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Abstract: Regression analysis is a statistical process that utilizes two or more predictor variables
to predict a response variable. When the predictors included in the regression model are strongly
correlated with each other, the problem of multicollinearity arises in the model. Due to this problem,
the model variance increases significantly, leading to inconsistent ordinary least-squares estimators
that may lead to invalid inferences. There are numerous existing strategies used to solve the multi-
collinearity issue, and one of the most used methods is ridge regression. The aim of this work is to
develop novel estimators for the ridge parameter “γ” and compare them with existing estimators via
extensive Monte Carlo simulation and real data sets based on the mean squared error criterion. The
study findings indicate that the proposed estimators outperform the existing estimators.
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1. Introduction

Regression analysis predicts response variables using one or more predictor variables.
In a variety of academic fields, including the social sciences, engineering, economics, and
medicine, the predictor variables are highly intercorrelated. In such situations, the ordinary
least-squares estimators (OLS) are inconsistent. Consequently, the OLS estimators have
very large standard errors, and thus lead to wrong inferences. To overcome this issue,
ref. [1] introduced ridge regression, a technique that relies on biased estimation to reduce
estimators’ overall variance. To control the trade-off between bias and variance, the ridge
parameter γ, also known as the tuning parameter, is used.

To understand ridge regression, consider the following multiple linear
regression equation:

Y = Zδ + η (1)

where Y is an n × 1 vector of the dependent variable, δ is a p × 1 vector of unknown
parameter, Z is an n× p matrix of regression and η is an n× 1 vector of the error term, i.e.,

y1
y2
.
.
yn


n×1

=


δ1
δ2
...
δp


p×1


z11 z12 . . . z1p
z21
...

z22 . . .
...

z2p
...
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n×p

+


η1
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...
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n×1

Generally, η is considered to be independent and identically distributed, with mean 0
and variance σ2, i.e.,

E(η) = 0 and Cov(η) = σ2In
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where In is an identity matrix of order n, i.e.,

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


n×n

Furthermore, model (1) assumes that E(ηi|Z) = 0, var(ηi|Z) = σ2, and cor(Zi, Zj) = 0,
for i 6= j.

The regression coefficient δ is unknown and must be estimated from the data. Usually,
OLS estimators are used to estimate the regression coefficient by minimizing the sum of
the squares of the residual, and the resulting OLS estimator is derived as

δ̂OLS = (Z′Z)−1Z′Y (2)

and
Cov(η)OLS = σ2

η In

OLS estimators are typically preferred because they are the best linear unbiased
estimator (BLUE), that is, they have the smallest variance among the set of unbiased
estimators. However, their performance is heavily dependent on the matrix (Z′Z). If
the matrix (Z′Z) is ill-conditioned, i.e., if det(Z′Z) ≈ 0, it indicates that there exists a
multicollinearity problem. In other words, there exists at least a pair of regressors that are
highly correlated (linearly dependent). In such cases, the OLS estimators are inconsistent
and have large variance. In addition, some of the regression coefficients may be statistically
insignificant or have the wrong sign, and thus can be misleading [2].

One of the most effective approaches to address the issue of multicollinearity is ridge
regression, which is suggested by many researchers. To address the issue of multicollinear-
ity, ref. [1] originally suggested ridge regression. To avoid overfitting, they added a small
positive integer to the diagonal elements of the (Z′Z) matrix via a penalty term in the loss
function. The ridge regression estimator was then obtained mathematically by minimizing

δ̂R = argmin
δ∈R

||Y− δZ||2 + γ||δ||2. (3)

This minimization leads to the ridge regression estimator

δ̂R = (Z′Z + γI)−1Z′Y (4)

which is a biased estimator of δ, i.e.,

E(δ̂R) = E[(Z′Z + γI)−1Z′(δZ + η)]

= (Z′Z + γI)−1Z′Zδ.

