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Abstract: The goal of this paper is to present the necessary and sufficient conditions that every
extremizer of a given class of functionals, defined on the set C1[a, b], must satisfy. The Lagrange
function depends on a generalized fractional derivative, on a generalized fractional integral, and on
an antiderivative involving the previous fractional operators. We begin by obtaining the fractional
Euler–Lagrange equation, which is a necessary condition to optimize a given functional. By imposing
convexity conditions over the Lagrange function, we prove that it is also a sufficient condition for
optimization. After this, we consider variational problems with additional constraints on the set of
admissible functions, such as the isoperimetric and the holonomic problems. We end by considering
a generalization of the fundamental problem, where the fractional order is not restricted to real values
between 0 and 1, but may take any positive real value. We also present some examples to illustrate
our results.
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1. Introduction

Solving an optimization problem means, as the name implies, looking for the best
result according to some pre-established requests. In mathematics optimization problems,
we are interested in maximum and minimum problems such as maximum profit, minimum
cost, minimum time, or shortest path. An area of mathematics that is very useful in solving
optimization problems is calculus of variations (see, e.g., [1–3]), which generalizes the
theory of maxima and minima of differential calculus for functions whose domain consists
of a set of admissible curves. Although the history of the calculus of variations dates back
to Ancient Greece, it was not until the 17th century in Western Europe that substantial
progress was made. In 1696, Isaac Newton used variational principles to determine the
shape of a body moving in the air, so that resistance is minimal. The brothers Johann and
Jacob Bernoulli are often considered the inventors of the calculus of variations for having
proposed the brachistochrone problem. Lagrange and Euler developed a new theory using
variational techniques to determine a differential equation to solve such optimization
problems. Such methods are still used nowadays.

Fractional calculus deals with integrals and derivatives of non-integer order [4–6].
Unlike integer calculus (where derivatives and integrals are of order n = 1 (first-order
derivative and single integral), n = 2 (second-order derivative and double integral), etc.),
fractional calculus (with arbitrary fractional order α ∈ R+) has a specific emergence date.
The beginnings of fractional calculus refer to an exchange of correspondence between
Leibniz and l’Hôpital in 1695, in which Leibniz questioned the generalization from a usual
derivative to a derivative with fractional order. Leibniz replied that the possibility of the
concept of such a derivative “will lead to a paradox, from which one day useful conse-
quences will be drawn”. Later, numerous important mathematicians tried to develop these

Mathematics 2023, 11, 3208. https://doi.org/10.3390/math11143208 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143208
https://doi.org/10.3390/math11143208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1305-2411
https://doi.org/10.3390/math11143208
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143208?type=check_update&version=2


Mathematics 2023, 11, 3208 2 of 16

concepts, like Laplace, Lacroix, Fourier, Letnikov, etc. It was in the works of Riemann and
Liouville that the important definitions of fractional derivatives and integrals appeared,
and are still used nowadays. Starting with Cauchy’s formula to evaluate an n-tuple integral,
a generalization of integrals for a real order α is given, and then with this new concept, a def-
inition for fractional derivatives was introduced. Later, several definitions were presented,
most of them motivated by the works of Riemann and Liouville. More recently, with the
concepts of fractional operators with respect to another function, we can generalize some of
those operators into a single one and present results valid for a wide class of fractional op-
erators [5,7–10]. We remark that these fractional operators depend on an arbitrary function
g, and for particular choices of such function, we can recover some well-known fractional
operators like the Riemann–Liouvile, the Caputo, the Hadamard, or the Erdelyi–Kober
fractional operators. With this new approach, we generalize the results presented in [11,12],
where the calculus of variation problems was addressed for (classical) fractional operators.
In [13], the authors considered functionals defined on a set of non-differentiable functions,
but instead of considering the dynamics modeled by a fractional derivative, a quantum
derivative was considered. In [14], functionals involving these generalized operators are
considered, but only depending on the fractional derivative. Here, we add a fractional
integral and an antiderivative of these operators. Applications have been found in different
fields. For example, in [4], a number of works are collected with various applications in
physics. To mention a few, applications in biophysics, anomalous diffusion, Markovian
chains, polymer dynamics, rheological equations, Hamiltonian chaotic systems, and fractal
time series were detailed. In [15], a study of a forced mass-spring-damper in a vertical
position was carried out, with the derivation of the fractional Euler–Lagrange equation.
For further reading on this topic, we suggest [16–19].

One area where fractional calculus has been applied with success is in the calculus
of variations. Typically, the goal is to minimize/maximize a functional, depending on
time, the state function, and its first order derivative [20]. With the pioneering work of
Riewe [21,22], where the integer-order derivative was replaced by a derivative of order
1/2, these new models proved to be more realistic in modeling real-world phenomena.
Since then, this field has attracted the attention of several researchers and, consequently,
a lot of work has been carried out (see, e.g., [15,23–28]). One of the topics that can be
studied is the case where the Lagrange function depends not only on a state function
and its fractional derivative, but also on an antiderivative involving all the variables of
the Lagrange function [29–31]. In this present paper, we extended the work performed
with fractional operators by considering a generalized form of fractional integrals and
fractional derivatives.

