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Abstract: Identifying a subgroup of patients who may have an enhanced treatment effect in a
randomized clinical trial has received increasing attention recently. For time-to-event outcomes, it is
a challenge to define the effectiveness of a treatment and to choose a cutoff time point for identifying
subgroup membership, especially in trials in which the two treatment arms do not differ in overall
survival. In this paper, we propose a mixture cure model to identify a subgroup for a new treatment
that was compared to a classical treatment (or placebo) in a randomized clinical trial with respect
to survival time. Using the concordance probability measurement (K-index), we propose a statistic
to test the existence of subgroups with effective treatments in the treatment arm. Subsequently, the
subgroup is defined by a limited number of covariates based on the estimated area under the curve
(AUC). The performance of this method in different scenarios is assessed through simulation studies.
A real data example is also provided for illustration.

Keywords: concordance probability; K-index; mixture models; randomized clinical trials; subgroups;
survival analysis
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1. Introduction

Randomized clinical trials provide conclusive information on treatments by comparing
the existing standard treatment with a new treatment, with the aim of increasing the time to
failure of the treated patient. Although phase II trials provide sufficient information, it often
fails to find an efficient treatment that benefits all patients. However, a new treatment is
sometimes shown to be slightly better than the standard therapy, but not sufficiently better
for the entire population. In such cases, there may be a subgroup of patients for whom the
new treatment provides a substantial benefit. This means that the survival time of a certain
subgroup of patients shows a significant improvement under the new treatment, while
others may not experience any improvement or may even experience decreased survival
in the treatment arm. In such situations, it is challenging to identify such a subgroup and
demonstrate that the benefit is likely to be real for future patients [1].

The motivation for this analysis is based on a use case in an AIDS clinical trial,
where HIV patients were randomized into the control group receiving monotherapy with
didanosine and the treatment group receiving combination therapy with didanosine and
zidovudine [2]. In this clinical trial, the effectiveness of the new combination therapy
in patients with CD4+ T cells between 200 and 500 mm3 was evaluated by comparing
it with the monotherapy treatment for HIV infection. The survival time was defined as
the elapsed time from the initial treatment to an event indicating progression to AIDS. A
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total of 18 demographic and clinical characteristics of patients were considered, and there
were no significant differences between the control and treatment groups for any of them
(p-value > 0.2), indicating that the two arms were balanced. The log-rank test showed
that the combination therapy of didanosine and zidovudine did not have a significant
difference compared to the monotherapy of didanosine (p-value = 0.181, see Figure 1 below),
although the combination therapy was slightly better than the monotherapy for the whole
population. Despite the balanced covariates between the monotherapy and combination
therapy groups, it is interesting to explore if there is a subgroup for whom the combination
therapy of didanosine and zidovudine is more effective.
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The search for subgroups with differential treatment effects is known as subgroup
identification (see [3–6]). When outcomes from competing treatments are observed for
all subjects in both arms, subgroup identification can be achieved using classification or
supervised learning algorithms (see, for example, [7–9]). However, in common clinical
trials, each patient receives only one treatment, resulting in an imbalance between the new
treatment and placebo or an existing treatment for certain subgroups. Consequently, various
statistical approaches to subgroup identification have been developed. Lipkovich and
Dmitrienko [10] proposed a two-stage procedure in which a small number of biomarkers
with the highest predictive ability, based on an appropriate variable importance score,
were selected. Subsequently, subgroups with enhanced treatment effects were identified
based on the selected biomarkers. Shen and He [11] introduced a structured logistic-
normal mixture model for subgroup analysis. Ballarini et al. [12] provided a comparative
analysis of different modeling strategies to estimate the predicted individual treatment
effect. Additionally, Lipkovich et al. [13] presented a comprehensive review of a broad
class of statistical methods used in subgroup identification.

The methods mentioned above for treatment noncompliance in observational data
have primarily focused on continuous or binary outcomes and have received relatively
less scrutiny with respect to survival outcomes. There are relatively few methods available
specifically for identifying subgroups with right-censored survival endpoints (see [14–17]).
Loeys and Goetghebeur [18] proposed the structural accelerated failure time (SAFT) models
for estimating the causal effects of treatment. Zhang et al. [19] presented a nonparametric
method for value function guided subgroup identification. Hu et al. [20] introduced
nonparametric Bayesian additive regression trees within the framework of accelerated
failure time models. Altstein and Li [21] proposed a semiparametric accelerated failure
time mixture model for estimating treatment effects in a subgroup of interest with a time-to-
event outcome in randomized clinical trials. However, to the best of our knowledge, there
are currently no methods available for testing the existence of a subgroup with a significant
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treatment effect when the survival time for a new treatment is not sufficiently better than
the control group.

