination depends
on the method used in the model. For example, the catastrophe bond prices formulated in
Equation (18) yield the lowest price, even using earthquake data in the same coverage area.

(2) Calculating the Average Face Value and Coupons

The average face value and coupons are calculated using PPBT and the fuzzy quantifi-
cation theory.

(a) The Average Face Value and Coupon in Equation (16)

The membership degree of the first bond’s face value fuzzy set is formulated in
Equation (72).

F̃V1 = {(1, 000, 000, 1), (0, 0.132), (666, 667, 0.088), ((333, 333, 0.064)} (72)
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The average face value of the first bond is IDR 841,112. The degree of membership of
the first bond’s coupon fuzzy set is formulated in Equation (73).

C̃1 = {(38, 700, 1), (32, 350, 1), (25, 800, 1), (45, 150, 0.85), (19, 350, 0.85), (58, 050, 0.6),
(51, 600, 0.6), (12, 900, 0.6), (6450, 0.6), (0, 0.6)} (73)

The average coupon for the first bond is IDR 29,750.

(b) The Average Face Value and Coupon in Equation (17)

The membership degree of the second bond’s face value fuzzy set is formulated in Equation (74).

F̃V2 = {(1, 000, 000, 1), (0, 0.0014)} (74)

The average face value of the second bond is IDR 998,602. The degree of membership of the
second bond’s coupon fuzzy set is formulated in Equation (75).

C̃2 = {(19, 350, 1), (12, 900, 1), (6450, 1), (0, 1)} (75)

The average coupon for the second bond is IDR 9675.

(c) The Average Face Value and Coupon in Equation (18)

The membership degree of the third bond’s face value fuzzy set is formulated in Equation (76).

F̃V3 = {(1, 000, 000, 1), (0, 0.9), (300, 000, 0.414), (800, 000, 0.416),
(500, 000, 0.401), (600, 000, 0.395), (200, 000, 0.395), (700, 000, 0.156),

(900, 000, 0.338), (400, 000, 0.338), (100, 000, 0.308)}
(76)

The average face value of the third bond is IDR 503,841. The degree of membership of the third
bond’s coupon fuzzy set is formulated in Equation (77).

C̃2 = {(19, 350, 1), (12, 900, 1), (6450, 1), (0, 1)} (77)

The average coupon for the third bond is IDR 9675.

(3) Defining a Fuzzy Triangular Membership Function for the Yield.

Let the yield of investing in a catastrophe bond be represented as triangular fuzzy variables
Hϑ = (m(FV)ϑ + m(C)ϑ − Pϑ, m(FV)ϑ + m(C)ϑ, A(CϑT) + FVϑ −m(FV)ϑ −m(C)ϑ). T ϑ = 1, 2, 3.
The visualization of the membership function for each bond is shown in Figure 6.
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Figure 6 shows that the width to the left of the second bond is the longest width compared to
the other bonds (α2 = IDR 1, 008, 277), while the shortest width to the left is that of the third bond
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(α3 = IDR 517, 422). The longest width to the right of the yield fuzzy variable is that of the third bond
(β3 = IDR 501, 928), while the shortest right width is that of the second bond (β2 = IDR 11, 073).

The membership function of the yield triangular fuzzy variable for each catastrophic bond in
Figure 6 is formulated in Equations (78)–(80).

µ(H1) =


h1+750,003

870,862 , if− 750, 003 ≤ h1 ≤ 120, 859
269,347−h1

148,488 , if 120, 859 ≤ h1 ≤ 269, 347
0, if otherwise.

(78)

µ(H)2 =


h2+778,826

1,008,277 , if− 778, 826 ≤ h2 ≤ 229, 451
240,524−h2

11,073 , if 229, 451 ≤ h2 ≤ 240, 524
0, if otherwise.

(79)

µ(H)3 =


h3+513,083

513,516 , if− 513, 083 ≤ h3 ≤ 433
506,267−h3

505,834 , if 433 ≤ h3 ≤ 506, 267
0, if otherwise.