Our objective is to consider different calculus of variation problems, involving the
generalized fractional operators and with the presence of an antiderivative. Applying
a variational technique and fractional integration by parts formulae, we are able to deduce
the necessary and sufficient optimization conditions for the problems to be studied.

The work is organized in the following way: In Section 2, we present a brief description
of fractional calculus, needed in for the following work. In Section 3, we obtain the
necessary and sufficient conditions for finding the extremum of a given functional. Instead
of being described by an ordinary differential equation, it is given by a fractional differential
equation, known as the fractional Euler–Lagrange equation. The sufficiency condition is
obtained by assuming some convexity condition over the Lagrange function. The case
where the lower bound of the integral is greater than the lower bound of the fractional
operators is also considered. In Section 4, we consider variational problems subject to
additional constraints. Specifically, isoperimetric and holonomic constraints are imposed
on the set of admissible functions. We end with Section 5, where the variational problem is
defined for arbitrary fractional orders, in contrast to the previous sections, where the order
of the derivative belongs to the interval (0, 1).
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2. Preliminary Results

First, we introduce some definitions and preliminary facts of fractional calculus theory.
Let α, β ∈ R+ \N and n be an integer number with α ∈ (n− 1, n). Furthermore, consider
two functions x, g : [a, b]→ R, with g differentiable and g′(t) > 0, for all t ∈ [a, b].

Definition 1 ([5,7]). The (left) Riemann–Liouville fractional integral of x, order β, with respect to
function g, is defined as

Iβ,g
a+x(t) =

1
Γ(β)

∫ t

a
g′(τ)(g(t)− g(τ))β−1x(τ) dτ.

If x, g are of Cn, the (left) Caputo fractional derivative of the function x is given by the formula

CDα,g
a+x(t) =

1
Γ(n− α)

∫ t

a
g′(τ)(g(t)− g(τ))n−α−1

(
1

g′(τ)
d

dτ

)n
x(τ) dτ.

For the following, we also will need the two following notions: the right Riemann–
Liouville fractional integral of x:

Iβ,g
b−x(t) =

1
Γ(β)

∫ b

t
g′(τ)(g(τ)− g(t))β−1x(τ) dτ,

and the right Riemann–Liouville fractional derivative of x:

Dα,g
b−x(t) =

1
Γ(n− α)

(
− 1

g′(t)
d
dt

)n ∫ b

t
g′(τ)(g(τ)− g(t))n−α−1x(τ) dτ.

Fractional integration by parts formulae are an important tool to obtain the variational
necessary conditions for optimizing functionals. Here, we recall two of them for fractional
integrals and for fractional derivatives.

Theorem 1 ([32]). Given x, y ∈ C[a, b], we have that, for all β > 0,

∫ b

a
x(t) · Iβ,g

a+y(t) dt =
∫ b

a
Iβ,g

b−

(
x(t)
g′(t)

)
· y(t)g′(t) dt.

Theorem 2 ([7]). Given x, y ∈ Cn[a, b], we have that, for all α > 0,

∫ b

a
x(t) · CDα,g

a+y(t) dt =
∫ b

a
Dα,g

b−

(
x(t)
g′(t)

)
· y(t)g′(t) dt

+

[
n−1

∑
k=0

(
− 1

g′(t)
d
dt

)k
In−α,g

b−

(
x(t)
g′(t)

)
·
(

1
g′(t)

d
dt

)n−k−1
y(t)

]t=b

t=a

.

For the particular case when the fractional order α is between 0 and 1, the integration
by parts formula given in Theorem 2 reads as

∫ b

a
x(t) · CDα,g

a+y(t) dt =
∫ b

a
Dα,g

b−

(
x(t)
g′(t)

)
· y(t)g′(t) dt +

[
I1−α,g

b−

(
x(t)
g′(t)

)
· y(t)

]t=b

t=a
.

3. Fractional Calculus of Variations

Consider the following functional

F(x) =
∫ b

a
L(t, x(t), CDα,g

a+x(t), Iβ,g
a+x(t), z(t)) dt, x ∈ C1[a, b], (1)
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with the antiderivative

z(t) =
∫ t

a
Z(τ, x(τ), CDα,g

a+x(τ), Iβ,g
a+x(τ)) dτ,

where α ∈ (0, 1), β > 0, L : [a, b]×R4 → R and Z : [a, b]×R3 → R are two continuously
differentiable functions. To simplify the notation, by [x]L and [x]Z we mean