In this paper, our objective is to develop a method for identifying a subgroup of
patients who respond effectively to a new treatment that may not benefit all patients in
a clinical trial. Specifically, we consider a Cox proportional hazards cure model ([22,23]),
where patients with an effective treatment response are defined through a latent logistic
model. While Wu et al. [24] proposed a likelihood ratio test procedure to assess the existence
of subgroups based on the Cox proportional hazards cure model, their testing procedure
only determines the presence of a cured subgroup. Since the concordance probability, using
the K-index has been utilized to measure prognostic accuracy in survival settings ([25,26]),
we propose a statistic to test the existence of subgroups with differential treatment effects.
Additionally, we aim to identify the specific subgroup based on its association with subject-
specific variables.

The rest of the paper is organized as follows. In Section 2, we introduce the Cox
proportional hazards cure model for identifying subgroups with effective treatment in
a randomized clinical trial, where differential treatment effects exist. We also propose a
statistical test procedure using the K-index to determine the presence of such subgroups.
Section 3 examines the performance of our proposed test through numerical simulations.
Furthermore, in Section 4, we apply the proposed methodology to the aforementioned
clinical trial, highlighting its potential usefulness. We conclude the paper in Section 5 and
provide a brief discussion in Section 6.

2. Methods
2.1. Structured Cure Models

Consider a two-arm clinical trial a random sample of n subjects receiving one of the
two pre-specified treatments. For patient i, we observe (Xi, δi, Zi, TRi) for i = 1, 2, . . . , n,
where Xi = min{Ti, Ci} is the observed time, and Ti and Ci are the survival and censoring
times, respectively. δi = I(Ti < Ci) is the censoring indicator, Zi ∈ Rq is the observed
q-dimensional covariates of patient i, and TRi is the treatment indicator with TRi = 0 if
patient i in the control group and TRi = 1 if patient i in the treatment group. Let T0 be
the study end time point, i.e., Xi ∈ (0, T0). Usually, the Cox proportional hazards model is
employed to patient survival time Ti,

λ(t|Zi) = λ0(t)exp
(
Z′iβ + TRiβTR

)
(1)

t ∈ R+ = (0, ∞), for i = 1, 2, . . . , n, where β and βTR are unknown coefficients to be
estimated. When the estimated βTR is significant negative, the patients in the treatment
group have significant treatment effects. In this paper, we want to know if there is a
subgroup in the treatment group such that the patients have a significantly longer survival
time compared with that in the control group.

For patient i in the treatment group (TRi = 1) with the given covariates Zi, it is
assumed that the longer survival time Ti or Xi indicates patient i having the better
treatment effect. To investigate the treatment effect, let Yi be a latent subgroup indicator
that is dependent on the covariates Zi such that Yi = 0 if patient i has the treatment effect
and otherwise Yi = 1. For patient i in the treatment group, the following logistic model is
employed for identifying the subgroup with treatment effects,

P(Yi = 1|Zi) = πγ(Zi) =
exp(W′iγ)

1+exp(W′iγ)
,

P(Yi = 0|Zi) = 1− πγ(Zi) = 1− P(Yi = 1|Zi)
(2)

where Wi =
(
1, Z′i

)′. Conditional on Yi = 1, the survival time Ti follows the Cox
proportional hazards model

λu(t|Zi) = λ0(t)exp
(
Z′iβ
)
, t ∈ R+ = (0, ∞), (3)
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where γ and β are unknown coefficients to be estimated. Zi in (2) and (3) may share
some, none or all covariates. Then, we have a semiparametric logistic/proportional-hazards
mixture model

S(t|Zi) = πγ(Zi)Su(t|Zi) + 1− πγ(Zi), (4)

for i = 1, 2, . . . , n, where Su(t|Zi) is the survival function with its hazard function
λu(t|Zi) in (3). Unlike the cured models defined in [22,23], the subgroup indicator Yi
is unobserved and dependent on the covariates Zi which results in more complicates for
estimating the parameters in model (4). Since the longer survival time is assumed to be
the better treatment effect, we define a new indicator Yi(s) depending on time s to search
some subgroups. For a given time s ∈ (0, T0), we define

Yi(s) =
{

0 if Ti > s patient i has the treatment effect,
1 if Ti ≤ s patient i has no treatment effect,

(5)

instead of Yi in model (2). The estimates of the corresponding parameters γ and β which
are same as in (2) and (3) can be obtained via the EM algorithm such as in the cured models
([22,23]). Of course, the estimators γ̂ and β̂ are dependent on the given time point s.