(80)

For example, investors desire that the yield earned is not less than IDR 200,000. If investors
want to invest in the first bond, then the possibility is 0.467 (Pos(H1 > IDR 200, 000) = 0.46), while
the possibility of it being less than IDR 200,000 is 1 (Pos(H1 ≤ IDR 200, 000) = 1). If investors
choose the second catastrophe bond, then the possibility is 0.97 (Pos(H2 > IDR 200, 000) = 0.97),
while the possibility of it being less than IDR 200,000 is 1 (Pos(H2 ≤ IDR 200, 000) = 1). If investors
invest in the third bond, the possibility measure is 0.605 (Pos(H3 > IDR 200, 000) = 0.605), while
the possibility of it being less than IDR 200,000 is 1 (Pos(H3 ≤ IDR 200, 000) = 1). Investors become
perplexed when self-duality is not satisfied. As a result, the credibility measure is applied in this
study, and Axiom 3 Definition 1 guarantees self-duality.

(4) Defining a Credibility Distribution of the Triangular Fuzzy Membership Function for the Yield

The credibility distribution in Equations (78)–(80) is formulated in Equations (81)–(82).

Φ(H1) =


0, if h1 ≤ −750, 003

h1+750,003
1,741,724 , if − 750, 003 ≤ h1 ≤ 120, 859

h1+27,629
296,976 , if 120, 859 ≤ h1 ≤ 269, 347

1, if H1 ≥ 269, 347.

(81)

Φ(H)2 =


0, if h2 ≤ −778, 826

h2+778,826
2,016,554 , if − 778, 826 ≤ h2 ≤ 229, 451

h2−218,378
22,146 , if 229, 451 ≤ h2 ≤ 240, 524

1, if h2 ≤ 240, 524.

(82)

Φ(H)3 =


0, if h3 ≤ −513, 083

h3+513,083
1,027,032 , if − 513, 083 ≤ h3 ≤ 433

h3+505,401
1,011,668 , if 433 ≤ h3 ≤ 506, 267

1, if h3 ≥ 506, 267.

(83)

For example, investors desire that the yield earned is not less than IDR 200,000. If they invest in
the first bond, then the credibility of the yield is 0.383245 (Cr(H1 > IDR 200, 000) = 0.383245), while
the credibility of the yield being less than IDR 200,000 is 0.616755 (Cr(H1 ≤ IDR 200, 000) = 0.616755).
If they invest in the second bond, then the credibility of the yield is 0.242698 (Cr(H2 > IDR 200, 000)
= 0.242698), while the credibility of the yield being less than IDR 200,000 is 0.757302 (Cr(H2 ≤
IDR 200, 000) = 0.757302). If they invest in the third bond, the yield credibility is 0.3486335 (Cr(H3 >
IDR 200, 000) = 0.3486335), while the yield credibility being less than IDR 200,000 is 0.651367
(Pos(H3 ≤ IDR 200, 000) = 0.651367). The measure of the yield credibility is more than IDR 200,000,
which is less than the credibility that is less than IDR 200,000 for each bond. The concept of self-duality
credibility is fulfilled so as not to confuse investors. A visualization of the credibility distribution of
Equations (81)–(83) is presented in Figure 7.
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Based on Equation (10), the inverse of the credibility distribution in Equations (81)–(83) is
formulated in Equations (84)–(86).
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𝛷(ἂ) = 1,027,032ἂ − 513,083, if ἂ < 0.51,011,668ἂ − 505,401, if ἂ ≥ 0.5.  (86)

Based on Theorem 1, the expected yield and variance for each bond are presented in 
Table 2. 

Table 2. Yield expectations and variances. 

CAT Bond 𝝑th 𝑬(𝑯𝝑) (IDR) 𝑽𝒂𝒓(𝑯𝝑) (IDR) 
1 −59,735 97,460,872,622 
2 −19,850 107,306,531,409 
3 −1488 86,590,764,648 

Table 2 shows that the expected yield as described by the triangular fuzzy variable 𝐻 = (𝑎 , 𝛼 , 𝛽 ) produces a negative value for each catastrophe bond, and the highest 
variance is that of the second catastrophe bond. 
(5) Simulation of Catastrophe Bond Strategy Diversification Model 

Based on Equations (14), (15), and (21), the catastrophe bond diversification strategy 
model is formulated in Equation (87). 