[x]L(t) = (t, x(t), CDα,g
a+x(t), Iβ,g

a+x(t), z(t)) and [x]Z (t) = (t, x(t), CDα,g
a+x(t), Iβ,g

a+x(t)),

for t ∈ [a, b]. The goal is to find the curves x for which functional (1) attains an extremum
value, possibly under some boundary conditions. For that purpose, consider an arbitrary
curve v ∈ C1[a, b], ε an arbitrary real number, and consider the admissible variation
[a, b] 3 t 7→ x(t) + εv(t). We remark that, in the problem’s formulation, if boundary
conditions are imposed at t = a or t = b, then function v must satisfy the conditions
v(a) = 0 or v(b) = 0, so that the curve x + εv is an admissible variation of the problem.
Since functional F attains an extremum value at x, its first variation must vanish when
evaluated on that curve. Starting with

F(x + εv) =
∫ b

a
L(t, x(t) + εv(t), CDα,g

a+x(t) + εCDα,g
a+v(t), Iβ,g

a+x(t) + εIβ,g
a+v(t), z(t)) dt,

with

z(t) =
∫ t

a
Z(τ, x(τ) + εv(τ), CDα,g

a+x(τ) + εCDα,g
a+v(τ), Iβ,g

a+x(τ) + εIβ,g
a+v(τ)) dτ,

differentiating with respect to ε, we obtain that

∫ b

a

∂L
∂x

[x]L(t)v(t) +
∂L

∂CDα,g
a+x

[x]L(t)CDα,g
a+v(t) +

∂L
∂Iβ,g

a+x
[x]L(t)I

β,g
a+v(t) +

∂L
∂z

[x]L(t)

×
∫ t

a

[
∂Z
∂x

[x]Z (τ)v(τ) +
∂Z

∂CDα,g
a+x

[x]Z (τ)CDα,g
a+v(τ) +

∂Z
∂Iβ,g

a+x
[x]Z (τ)I

β,g
a+v(τ)

]
dτ dt = 0.

Using fractional integration by parts (cf. Theorems 1 and 2), we get

∫ b

a

∂L
∂CDα,g

a+x
[x]L(t)CDα,g

a+v(t) dt =
∫ b

a
Dα,g

b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)

)
· v(t)g′(t) dt

+

[
I1−α,g

b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)

)
· v(t)

]t=b

t=a

and ∫ b

a

∂L
∂Iβ,g

a+x
[x]L(t)I

β,g
a+v(t) dt =

∫ b

a
Iβ,g

b−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)

)
· v(t)g′(t) dt.

Now, using standard integration by parts, we obtain

∫ b

a

∂L
∂z

[x]L(t)
(∫ t

a

∂Z
∂x

[x]Z (τ)v(τ) dτ

)
dt

=
∫ b

a

(
− d

dt

∫ b

t

∂L
∂z

[x]L(τ) dτ

)
·
(∫ t

a

∂Z
∂x

[x]Z (τ)v(τ) dτ

)
dt

=
∫ b

a

(∫ b

t

∂L
∂z

[x]L(τ) dτ

)
· ∂Z

∂x
[x]Z (t)v(t) dt.
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Finally, combining standard and fractional integration by parts, we get

∫ b

a

∂L
∂z

[x]L(t)

(∫ t

a

∂Z
∂CDα,g

a+x
[x]Z (τ)CDα,g

a+v(τ) dτ

)
dt

=
∫ b

a
Dα,g

b−

(∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)
· v(t)g′(t) dt

+

[
I1−α,g

b−

(∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)
· v(t)

]t=b

t=a

and

∫ b

a

∂L
∂z

[x]L(t)

(∫ t

a

∂Z
∂Iβ,g

a+x
[x]Z (τ)I

β,g
a+v(τ) dτ

)
dt

=
∫ b

a
Iβ,g

b−

(∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)
· v(t)g′(t) dt.

Therefore, we conclude from the previous relations that

∫ b

a

[
∂L
∂x

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂x

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)]
· v(t) dt

+

[
I1−α,g

b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)
· v(t)

]t=b

t=a

= 0.

From the last relation, and from the arbitrariness of function v, we conclude the
following:

Theorem 3. Assume that x minimizes or maximizes functional F given by (1). Then, for all
t ∈ [a, b], the equation

∂L
∂x

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂x

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)
= 0 (2)

holds. Moreover, if x(a) or x(b) is arbitrary, then the natural boundary condition

I1−α,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)
= 0

holds at t = a or t = b, respectively.
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The fractional differential Equation (2) is usually referred to in the literature as the
fractional Euler–Lagrange equation associated with the variational problem. We remark
that, when g(t) = t, we obtain the result proven in [29].