The estimator in Equation (4) is known as a ridge regression estimator, where γ plays
an important role in the consistency of the estimator. When γ→ ∞, δ̂R → 0, i.e., we obtain
a stable but biased estimator of δ. On the other hand, when γ→ 0, δ̂R → OLS, and we
obtain an unbiased but unstable estimator of δ. Furthermore, for a positive value of γ, this
estimator provides a smaller mean-squared error (MSE) compared to the OLS [2].

As γ plays an important role in the estimation of δ̂R, ref. [1] suggested that the value
of γ should be small enough so that the MSE of the ridge estimator is less than the OLS.
To this end, the researcher proposed different methods to estimate the value of γ, and the
performance of the proposals was evaluated using simulation studies as well as real data
sets. The MSE has generally been used as a performance criterion. As the ridge estimator is
heavily dependent on the unknown value of γ, the optimum value for γ that can produce
the best results is to some extent still an open problem in the literature. The estimator δ̂R
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is a complicated function of γ, and several authors have presented their proposals for the
estimation of γ [3–19].

For example, ref. [20] suggested an algorithm for choosing the tuning parameter γ
in the ridge regression. The proposed algorithm has the following properties: it produces
an average squared error for the regression coefficients that is less than the least-squares
method; the estimate derived from the proposed method has a smaller variance than that
of the least-squares method; and irrespective of the signal-to-noise ratio, the probability
that the ridge produces a smaller squared error than the least-squares method is greater
than 0.50. In addition, the simulation study shows that the proposed method performs
better than the least-squares method. Ref. [21] introduced a new method for selecting the
ridge tuning parameter. The performance of the proposal was evaluated by simulation
techniques using the MSE. Simulation results show that the MSE from their proposed
method was smaller than using the Hoerl and Kennard ridge regression estimator.

Ref. [10] suggested four modified versions of [21] to select the ridge parameter (γ)
when multicollinearity exists in the design matrix columns. These estimators are compared
to the [1] using the MSE criterion. All estimators were tested using simulation criteria
under certain conditions where a variety of variables that may influence their properties
have been varied. It was shown that at least one of the proposed estimators either has a
lower MSE than the others or is the next best.

Considering the generalized ridge regression approach, ref. [9] proposed some new
methods for estimating the ridge parameter γ. The proposed estimators, known as KAM,
KGM, and KMed, were constructed using the arithmetic mean, geometric mean, and
median of the [1] estimator. Based on the MSE criterion, the simulation studies and real
data results suggest the superiority of the proposed approach compared to some existing
estimators. Based on different percentiles, ref. [22] compared some new and old ridge
regression estimators. The performance of the new estimators were evaluated using
simulation studies and real data sets. It was observed that the proposed estimators are
more efficient than the existing estimators.

Ref. [13] presented a novel ridge estimator and compared it to well-established methods.
Their estimator outperformed existing methods, according to the simulation studies and ap-
plications to real data sets. Furthermore, ref. [23] introduced some new ridge estimators based
on the Jackknife algorithm and compared their performance with existing ridge regression
estimation using Monte Carlo simulations and real data sets. Their findings showed that the
proposed estimators outperformed the competitors, and they concluded that ridge parameter
estimates computed using Jackknife techniques are substantially better.

The main aim of this work was to propose efficient ridge estimators that are flexible and
robust in the presence of multicollinearity. To this end, some of the existing estimators were
modified, which resulted in three novel estimators of ridge parameters, which are NIS1,
NIS2, and NIS3. To examine the performance of the proposals, different variables were
varied throughout the simulation study, with errors being generated from two different
probability distributions. Finally, the proposed estimators were tested using an extensive
simulation study, as well as real datasets. The rest of the article is organized as follows.
Section 2 introduces notations and preliminaries, followed by some existing and our
proposed ridge estimators. Based on different variables, simulation settings are discussed
in Section 3. A comprehensive simulation analysis is provided in Section 4. Section 5
assesses the performance of the proposed estimators on real datasets. Finally, Section 6
provides the conclusion of the study.