The objective function is as follows: 𝑓(𝜔 , 𝜔 , 𝜔 ) = 𝑏 (148,488𝜔 + 11,073𝜔 + 505,834𝜔 ) +(129,312,556,656𝜔 + 11,164,651,221𝜔 + 259,753,852,344𝜔 ) +(870,862𝜔 + 1,008,277𝜔 + 513,516𝜔 ) + 𝑏 (59,735𝜔 +19,850𝜔 + 1,488𝜔 )   

(87)

which is subject to the following: ∑ 𝜔 = 1  𝑏 + 𝑏 = 1  0 ≤ 𝜔 ≤ 1  
(6) Determine the solution of Equation (88) 

Equation (87) is solved using the SQP method with the help of the Maple application. 
The solutions obtained are summarized in Table 3. 

Table 3. Solution of Equation (88) using the SQP Method. 𝒃𝟏 𝒃𝟐 𝝎𝟏 𝝎𝟐 𝝎𝟑 𝒇(𝝎𝟏, 𝝎𝟐, 𝝎𝟑) 
0.1 0.9 0 0.3 0.7 8,209,606,308 
0.2 0.8 0 0.3 0.7 16,419,205,620 
0.3 0.7 0 0.3 0.7 24,628,804,930 
0.4 0.6 0 0.3 0.7 32,838,404,240 
0.5 0.5 0 0.3 0.7 41,048,003,560 
0.6 0.4 0 0.3 0.7 49,257,602,870 
0.7 0.3 0 0.3 0.7 57,467,202,180 
0.8 0.2 0 0.3 0.7 65,676,801,490 
0.9 0.1 0 0.3 0.7 73,886,400,800 

Table 3 shows that the proportion invested in the second bond is 0.3, and the propor-
tion invested in the third bond is 0.7. Proportions 𝑏  and 𝑏  do not affect the proportion 
of investment in each catastrophe bond; they only affect the objective function 
(7) Solution to Equation (87) Using Transformation and Linearization Techniques 

The objective function in Equation (87) can be formulated in Equation (88). 

)
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Table 3 shows that the proportion invested in the second bond is 0.3, and the propor-
tion invested in the third bond is 0.7. Proportions 𝑏  and 𝑏  do not affect the proportion 
of investment in each catastrophe bond; they only affect the objective function 
(7) Solution to Equation (87) Using Transformation and Linearization Techniques 

The objective function in Equation (87) can be formulated in Equation (88). 
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Table 3 shows that the proportion invested in the second bond is 0.3, and the propor-
tion invested in the third bond is 0.7. Proportions 𝑏  and 𝑏  do not affect the proportion 
of investment in each catastrophe bond; they only affect the objective function 
(7) Solution to Equation (87) Using Transformation and Linearization Techniques 

The objective function in Equation (87) can be formulated in Equation (88). 
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0.8 0.2 0 0.3 0.7 65,676,801,490 
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Table 3 shows that the proportion invested in the second bond is 0.3, and the propor-
tion invested in the third bond is 0.7. Proportions 𝑏  and 𝑏  do not affect the proportion 
of investment in each catastrophe bond; they only affect the objective function 
(7) Solution to Equation (87) Using Transformation and Linearization Techniques 

The objective function in Equation (87) can be formulated in Equation (88). 
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Based on Theorem 1, the expected yield and variance for each bond are presented in Table 2.

Table 2. Yield expectations and variances.

CAT Bond ϑth E(Hϑ) (IDR) Var(Hϑ) (IDR)

1 −59,735 97,460,872,622
2 −19,850 107,306,531,409
3 −1488 86,590,764,648

Table 2 shows that the expected yield as described by the triangular fuzzy variable
Hϑ = (aϑ, αϑ, βϑ) produces a negative value for each catastrophe bond, and the highest variance is
that of the second catastrophe bond.

(5) Simulation of Catastrophe Bond Strategy Diversification Model

Based on Equations (14), (15), and (21), the catastrophe bond diversification strategy model is
formulated in Equation (87).