Remark 1. If x = (x1, . . . , xn) is an extremizer for functional

F(x) =
∫ b

a
L(t, x(t), CDα,g

a+x(t), Iβ,g
a+x(t), z(t)) dt,

with the antiderivative

z(t) =
∫ t

a
Z(τ, x(τ), CDα,g

a+x(τ), Iβ,g
a+x(τ)) dτ,

where x ∈ C1[a, b] × . . . × C1[a, b], CDα,g
a+x(t) =

(
CDα,g

a+x1(t), . . . , CDα,g
a+xn(t)

)
, Iβ,g

a+x(t) =(
Iβ,g

a+x1(t), . . . , Iβ,g
a+xn(t)

)
, L : [a, b] × R3n+1 → R, and Z : [a, b] × R3n → R, then the

associated fractional Euler–Lagrange equations are obtained as in (2), replacing x with xi, for i ∈
{1, . . . , n}, obtaining in this way the n fractional differential equations:

∂L
∂xi

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂xi

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+xi

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+xi
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+xi

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+xi

[x]Z (t)
1

g′(t)

)
= 0. (3)

If some convexity condition over the Lagrange function is assumed, then we can
obtain a sufficient condition for optimization. First, we recall the concepts of convex and
concave functions.

Definition 2. Let k ∈ {1, . . . , m} and Φ : D ⊆ Rm → R be a function such that ∂Φ
∂ti

exists and is
continuous for all i ∈ {k, . . . , m}. We say that Φ is convex in (tk, . . . , tm) if

Φ(t1 + v1, . . . , tm + vm)−Φ(t1, . . . , tm) ≥
∂Φ
∂tk

(t1, . . . , tm)vk + . . . +
∂Φ
∂tm

(t1, . . . , tm)vm, (4)

for all (t1 + v1, . . . , tm + vm), (t1, . . . , tm) ∈ D. We say that Φ is concave in (tk, . . . , tm) if
Equation (4) holds, replacing “≥” with “≤”.

Using the same notation as used before, the result reads as follows:

Theorem 4. Assume that x satisfies Equation (2). If L is convex in (x, CDα,g
a+x, Iβ,g

a+x, z) and one
of the two following conditions hold:

1. Z is convex in (x, CDα,g
a+x, Iβ,g

a+x) and ∂L
∂z [x]L(t) ≥ 0 for all t ∈ [a, b];

2. Z is concave in (x, CDα,g
a+x, Iβ,g

a+x) and ∂L
∂z [x]L(t) ≤ 0 for all t ∈ [a, b],

then x is a solution of the following variational problem: minimize F given by (1), subject to the
boundary conditions x(a) = xa and x(b) = xb, with xa, xb ∈ R.
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Proof. Let v ∈ C1[a, b], with v(a) = 0 and v(b) = 0. Then, since

F(x + v)− F(x) =
∫ b

a
L
(

t, x(t) + v(t), CDα,g
a+x(t) + CDα,g

a+v(t), Iβ,g
a+x(t) + Iβ,g

a+v(t),

∫ t

a
Z(τ, x(τ) + v(τ), CDα,g

a+x(τ) + CDα,g
a+v(τ), Iβ,g

a+x(τ) + Iβ,g
a+v(τ)) dτ

)

−L
(

t, x(t), CDα,g
a+x(t), Iβ,g

a+x(t),
∫ t

a
Z(τ, x(τ), CDα,g

a+x(τ), Iβ,g
a+x(τ)) dτ

)
dt,

using the assumptions of the theorem, we conclude that

F(x + v)− F(x) ≥
∫ b

a

[
∂L
∂x

[x]L(t)v(t) +
∂L

∂CDα,g
a+x

[x]L(t)CDα,g
a+v(t) +

∂L
∂Iβ,g

a+x
[x]L(t)I

β,g
a+v(t)

+
∂L
∂z

[x]L(t)
∫ t

a

[
Z(τ, x(τ) + v(τ), CDα,g

a+x(τ) + CDα,g
a+v(τ), Iβ,g

a+x(τ) + Iβ,g
a+v(τ)) dτ

)
−Z(τ, x(τ), CDα,g

a+x(τ), Iβ,g
a+x(τ)) dτ

)]
dτ

]
dt

≥
∫ b

a

[
∂L
∂x

[x]L(t)v(t) +
∂L

∂CDα,g
a+x

[x]L(t)CDα,g
a+v(t) +

∂L
∂Iβ,g

a+x
[x]L(t)I

β,g
a+v(t)

+
∂L
∂z

[x]L(t)
∫ t

a

[ ∂Z
∂x

[x]Z (τ)v(τ) +
∂Z

∂CDα,g
a+x

[x]Z (τ)CDα,g
a+v(τ) +

∂Z
∂Iβ,g

a+x
[x]Z (τ)I

β,g
a+v(τ)

]
dτ

]
dt.

Applying standard and fractional integration by parts, we get

F(x + v)− F(x) ≥
∫ b

a

[
∂L
∂x

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂x

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)]
· v(t) dt.

Since x satisfies (2), we conclude that F(x + v)− F(x) ≥ 0, and by the arbitrariness of
v, we prove that x is in fact a solution of the variational problem.

Remark 2. If, in Theorem 4, we replace “convex” by “concave”, and vice versa, we prove that x
maximizes F.