2.2. Hypothesis on Existence of Subgroups

To assess the strength of a risk classification system in survival analysis, the concor-
dance probability is employed as a metric for the global assessment of discrimination.
Based on the Cox proportional hazards model, the larger risk score Ri = Z′iβ is, the shorter
survival time is. We consider the concordance probability or K-index [25]

K = P
{

Ti > Tj
∣∣Rj > Ri, Yi = Yj = 1

}
. (6)

Obviously, 1/2 ≤ K ≤ 1. K = 1 implies that Rj > Ri can perfectly predict Ti > Tj.
K = 1/2 is similar to coin tossing, with poor predictive value. The K-index is a predictive
probability for patients without treatment effects. Based on the definition (6), the K-index
is dependent on time t, denoted by K(t). Let θ = (β′, γ′)′. If there is no subgroup for a
given time t, the parameters γ in model (2) should be zero, and the corresponding index
K(t; θ) is equal to the K0(t; β0) based on a Cox proportional hazard model

λ(t|Zi) = λ0(t)exp
(
Z′iβ0

)
, t ∈ R+ = (0, ∞), (7)

with the data
{(

X̃i, δ̃i, Zi

)
; i = 1, . . . , n

}
,

(
X̃i, δ̃i

)
=

{
(Xi, δi) i f Xi ≤ t
(Xi, 0) i f Xi > t.

(8)

Therefore, we propose the following hypothesis for testing the existence of subgroups,

H0 : K(t; θ) ≡ K0(t; β0), f or all t ∈ (0, T0] (9)

and the alternative hypothesis

H1 : K(t0; θ) 6= K0(t0; β0), f or some t0 ∈ (0, T0].

For a given time point t, Gonen and Heller [25] proposed to estimate the index
K0(t; β0) as

K̂0, n
(
t; β̂0

)
=

2
n(n− 1) ∑

i 6=j

I
(

Z′i β̂0 < Z′j β̂0

)
1 + exp

(
Z′j β̂0 − Z′i β̂0

) , (10)

where β̂0 is the estimates of β0. K̂0, n
(
t; β̂0

)
is a consistent estimate of K0(t; β0) and has

an asymptotically normal distribution which is independent on the unknown censoring
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distribution. For the treatment effects defined in (5), let θ̂ = (β′, γ′)′ be the parametric
estimates for the mixture model (4). The K-index based on logistic/proportional hazards
mixture model is estimated with marginal probability as

K̂n

(
t; θ̂
)
=

∑i 6=j Gij
(

β̂
)

I
(

Z′i β̂ < Z′j β̂
)

πγ̂(Zi)πγ̂

(
Zj
)

∑i 6=j I
(

Z′i β̂ < Z′j β̂
)

πγ̂(Zi)πγ̂

(
Zj
) , (11)

where
Gij
(

β̂
)
=

1

1 + exp
(

Z′i β̂− Z′j β̂
) .

The estimator K̂n

(
t; θ̂
)

does not depend on the baseline survival hazards function
λ0(t) and is consistent and asymptotically normal under some regularity conditions
(Theorem 2 in [26]), √

n
[
K̂n

(
t; θ̂
)
− K(t)

]
σK

→ N(0, 1), (12)

where σ2
K/n = var

(
K̂n

(
t; θ̂
))

.
Let 0 < t(1) < t(2) < . . . < t(m) ≤ T0 be the ordered time points of {Xi, i = 1, 2, . . . , n}.

To test the hypothesis H0 in (9), we propose the statistics, for j = 1, 2, . . . , m,

Dj, n =
K̂0,n

(
t(j); β̂0

)
− K̂n

(
t(j);θ̂

)
√

σ2
K̂0,n(t(j); β̂0)

+ σ2
K̂n(t(j); θ̂)

→ N(0, 1), (13)

as n→ ∞ where
1
n

σ2
K̂0,n(t(j); β̂0)

= var
{

K̂0,n

(
t(j); β̂0

)}
and

σ2
K̂n(t(j);θ̂)

= nvar
{

K̂n

(
t(j);θ̂

)}
.

For a given significant level α, define

Pn = min
{

1−Φ
(∣∣Dj, n

∣∣); j = 1, 2, . . . , m
}

. (14)

where Φ(·) is the distribution function of N(0, 1). If Pn ≥ α/2, we cannot reject the null
hypothesis H0. Otherwise, there is some j0 such that 1−Φ

(∣∣Dj, n
∣∣) < α/2 and there is a

subgroup for treatment effects with given time point tj0 in (5).
When the hypothesis H0 is rejected, we consider the area under the ROC curve

(AUC) for treatment effects with given time point t(jcut), which is the first t to reject H0
in ascending survival time order.