2. Existing and Proposed Ridge Estimators

This section presents the general ridge regression model in detail and proposes some
new estimators for the ridge parameter γ. For this purpose, assume an orthogonal matrix D
exists such that D′CD = Λ. The matrix Λ is a diagonal matrix containing Λ1, Λ2, . . . , Λp on
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its diagonal, which are the eigenvalues of the matrix C, where C = ZtZ. Then, Equation (1)
can be generalized as

Y = X∗α + µ

where X∗ = ZD and α = δD. Consequently, the generalized ridge regression estimator can
be obtained as

ζ̂(γ) = (X∗
′
X∗ + γI)−1)X∗Y

= (I + γX∗
′
X∗)−1)(X∗

′
X∗)−1X∗Y

= (I + γX∗
′
X∗)−1)ζ̂ (5)

where γ = diag(γ1, · · · , γp), γi > 0 and ζ̂ = (X∗
′
X∗)−1X∗′Y is the OLS estimates of ζ.

2.1. Some Existing Estimators

Following on from the description of the basic ridge regression estimator, this sec-
tion reviews some of previously developed ridge estimators for estimating the ridge
parameter γ.

Hoerl and Kennard Estimator (1970)

Ref. [1] suggested a ridge estimator by replacing ζ and σ2 with their corresponding
unbiased estimators, that is,

γ̂ =
σ̂2

ζ̂i
(6)

where σ̂2 = ∑ η̂2

(n−p) is the residual mean square estimate, which is an unbiased estimator

of σ2; and ζ̂i is the ith element of ζ̂, which is an unbiased estimator of ζ . Ref. [20] offered
an estimator for the ridge parameter γ based on the maximum value of ζ, that is,

γ̂HK =
σ̂2

ζ̂max
(7)

where the residual mean square error σ̂2 =
∑ η̂2

i
n−p = (Y−Ŷ)′(Y−Ŷ)

n−p is an unbiased estimator

of σ2.

2.2. Kibria Estimator (2003)

Using the geometric mean of the vector ζ̂i, ref. [9] offered a novel estimator based on
the generalized ridge regression technique. The estimator is

γ̂KGM =
σ̂2

(∏
p
i=1 ζ̂2

i )
1/p

(8)

A second estimator for the ridge parameter γ was also developed by [9] by using the
median of the estimator values in Equation (6), that is,

γ̂KMED = Med
(

σ̂2

ζ̂i

)
(9)

2.3. Khalaf, Mansson, and Shukar (2005)

A modified form of γHK was proposed by [21] for the estimation of ridge parameter
γ, given as

γ̂MS =
tmax

∑ |ζ̂|
∗ HK. (10)

Here, tmax represents the maximum eigenvalue of the matrix Z′Z.
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2.4. Khalaf Alkhamisi Modified (2006)

Using the generalized ridge regression approach, ref. [10] suggested a new estimator
for estimating the ridge parameter γ, given as

γ̂SM
max = (

p

∏
i=1

tiσ̂2

(n− p)σ̂2 + ti ζ̂
2
i
)1/p (11)

2.5. Muniz and Kibria Estimator (2009)

Using the square root transformation of Equation (6), ref. [2] proposed the following
estimators for the estimation of the parameter γ:

γ̂MK = max(
1

mi
) (12)

where mi =

√
σ̂2

i
α̂2

i
.

2.6. Proposed Estimators

For the ridge parameter, several estimators have been proposed by many researchers;
however, none of them have consistently outperformed all other estimators. This has
inspired us to reconsider the problem of estimating the ridge parameter and offer some
new developments to the existing estimators that can perform well in a range of scenarios.
In this study, some existing estimators are modified to propose some ridge parameters. In
order to achieve this, the first proposed estimator is defined as

NIS1 =
σ̂2

ζ̂2
max
∗CN (13)

where CN refers to the condition number given as

CN =
tmax

tmin
,

where tmax and tmin are the maximum and minimum eigenvalues of the matrix (Z
′
Z). Our

second proposed estimator is defined as

NIS2 =
σ̂2

ζ̂2
max ∗ tmax ∗ p

(14)

The third and final estimator we propose is:

NIS3 = n ∗ σ̂3/2(ζ̂2
max ∗ tmin) (15)

Note that the proposed estimators are functions of the eigenvalues, the number of
predictors, the standard deviation, and the number of observations. Thus, they contain a
significant amount of information to determine an optimum value of the ridge parameter.
In addition, they are highly flexible and robust to the varying values of different parameters.