For example, let x(t) = (g(t) − g(0))2, where g ∈ C1[0, 1] with g′(t) > 0 for all
t ∈ [0, 1]. Then, given α ∈ (0, 1) and β > 0, we have the following:

CDα,g
0+x(t) =

2
Γ(3− α)

(g(t)− g(0))2−α and Iβ,g
0+x(t) =

2
Γ(3 + β)

(g(t)− g(0))2+β. (5)

Consider the following functional:
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F(x) =
∫ 1

0

((
CDα,g

0+x(t)− 2
Γ(3− α)

(g(t)− g(0))2−α
)2

+
(
Iβ,g

0+x(t)− 2
Γ(3 + β)

(g(t)− g(0))2+β
)2

+ z(t)

)
dt,

defined on C1[0, 1], where the antiderivative is defined as

z(t) =
∫ t

0

(
x(τ)− (g(τ)− g(0))2

)2
dτ.

Furthermore, the boundary conditions

x(0) = 0 and x(1) = (g(1)− g(0))2

are imposed in the formulation of the problem. The fractional Euler–Lagrange Equation (2)
reads as

(1− t)
(

x(t)− (g(t)− g(0))2
)

+ g′(t)Dα,g
1−

((
CDα,g

0+x(t)− 2
Γ(3− α)

(g(t)− g(0))2−α

)
1

g′(t)

)

+ g′(t)Iβ,g
1−

((
Iβ,g

0+x(t)− 2
Γ(3 + β)

(g(t)− g(0))2+β

)
1

g′(t)

)
= 0,

for t ∈ [0, 1]. Taking into consideration the formulae presented in (5), we conclude that x
satisfies the Euler–Lagrange equation. Furthermore, since the Lagrange function is convex
and condition 1. of Theorem 4 is satisfied, then we conclude that x is a minimizer of the
given functional. Observe that for all x ∈ C1[0, 1], F(x) ≥ 0 and F(x) = 0.

In the previous theorems, the lower bounds of the fractional operators are the same as
the lower bound of the integral of the Lagrange function (t = a). We can extend this result
by considering a different lower bound for the integral. Let A ∈ (a, b) and consider the
functional

FA(x) =
∫ b

A
L[x]L(t) dt, where z(t) =

∫ t

A
Z [x]Z (τ) dτ.

In this case, the necessary conditions are given in the next theorem.

Theorem 5. Assume that x minimizes or maximizes functional FA. Then, the following equa-
tions hold:

g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)

− g′(t) ·Dα,g
A−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)

− g′(t) · Iβ,g
A−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)
= 0,

and
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∂L
∂x

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂x

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)
= 0.

for all t ∈ [a, A] and for all t ∈ [A, b], respectively.
Furthermore, we can obtain the following natural boundary conditions:

1. If x(b) is free, then

I1−α,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)
= 0,

at t = b.
2. If x(A) is free, then

I1−α,g
A−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)
= 0,

at t = A.
3. If x(a) is also free, then

I1−α,g
b−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)

= I1−α,g
A−

(
∂L

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x
[x]Z (t)

1
g′(t)

)
,

at t = a.

Proof. The proof is similar to the one presented in Theorem 3, but before applying the
fractional integration by parts formulae, the integral defined on the interval [A, b] is first
split into two in the following way

∫ b

A
. . . dt =

∫ b

a
. . . dt−

∫ A

a
. . . dt,

and only after applying the fractional integration by parts formulae to each integral.

4. Optimization Problems Subject to Constraints

In the previous section, we already considered variational problems under some addi-
tional constraint (boundary conditions). In this section, we impose two type of constraints
on the set of admissible functions to the problem. In the first one, an integral constraint is
imposed (knows as an isoperimetric problem) and in the second one, a relation between
the position variables and time (known as a holonomic constraint) is established.

For the first case, we assume that we intend to extremize functional (1) subject to the
constraint

G(x) =
∫ b

a
LG(t, x(t), CDα,g

a+x(t), Iβ,g
a+x(t), z(t)) dt = K, K ∈ R, (6)
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with the antiderivative

z(t) =
∫ t

a
ZG(τ, x(τ), CDα,g

a+x(τ), Iβ,g
a+x(τ)) dτ,

with α, β,LG and ZG as before. Furthermore, we say that a curve x is an extremal of
functional (6) if is satisfies the Euler–Lagrange Equation (2); that is, if we replace L by LG
and Z by ZG in (2), then x is a solution of such equation.

Theorem 6. Let x be a solution of the variational problem:

extremize F in (1), subject to the constraint G(x) = K, (K ∈ R) and the boundary conditions
x(a) = xa, x(b) = xb (xa, xb ∈ R).