AUC = P
(

W′iγ > W′jγ
∣∣∣Yi = 1, Yj = 0

)
. (15)

The consistent estimator of AUC is given by [26]

ÂUC
(

θ̂, λ̂0(t)
)
=

∑i 6=j I
(

W′iγ > W′jγ
)

v̂i
(
1− v̂j

)
∑i 6=j v̂i

(
1− v̂j

) , (16)

where v̂i is the estimated conditional probability of no treatment effective patients
vi = P(Yi = 1

∣∣∣X ≤ t(jcut), δi, Zi) . The estimator of vi is the byproduct of E-step in the
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EM algorithm for the mixture model (4). If ÂUC
(

θ̂, λ̂0(t)
)

is significantly greater than
0.5, a subgroup with effective treatment can be found based on the mixture model (4).

3. Simulation Studies

To examine the finite sample performance of the proposed test in (13), this section
presents simulation studies. For uncured subjects (without treatment effect), we generated
survival time data from the following model

λ(t|Z1i, Z2i) = λ0(t)exp(β1Z1i + β2Z2i + βTRTRi), (17)

for t ∈ R+ = (0, ∞), where the baseline survival function is from Weibull distribution
with the base hazard function λ0(t) = 1. {Z1i, i = 1, . . . , n} were generated from
Z1 ∼ N

(
0, 22), and {Z2i, i = 1, . . . , n} were generated from Z2 ∼ B(n, p) with p = 0.5.

We assume that the survival time has no significant difference between the control and
treatment groups and set βTR = 0 in (17). β1 and β2 were both set to be log(2). We
generated the censoring times from a uniform distribution, U(0, q), where q was chosen
to represent the percentage of censored observations in uncured subjects. While we also
considered the exponential distribution and other distributions for the censoring times, the
results were similar and are not presented in this study.

For the cure status (patients with treatment effects), we chose the following logistic
model with covariates W1 and W2 which were generated in the same way as Z1 and Z2:

πb(Zi) =
exp(b0 + b1Z1i + b2Z2i)

1 + exp(b0 + b1Z1i + b2Z2i)
, (18)

Both b1 and b2 were set to be log(2), and b0 was selected for the percentages of
cured observations in each replication. The uncured status Y was assumed to follow a
Bernoulli distribution with a success probability πb in (18). Without loss of generality,
the simulation studies considered the case where the censored rate exceeds the cured rate.
As the cured rates increased, the testing power also increased. Two sample sizes, n = 200
and 400, were used for the simulations. For each simulated dataset, the Dn statistic was
calculated using Formula (13) and H0 was tested using Formula (14). The procedure was
repeated 1000 times to assess the type I errors and powers of our proposed method.

When there are no cured individuals (i.e., no subgroups with treatment effects), Table 1
demonstrates that the type I error increases with ascending censored proportions. However,
all of the type I errors are still able to maintain the nominal significant level of 5%.

Table 1. Type I error under different scenarios.

Censored Proportion

n 0.10 0.30 0.50

200 0.001 0.002 0.012
400 0.004 0.008 0.049

n: sample size; simulation times = 1000.

Conditional on a fixed cured proportion (e.g., 30%), the power will decrease as the
censored rates increase. However, even with increasing censored rates, the power remains
sufficiently high (e.g., 85%) as long as the differences between the cured and censored
proportions are <15% with a sample size of n = 200. With a larger sample size of n = 400, the
power can still be maintained at >80% even with higher censored rates (see Table 2). When
the cured proportion is 50%, it can be observed that the power remains high only when
the sample size is large (e.g., n = 400) and the differences between the cured and censored
proportions are <15%.
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Table 2. Power analysis with different scenarios.

Cured Proportion (Censored Proportion)

n 0.1 (0.2) 0.2 (0.3) 0.3 (0.4) 0.4 (0.5) 0.5 (0.6)

200 0.909 0.952 0.918 0.864 0.668
400 0.995 0.999 0.999 0.984 0.934

n: sample size; simulation times = 1000.

With a fixed difference between cured and censored proportions (e.g., 10%), the power
decreases as the cured proportions increase. However, if the sample size is sufficiently large
(e.g., n = 400), the power can remain high (>90%). The simulation results are summarized
in Table 3.

Table 3. Power with fixed differences between cured and censored proportions.

Censored Proportion

n cured rate 0.35 0.40 0.45 0.50

200 0.30 0.968 0.929 0.850 0.696
400 0.30 1.000 0.999 0.989 0.955

Censored Proportion

n cured rate 0.55 0.60 0.65 0.70

200 0.50 0.812 0.661 0.475 0.293
400 0.50 0.981 0.923 0.809 0.571

Censored proportion—cured proportion = 0.10.