3. Monte Carlo Simulation

The purpose of this section is to compare the performance of the existing ridge esti-
mators to our suggested estimators. Specifically, it will evaluate the performance of the
existing estimators HK, KGM, KMS, MKED, KSM, MK, and OLS and compare it to the
performance of our proposed estimators NIS1, NIS2, and NIS3 based on the extensive
Monte Carlo simulation.
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3.1. Generating Predictor Variables

To conduct simulation studies, the initial step is to generate the explanatory variables
and the response variable. To accomplish this, the explanatory variables were generated
using the following equation:

Zij =
(

i− ρ2
) 1

p Wij + ρWi (16)

where ρ denotes the linear correlation between independent variables, Wij are pseudo-
random numbers generated from the standard normal distribution and Student-t distribu-
tion, and p denotes the number of explanatory variables. Once the predictors are generated,
the response variable is determined as

Yi = δ1Zi1 + δ2Zi2 + · · ·+ δpZip + ηi i = 1, 2, . . . , n (17)

where η is an independent and identically distributed standard normal random variable
with mean zero and variance σ2

η , and n is the total number of observations.

3.2. Simulation Settings

The performance of an estimator can be affected by several factors, including sam-
ple size n, the correlation between independent variables ρ, the number of independent
variables p, and the error standard deviation σ. Therefore, in the simulation studies, we
consider different values to evaluate the effect of these factors. In particular, we consider
three different values for the correlation coefficient, i.e., ρ = 0.90, 0.95, 0.99, sample size,
n = 25, 50, 100, and the number of variables p = 4, 8, and 16. Furthermore, we consider
the error terms with the following variances: σ2 = 1, 3, 5, 10, and 16. Furthermore, the
explanatory variables are generated from two populations: normal and Student-t. Our main
concern is the performance of the proposed estimators compared to the existing estimators.
We consider high correlation values between independent variables, i.e., ρ = 0.90, 0.95, and
0.99, to see how our proposed estimators perform in the presence of multicollinearity. In
addition, we consider different sample sizes n = 25, 50, 100 to assess the effect of sample
size. Moreover, the error terms ηi are generated from the normal distribution as well as the
Student-t distribution, considering a small, moderate, and large degree of freedom to see
the effect of the distribution on the simulation studies.

3.3. Performance Evaluation Criteria

To evaluate the performance of the estimators, we used the MSE criterion, which can
be mathematically expressed as

MSE =

N
∑

i=1
(δ− δ̂)

′
(δ− δ̂)

N
(18)

where δ̂ is the estimator of δ obtained through the OLS or ridge estimator and N denotes
the number of replications used in the Monte Carlo simulations. As the MSE balances the
trade-off between bias and sampling variance, researchers extensively used this criterion
to select an optimum value of the ridge parameter. To achieve a reliable estimate of δ, the
simulation studies were repeated 2000 times, and thus, 2000 MSEs were computed, one
each for every replication. Using the MSE, we compared our proposed estimator to the
OLS and other existing ridge estimators described earlier. The results of the simulation
studies are given in the following section.

4. Simulation Study Results

Throughout the simulation setting, a number of parameters were changed, including
the standard deviation of the error term σ, the correlation coefficient ρ, the sample size
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n, and the number of explanatory variables p, to test the effectiveness of the different
estimators on simulated data sets. The results in Tables 1–9 refer to the scenario in which
the pseudorandom numbers are generated from the standard normal distribution, and the
results of the simulation data that are generated from Student-t distribution with various
degrees of freedom are listed in Tables 10–18.