The objective function is as follows:

f (ω1, ω2, ω3) = b1

(
5

48 (148, 488ω1 + 11, 073ω2 + 505, 834ω3)
2+

6
48 (129, 312, 556, 656ω1 + 11, 164, 651, 221ω2 + 259, 753, 852, 344ω3)+
5
48 (870, 862ω1 + 1, 008, 277ω2 + 513, 516ω3)

2
)
+ b2(59, 735ω1+

19, 850ω2 + 1, 488ω3)

(87)

which is subject to the following:
∑3

i=1 ωi = 1
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b1 + b2 = 1
0 ≤ ωϑ ≤ 1

(6) Determine the solution of Equation (88)

Equation (87) is solved using the SQP method with the help of the Maple application. The
solutions obtained are summarized in Table 3.

Table 3. Solution of Equation (88) using the SQP Method.

b1 b2 ω1 ω2 ω3 f(ω1,ω2,ω3)

0.1 0.9 0 0.3 0.7 8,209,606,308
0.2 0.8 0 0.3 0.7 16,419,205,620
0.3 0.7 0 0.3 0.7 24,628,804,930
0.4 0.6 0 0.3 0.7 32,838,404,240
0.5 0.5 0 0.3 0.7 41,048,003,560
0.6 0.4 0 0.3 0.7 49,257,602,870
0.7 0.3 0 0.3 0.7 57,467,202,180
0.8 0.2 0 0.3 0.7 65,676,801,490
0.9 0.1 0 0.3 0.7 73,886,400,800

Table 3 shows that the proportion invested in the second bond is 0.3, and the proportion invested
in the third bond is 0.7. Proportions b1 and b2 do not affect the proportion of investment in each
catastrophe bond; they only affect the objective function

(7) Solution to Equation (87) Using Transformation and Linearization Techniques

The objective function in Equation (87) can be formulated in Equation (88).
The objective function is as follows:

f (ω1, ω2, ω3) = b1

((
975561636485

12

)
ω2

1 +
(

2199285830995
12

)
ω1ω2 + 108814968705ω1ω3+(

2541862800145
24

)
ω2

2 +
(

436139559845
4

)
ω2ω3 +

(
649458397265

12

)
ω2

3+

16164069582ω1 +
(

11164651221
8

)
ω2 + 32469231543ω3

)
+

b2(59735ω1 + 19850ω2 + 1488ω3)

(88)

which is subject to the following:
∑3

i=1 ωi = 1
b1 + b2 = 1
0 ≤ ωϑ ≤ 1, ϑ = 1, 2, 3

The objective function in Equation (88) has a non-linear form, namely ω2
i , i = 1, 2, 3 and

ωiωj, i = 1, 2, 3; j = 1, 2, 3, and i < j. Based on Equations (38) and (39), Equation (88) becomes
Equation (89).

The objective function is as follows:

f (ω1, ω2, ω3) = b1

((
975561636485

12

)
z1 +

(
2199285830995

12

)
z4 + 108814968705z5 +

(
2541862800145

24

)
z2 +

(
436139559845

4

)
z6+(

649458397265
12

)
z3 + 16164069582ω1 +

(
11164651221

8

)
ω2 + 32469231543ω3)

)
+ b2(59735ω1+

19850ω2 + 1488ω3)

(89)

which is subject to the following:
∑3

i=1 ωi = 1
b1 + b2 = 1
z1 ≤ x1
z2 ≤ x2
z3 ≤ x3
0 ≤ z1 ≤ 1
0 ≤ z2 ≤ 1
0 ≤ z3 ≤ 1
0 ≤ z4 ≤ ω2
0 ≤ z5 ≤ ω3
0 ≤ z6 ≤ ω3
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0 ≤ ωϑ ≤ 1, ϑ = 1, 2, 3
Equation (89) is solved using the Maple application. The summary of the solutions is given in

Table 4.