If x is not an extremal for functional G, then there exists a Lagrange multiplier λ ∈ R such
that, if we define functions H : [a, b]×R4 → R, H : [a, b]×R4 → R2, and h : [a, b]×R3 → R2

by H = L+ λLG, H = (L, λLG), and h = (Z ,ZG), then for all t ∈ [a, b],

∂H
∂x

[x]L(t) +
∫ b

t

〈
∂H
∂z

[x]L(τ),
∂h
∂x

[x]Z (t)

〉
dτ

+ g′(t) ·Dα,g
b−

(
∂H

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

〈
∂H
∂z

[x]L(τ),
∂h

∂CDα,g
a+x

[x]Z (t)

〉
dτ

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂H

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

〈
∂H
∂z

[x]L(τ),
∂h

∂Iβ,g
a+x

[x]Z (t)

〉
dτ

1
g′(t)

)
= 0. (7)

where 〈·, ·〉 denotes the usual inner product of R2.

Proof. Consider a variation of x of the form [a, b] 3 t 7→ x(t) + ε1v1(t) + ε2v2(t), where
v1, v2 ∈ C1[a, b] with vi(a) = vi(b) = 0, for i = 1, 2, and ε1, ε2 ∈ R. Next, define the
functions f , g, in a neighborhood of (0, 0), as

f (ε1, ε2) = F(x + ε1v1 + ε2v2) and g(ε1, ε2) = G(x + ε1v1 + ε2v2)− K.

Since

∂g
∂ε2

(0, 0) =
∫ b

a

[
∂LG
∂x

[x]L(t) +
∫ b

t

∂LG
∂z

[x]L(τ) dτ · ∂ZG
∂x

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂LG

∂CDα,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂LG
∂z

[x]L(τ) dτ · ∂ZG

∂CDα,g
a+x

[x]Z (t)
1

g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂LG

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂LG
∂z

[x]L(τ) dτ · ∂ZG

∂Iβ,g
a+x

[x]Z (t)
1

g′(t)

)]
· v2(t) dt,

and x is not an extremal for functional G, then there exists a function v2 for which
∂g
∂ε2

(0, 0) 6= 0. Furthermore, g(0, 0) = 0 and so, by the Implicit Function Theorem, there
exists a neighborhood of 0 and a differentiable function φ, defined on that neighborhood,
such that g(ε1, φ(ε1)) = 0.

Now, we prove the desired necessary condition. For this, observe that the variational
problem is equivalent to the following finite dimensional one:

extremize f , subject to the constraint g = 0,

and since (0, 0) is a solution of this problem, and we proved that ∇g(0, 0) 6= (0, 0), by the
Lagrange multiplier rule, there exists a real λ such that∇( f +λg)(0, 0) = (0, 0). Computing
∂( f+λg)

∂ε1
(0, 0) = 0, we prove the result.
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Remark 3. In Theorem 6, we can drop the assumption that “x is not an extremal for functional
G”. In such a case, we can prove that there exist Lagrange multipliers λ0, λ (both not zero) such
that, if we define functions by H = λ0L+ λLG and H = (λ0L, λLG) (and h as before), the result
is still valid. In fact, if x is not an extremal for functional G, then we consider λ0 = 1 and, in the
other case, we take λ0 = 0 and λ = 1.

In the next problem that we will study, a holonomic constraint is imposed in the
problem’s formulation. Furthermore, we will consider a two-dimensional state function,
that is, x = (x1, x2), where its fractional derivative and integral are given by CDα,g

a+x =(
CDα,g

a+x1, CDα,g
a+x2

)
and Iβ,g

a+x =
(
Iβ,g

a+x1, Iβ,g
a+x2

)
, respectively. The functional to be consid-

ered is the following:

F(x) =
∫ b

a
L(t, x(t), CDα,g

a+x(t), Iβ,g
a+x(t), z(t)) dt, (8)

with

z(t) =
∫ t

a
Z(τ, x(τ), CDα,g

a+x(τ), Iβ,g
a+x(τ)) dτ,

where L : [a, b]× R7 → R and Z : [a, b]× R6 → R are two continuously differentiable
functions, and x = (x1, x2) ∈ C1[a, b] × C1[a, b]. Furthermore, we will assume some
boundary conditions x(a) = Xa and x(b) = Xb for some fixed Xa, Xb ∈ R2. Again, we will
use the notation

[x]L(t) = (t, x(t), CDα,g
a+x(t), Iβ,g

a+x(t), z(t)) and [x]Z (t) = (t, x(t), CDα,g
a+x(t), Iβ,g

a+x(t)),

for t ∈ [a, b], where x is a two-dimensional vector.
The holonomic constraint that all admissible functions to the problem must satisfy is

given by
Λ(t, x1(t), x2(t)) = 0, t ∈ [a, b], (9)

where Λ : [a, b]×R2 → R is a C1 function. The next result provides a necessary condition
for optimizing functional (8).

Theorem 7. Assume that x = (x1, x2) minimizes or maximizes functional (8), and that

∂Λ
∂x2

(t, x1(t), x2(t)) 6= 0, ∀t ∈ [a, b].