In general, the results shown in Tables 1–18 show that the correlation coefficient ρ
and sample size n have a significant influence on the estimator’s MSE; as the degree of
correlation increases, the MSE also increases for all estimators. Although the MSE value
decreases with increasing sample size, it increases with increasing standard deviation of
errors. Furthermore, our suggested estimators outperform other estimators as the degree of
correlation increases. The probability distribution used in the data generation process has an
impact on the results as well. In the following, we elaborate each table’s results separately.

Table 1. Estimated MSEs considering ρ = 0.90, p = 4, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.90

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 389.306 10 197.055 9 18.094 4 118.212 7 55.899 5 64.107 6 125.236 8 1.886 3 0.857 1 0.99 2

50 327.805 10 166.901 8 17.513 4 37.847 5 91.103 7 50.28 6 263.761 9 2.766 3 0.922 1 0.973 2

100 792.915 10 389.438 8 42.367 4 97.486 5 280.473 7 202.317 6 714.009 9 5.808 3 0.946 1 0.96 2

N(0,5)
25 591.169 10 301.448 9 27.751 4 206.469 8 87.041 5 108.751 6 190.85 7 2.823 3 0.975 1 0.99 2

50 412.729 10 211.093 8 21.85 4 53.799 5 114.661 7 66.732 6 331.84 9 3.403 3 0.931 1 0.973 2

100 894.262 10 440.64 8 47.748 4 117.531 5 316.237 7 234.204 6 805.006 9 6.582 3 0.949 1 0.96 2

N(0,10)
25 915.62 10 470.08 9 43.315 4 364.163 8 137.238 5 187.701 6 296.128 7 4.362 3 1.168 2 0.99 1

50 536.474 10 275.708 8 28.187 4 79.737 5 149.545 7 92.216 6 431.146 9 4.327 3 0.944 1 0.973 2

100 1032.498 10 510.706 8 54.882 4 146.599 5 364.855 7 277.457 6 929.065 9 7.648 3 0.953 1 0.96 2

N(0,16)
25 1410.74 10 728.239 9 67.305 4 628.991 8 214.175 5 317.877 6 456.603 7 6.739 3 1.468 2 0.99 1

50 710.769 10 366.969 8 36.991 4 120.655 5 198.999 7 130.286 6 571.158 9 5.625 3 0.962 1 0.974 2

100 1215.326 10 603.629 8 64.478 4 187.805 5 428.913 7 336.83 6 1093.07 9 9.073 3 0.959 1 0.96 2

∑ Ranks 120 10 100 8 48 4 71 5 76 7 72 6 101 9 36 3 14 1 22 2

Table 2. Estimated MSEs considering ρ = 0.95, p = 4, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.95

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 809.997 10 408.044 9 28.61 4 300.273 8 74.501 5 126.581 7 97.786 6 1.365 3 0.925 1 0.99 2

50 691.302 10 351.807 8 26.462 4 111.752 6 128.245 7 97.112 5 387.097 9 2.121 3 0.906 1 0.973 2

100 1643.272 10 803.627 8 64.476 4 281.673 5 414.118 7 396.69 6 1213.989 9 4.069 3 0.938 1 0.96 2

N(0,5)
25 1229.962 10 624.162 9 43.898 4 514.323 8 116.293 5 214.504 7 149.966 6 1.98 3 1.182 2 0.99 1

50 869.941 10 444.614 8 33.096 4 156.845 6 161.791 7 129.584 5 486.716 9 2.569 3 0.934 1 0.973 2

100 1852.632 10 908.879 8 72.586 4 336.874 5 466.723 7 458.932 6 1367.744 9 4.588 3 0.95 1 0.96 2

N(0,10)
25 1905.158 10 973.448 9 68.298 4 890.882 8 184.261 5 369.168 7 233.555 6 2.992 3 1.603 2 0.99 1

50 1129.926 10 580.189 8 42.362 4 229.002 7 211.456 6 177.76 5 632.13 9 3.218 3 0.974 2 0.973 1

100 2138.199 10 1052.793 8 83.453 4 416.198 5 538.044 6 544.808 7 1577.244 9 5.304 3 0.966 2 0.96 1