Table 4. Solution of Equation (88) using the transformation and linearization techniques.

b1 b2 ω1 ω2 ω3 f(ω1,ω2,ω3)

0.1 0.9 0 1 0 139,575,994
0.2 0.8 0 1 0 279,132,137
0.3 0.7 0 1 0 418,688,282
0.4 0.6 0 1 0 558,244,259
0.5 0.5 0 1 0 697,800,570
0.6 0.4 0 1 0 837,356,714
0.7 0.3 0 1 0 976,912,857
0.8 0.2 0 1 0 111,646,900
0.9 0.1 0 1 0 125,602,514

Table 4 shows that the investment proportion is only in the second bond for each possible value.
The simulation results provide an illustration of how to model a diversification strategy for

catastrophe bond assets. The use of credibility measures can describe the condition of uncertainty in
the acquisition of the yield. When comparing the solutions obtained, the SQP method produces a
larger minimum value than the transformation and linearization techniques. However, the solution
obtained produces a proportional weight for the second bond of one. This means that if a triggering
event occurs before maturity, the investor suffers a full loss, and the diversification objective, which
is to reduce the risk by dividing the capital into several catastrophe bond assets, is not fulfilled.

6. Limitation of the Proposed Catastrophe Bond Diversification Model
The limitations of the catastrophe bond diversification strategy model are outlined as follows:

a. The calculation of the expected face value and coupon using PPTB and the quantification fuzzy
theory can affect the calculation of the yields because the possibilistic measure of the fuzzy
variable does not have self-duality.

b. Models for calculating the expectations and variances of the yield using credibility measures
have been good at overcoming the self-duality characteristic of the possibilistic measures.
However, the definition of fuzzy variables in this study only uses triangular fuzzy variables,
so it does not include other possibilities of obtaining the face value and coupon as a whole.
The yield triangular fuzzy variable is defined as Hϑ = (aϑ , αϑ , βϑ), where aϑ = m(FV)ϑ +
m(C)ϑ − Pϑ , αϑ = m(FV)ϑ + m(C)ϑ , and βϑ = A(CT)ϑ + FVϑ −m(FV)ϑ −m(C)ϑ , so we
cannot describe the possible yield for other triggering events in the piecewise linear payout
function. One example is that, if you pay attention to Equations (16), (41), and (44), the
possibility of a yield that can be obtained by investors that is equal to (2RT + K− P1) has not
been described in the triangular fuzzy variable yield.

c. The simulation only uses the example of the catastrophe bond determination model written
in Equations (16) and (18) based on the trigger type of earthquake parameters and does not
discuss other disasters, for example, droughts, floods, tornadoes, and terrorists. In addition,
catastrophe bonds that are circulated in the market use indemnity, the loss index, and the
modeled loss trigger types. However, the developed model can be adopted for other types of
triggers and other disasters.

d. We have not used real data on the catastrophe bonds circulating in the US market.
e. The return and risk are the main indicators in the formation of a portfolio; if the objective

function only involves the expected returns and the variance of the returns, then, in practice, it
will fail if the returns on assets and the risk levels are identical.

f. The method used to solve the catastrophe bond diversification strategy model results in the
same investment proportion for each possible weight of different investor preferences.

7. Conclusions
This study proposes a diversification strategy modeling framework for catastrophe bond assets

based on the expectations of fuzzy variables using credibility measures. The use of credibility
measures can overcome self-duality, which is not possessed by the possibilistic measure of fuzzy
numbers. However, the use of the settlement method using a combination of the weighting method
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and SQP does not produce a different proportion for each possible value of b1 and b2. The solution
obtained is that the proportion of investment in the second catastrophe bond is 0.3, while, in the
third bond, it is 0.7. Likewise, the use of a combination of the weighting method and the linear
transformation technique does not produce a different investment proportion for each possible
value of b1 and b2. The solution produced through the use of the transformation and linearization
techniques performs better when comparing the values of the objective functions. The outcome,
however, does not meet the goal of diversifying the portfolio to prevent worse losses. Because of this,
finding another approach to the problem’s solution is necessary. This study’s inability to simulate
actual catastrophe bond data is another drawback.

Based on the limitations of the developed model, further research should use a measure of the
credibility in calculating the average face value and coupon, define hexagonal fuzzy variables for the
yields, use real data on the catastrophe bonds circulating in the US market, add yield skewness in the
objective function, and develop settlement methods from the diversification strategy models.
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