Then, there exists a continuous function λ : [a, b]→ R such that, for all t ∈ [a, b], equations

∂L
∂x1

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂x1

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+x1

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x1
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x1

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x1

[x]Z (t)
1

g′(t)

)

+ λ(t)
∂Λ
∂x1

(t, x1(t), x2(t)) = 0 (10)

and
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∂L
∂x2

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂x2

[x]Z (t)

+ g′(t) ·Dα,g
b−

(
∂L

∂CDα,g
a+x2

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDα,g

a+x2
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x2

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x2
[x]Z (t)

1
g′(t)

)

+ λ(t)
∂Λ
∂x2

(t, x1(t), x2(t)) = 0 (11)

hold.

Proof. To simplify the notation, by ELE1 and ELE2 we mean the Euler–Lagrange Equation (3)
with respect to the functions x1 and x2, respectively. If we define function λ as

λ(t) = − ELE2
∂Λ
∂x2

(t, x1(t), x2(t))
,

then (11) is proved immediately. To prove (10), a variational technique is used. Consider
a variation of the optimal curve, given by [a, b] 3 t 7→ x(t) + εv(t), where v = (v1, v2) ∈
C1[a, b]× C1[a, b] and ε ∈ R. Since we are assuming boundary conditions at t = a and
t = b, we need to assume that v(a) = (0, 0) and v(b) = (0, 0). Furthermore, since the
variation curve must satisfy the holonomic constraint (9), that is,

Λ(t, x1(t) + εv1(t), x2(t) + εv2(t)) = 0, t ∈ [a, b],

we conclude that

∂Λ
∂x1

(t, x1(t), x2(t))v1(t) +
∂Λ
∂x2

(t, x1(t), x2(t))v2(t) = 0, t ∈ [a, b]. (12)

On the other hand, the first variation of functional (8) is zero when evaluated at the
optimal curve, and so after performing integration by parts, as explained in the previous
section, we arrive at ∫ b

a
[ELE1]v1(t) + [ELE2]v2(t) dt = 0. (13)

By (12) and the definition of function λ, we conclude that

[ELE2]v2(t) = −λ(t)
∂Λ
∂x2

(t, x1(t), x2(t))v2(t) = λ(t)
∂Λ
∂x1

(t, x1(t), x2(t))v1(t),

and so (13) becomes∫ b

a

(
[ELE1] + λ(t)

∂Λ
∂x1

(t, x1(t), x2(t))
)

v1(t) dt = 0,

proving formula (10) from the arbitrariness of function v1.

As an example, again consider the curve x(t) = (g(t)− g(0))2, where g ∈ C1[0, 1]
with g′(t) > 0 for all t ∈ [0, 1]. Consider the following isoperimetric problem: extremize
the functional

F(x) =
∫ 1

0

((
CDα,g

0+x(t)
)2

+
( 2

Γ(3− α)
(g(t)− g(0))2−α

)2

+
(
Iβ,g

0+x(t)− 2
Γ(3 + β)

(g(t)− g(0))2+β
)2

+ z(t)

)
dt,
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defined on C1[0, 1], where

z(t) =
∫ t

0

(
x(τ)− (g(τ)− g(0))2

)2
dτ,

subject to the integral constraint∫ 1

0

CDα,g
0+x(t) · 2

Γ(3− α)
(g(t)− g(0))2−α dt = K

and the boundary conditions

x(0) = 0 and x(1) = (g(1)− g(0))2.

Here,

K =
∫ 1

0

( 2
Γ(3− α)

(g(t)− g(0))2−α
)2

dt.

If we take λ = −2, we can show that x is a solution of the fractional differential
equation given in Theorem 6.

5. Optimization Problems with Arbitrary Fractional Orders

In this section, we allow the fractional order of the derivative to take any positive real
value. More precisely, let n ∈ N, αk ∈ R with αk ∈ (k− 1, k), for k ∈ {1, . . . , n}, and define
α = (α1, . . . , αn) and

CDα,g
a+x =

(
CDα1,g

a+ x, . . . , CDαn ,g
a+ x

)
. (14)

Consider the following functional with dependence on higher-order fractional deriva-
tives:

F(x) =
∫ b

a
L(t, x(t), CDα,g

a+x(t), Iβ,g
a+x(t), z(t)) dt, (15)

with the antiderivative

z(t) =
∫ t

a
Z(τ, x(τ), CDα,g

a+x(τ), Iβ,g
a+x(τ)) dτ,

where CDα,g
a+x is understood as being the vector defined in (14), and functions L : [a, b]×

Rn+3 → R and Z : [a, b]×Rn+2 → R are of class C1. Furthermore, [x]L and [x]Z denote
the same vectors as before, with CDα,g

a+x as defined in (14). We will also assume that x(k)(a)
and x(k)(b) are fixed for k ∈ {0, 1, . . . , n− 1}.