With our proposed method, we first determine the time to cure t(jcut), and then obtain
predicted subgroup memberships and their accuracy (the proportion of correctly classi-
fied). A logistic model can be constructed using the predicted subgroups and associated
covariates for further subgroup identification. Table 4 presents the accuracy and area
under the curve (AUC) obtained from logistic models, which remain adequate across
most scenarios. A higher censored proportion results in lower accuracy and given a fixed
difference between the cured and censored proportions, the accuracy decreases as the cured
proportion increases.

Table 4. Accuracy of the proposed method.

Cured Proportion Censored Proportion PCC AUC

0.3 0.4 0.813 0.779
0.3 0.5 0.727 0.737
0.5 0.6 0.788 0.774
0.5 0.7 0.681 0.703

PCC: proportion of classified correctly.

4. Application to Clinical Trial Data

We analyzed the real data ACTG175 [2] with our proposed method. In this study, the
sample sizes of “combination therapy of zidovudine and didanosine” and “monotherapy
didanosine” are ntr = 522 and ncon = 559, respectively. The test showed subgroups may
exist (Dj0, n = 2.364, p-value = 0.009) in the treatment group with the time tj0 = day 486.
The model to identify subgroups is logist(P(Y = 1)) = −3.5506 + 0.5783× symptom +
2.4904× offtrt, which shows that patients’ symptom (symptomatic indicator, 0 = asymp-
tomatic, 1 = symptomatic) and offtrt (indicator of off-treatment before 96 ± 5 weeks, 0 = no,
1 = yes). The AUC based on the logistic model is 0.7903 (95% CI: (0.7342, 0.8465)) and
the best.

The probability threshold was 0.1530 with the corresponding sensitivity and specificity
at 81.7% and 72.9%. The log-rank test shows that the treatment effect of the beneficial
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subgroup Y = 0 is better than the control group (p-value = 0.000253), which is different
from the result of the total treatment group vs. the control group (p-value = 0.181). Within
the treatment group (combination therapy of zidovudine and didanosine), the beneficial
subgroup Y = 0 also showed a better effect than the non-beneficial subgroup Y = 1
(p-value < 0.0001, see Figure 2).
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5. Conclusions

In clinical trials, it is recognized that certain patients may respond differently to
treatment based on their individual characteristics. Existing methods for identifying
effective subgroups with time-to-event outcomes often rely on estimating the survival
function for the overall population using a predefined cutoff time point as the maximum
observed follow-up time (e.g., [12,19]). However, since patients with different biomedical
characteristics may exhibit varying treatment efficacies in the early and later time periods,
this paper proposes a testing procedure for identifying potential subgroups using survival
function estimates at different cutoff time points with right-censored time-to-event data.

The proposed test utilizes two types of K-indexes based on the semiparametric Logistic–
Cox mixture model. Through simulation studies and real data analysis, it is demonstrated
that the proposed approach effectively detects subgroups and identifies the time point at
which survival statuses differ. These methods can also be adapted to other fields such as
cancer prevention, public management, and marketing, where a particular public policy or
marketing strategy may have varying effects on different groups of individuals. The results
of this study contribute to the understanding of subgroup-specific treatment effects and
provide a valuable tool for tailoring interventions to specific patient groups.

6. Discussions

There has been a recent surge in the development of methods for subgroup identifica-
tion, recognizing the importance of associated covariates in this process. It is valuable to
explore the role of covariates in identifying subgroups and to construct models for predict-
ing subgroup identification in practical applications. Our research focuses on investigating
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effective semiparametric models in causal inference with time-dependent outcomes, such
as commonly encountered survival data and dynamic treatment regimes.

However, it is essential to note that our proposed method relies on the correct specifi-
cation of the assumed statistical models. Specifically, the modeling assumptions of the Cox
proportional hazards framework must be met for the survival component of the mixture
model. It is crucial to identify and employ model diagnostic procedures to ensure the
validity of the proposed method. Furthermore, our method requires a relatively large
sample size and relies on the differences between the cured and censored proportions.

In observational epidemiological studies or clinical trials without completely random
treatment assignments, naive estimators of treatment effects based on treatment group
data can be biased due to confounding. Consequently, causal inference methods are
necessary to obtain unbiased estimators and establish causal relationships ([27]). These
challenges and limitations present opportunities for further study and improvement in
the future. Overall, addressing these issues and advancing the field of causal inference
in the context of time-dependent outcomes will contribute to the development of more
robust and reliable methods for subgroup identification and causal inference in clinical and
epidemiological research.
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