Theorem 8. If x is a minimizer of maximizer curve of the functional defined in (15), then

∂L
∂x

[x]L(t) +
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂x

[x]Z (t)

+
n

∑
k=1

g′(t) ·Dαk ,g
b−

(
∂L

∂CDαk ,g
a+ x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDαk ,g

a+ x
[x]Z (t)

1
g′(t)

)

+ g′(t) · Iβ,g
b−

(
∂L

∂Iβ,g
a+x

[x]L(t)
1

g′(t)
+
∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂Iβ,g

a+x
[x]Z (t)

1
g′(t)

)
= 0,

for all t ∈ [a, b].



Mathematics 2023, 11, 3208 14 of 16

Proof. Let v ∈ Cn[a, b] be a function with v(k)(a) = 0 and v(k)(b) = 0 for k ∈ {0, 1, . . . , n−
1}, and consider the variation of the optimal curve as being [a, b] 3 t 7→ x(t) + εv(t).
The first variation of the functional, evaluated along this variation, is the following:

∫ b

a

∂L
∂x

[x]L(t)v(t) +
n

∑
k=1

∂L
∂CDαk ,g

a+ x
[x]L(t)CDαk ,g

a+ v(t) +
∂L

∂Iβ,g
a+x

[x]L(t)I
β,g
a+v(t) +

∂L
∂z

[x]L(t)

×
∫ t

a

[
∂Z
∂x

[x]Z (τ)v(τ) +
n

∑
k=1

∂Z
∂CDαk ,g

a+ x
[x]Z (τ)CDαk ,g

a+ v(τ) +
∂Z

∂Iβ,g
a+x

[x]Z (τ)I
β,g
a+v(τ)

]
dτ dt = 0.

Since v(k)(a) = 0 and v(k)(b) = 0 for k ∈ {0, 1, . . . , n− 1}, then(
1

g′(t)
d
dt

)k
v(t) = 0, ∀k ∈ {0, 1, . . . , n− 1},

when we evaluate it at t = a or at t = b, and so the fractional integration by parts reads as

∫ b

a

∂L
∂CDαk ,g

a+ x
[x]L(t)CDαk ,g

a+ v(t) dt =
∫ b

a
Dαk ,g

b−

(
∂L

∂CDαk ,g
a+ x

[x]L(t)
1

g′(t)

)
· v(t)g′(t) dt

and

∫ b

a

∂L
∂z

[x]L(t)

(∫ t

a

∂Z
∂CDαk ,g

a+ x
[x]Z (τ)CDαk ,g

a+ v(τ) dτ

)
dt

=
∫ b

a
Dαk ,g

b−

(∫ b

t

∂L
∂z

[x]L(τ) dτ · ∂Z
∂CDαk ,g

a+ x
[x]Z (t)

1
g′(t)

)
· v(t)g′(t) dt,

for all k ∈ {0, 1, . . . , n− 1}. The rest of the proof is similar to the one given in Theorem 3.

For example, let n ∈ N, α ∈ (n− 1, n) and β > 0. Consider the functional

F(x) =
∫ 1

0

(
CDα,g

0+x(t)− Γ(α + 2)(g(t)− g(0))
)2

+ z(t) dt,

defined on Cn[0, 1], subject to the boundary conditions x(0) = 0 and x(1) = (g(1) −
g(0))α+1, where

z(t) =
∫ t

0

(
x(τ)− (g(τ)− g(0))α+1

)2
dτ.

If we define function x ∈ Cn[0, 1] as x(t) = (g(t)− g(0))α+1, and since

CDα,g
0+x(t) = Γ(α + 2)(g(t)− g(0)),

we conclude that x is a solution for this arbitrary fractional order problem.

6. Conclusions and Future Work

In this paper, we studied some variational problems for the case where the Lagrange
functions depend on some fractional operators and on an antiderivative. To make the
work as general as possible, we included the fractional integral and fractional derivative
of the state function with dependence on an arbitrary kernel. We proved the fractional
Euler–Lagrange equation, and under convexity conditions, we showed that in fact it is
also a sufficient condition. Then, we imposed some additional constraints on the set
of state functions (isoperimetric and holonomic constraints) and deduced the respective
necessary conditions for optimization. We ended by studying the case where fractional
orders may take any positive real value. With the help of some examples, we show how
the variational problem can be solved by computing the solutions of a certain fractional
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differential equation. For future work, it will be interesting to consider an optimal control
approach to these variational problems, where the Lagrange function as well as the state
equation depend on the same fractional operators. The goal will be to deduce the fractional
Pontryagin’s minimum principle for such a situation. Another path for research would
be to develop numerical methods to determine an approximation of the solution to the
variational problem. Although there are already numerous works dealing with different
fractional operators, we have not yet found many studies dealing with these fractional
integrals and derivatives with respect to another function, as presented in the present paper.
Usually, such methods consist of discretizing the fractional operators and the cost integral,
and thus converting the fractional problem into a (finite) system of difference equations.
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