N(0,16)
25 2935.741 10 1507.348 8 105.883 4 1512.869 9 288.394 5 627.818 7 361.147 6 4.553 3 2.254 2 0.99 1

50 1495.714 10 771.497 8 55.667 4 340.961 7 282.019 6 251.872 5 837.272 9 4.125 3 1.029 2 0.974 1

100 2515.886 10 1243.743 8 98.003 4 527.632 5 632.884 6 661.07 7 1853.995 9 6.263 3 0.988 2 0.96 1

∑ Ranks 120 10 99 9 48 4 79 7 72 5 74 6 96 8 36 3 19 2 17 1

Table 1 reports the results for different estimators used in the study, considering
ρ = 0.90, p = 4, n = 25, 50, 100, and σ = 1, 5, 10, and 16. From the results, it is evident
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that our proposed estimators outperformed the OLS and existing ridge estimators. Within
our proposed estimators, the NIS2 produced the smallest MSE values compared to NIS1
and NIS3. The cumulative rank of NIS2 was 14, whereas NIS1 and NIS3 had ranks of 36
and 22, respectively. From the existing ridge estimators, the KGM performed relatively
better than the other existing estimators used in the study by securing a cumulative rank
of 48. Moreover, the effect of sample size on the MSE was significant; as the sample sizes
increased, the overall MSEs decreased. On the other hand, when the residual standard
error increased, the overall MSEs increased. Furthermore, the OLS performed poorly, as it
produced the highest MSE in every situation, indicating that it cannot be used in a situation
of high correlation among predictors.

Considering ρ = 0.95, Table 2 reports the results for the proposed and existing ridge
estimators for n= 25, 50, 100; p = 4; and σ = 1, 5, 10, and 16. By increasing the correlation
value, the results indicate that the MSEs significantly increased for the OLS and the ex-
isting ridge, whereas it did not affect the size of the MSE of the proposed estimators. In
addition, the proposed estimators outperformed the OLS and the existing estimators in
every situation. Within our proposed estimators, the performance of NIS3 is evident, as it
produced the smallest MSE values compared to NIS1 and NIS2. The cumulative rank of
NIS3 was 17, whereas NIS1 and NIS2 had ranks of 36 and 19, respectively. On the other
hand, the sample size positively affected MSE, as it decreased with the increase in sample
size, whereas the residual standard error negatively affected MSE, i.e., a high value of σ
produced a high value of the MSE. Again, the poor performance of the OLS is evident from
the results in the case of high correlation among predictors.

The results listed in Table 3 correspond to ρ = 0.99, whereas all other variables are
the same as those used in Tables 1 and 2. From this table, note that the MSE values
increased significantly for all estimators except the proposed estimators, indicating the
better performance of the proposed estimators in multicollinearity situations. In addition,
the proposed estimator NIS3 uniformly outperformed all other estimators by securing a
cumulative rank of 13. It is worth mentioning that an estimator can obtain a minimum
cumulative rank of 12 when it performs better than all other estimators in every situation.
Note that the second- and third-best estimators were also the proposed estimators NIS2
and NIS1, respectively. Considering ρ = 0.99, the MSE values for the OLS were significantly
increased compared to the ridge estimators. The effect of sample size and residual standard
error on the estimator’s performance is evident from the table.

Table 3. Estimated MSEs considering ρ = 0.99, p = 4, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.99

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 4435.327 10 2218.984 8 83.986 5 2431.17 9 134.946 6 653.111 7 17.552 4 0.952 1 2.027 3 0.99 2

50 3878.122 10 1979.363 9 72.169 4 1236.786 8 260.739 5 494.527 7 288.91 6 1.541 3 1.287 2 0.973 1

100 8974.291 10 4368.104 9 176.144 4 2975.608 8 924.379 5 2049.885 7 1476.768 6 2.56 3 1.468 2 0.961 1

N(0,5)
25 6735.669 10 3395.235 8 128.372 5 3996.544 9 212.724 6 1104.582 7 27.266 4 1.303 2 3.162 3 0.99 1

50 4875.102 10 2498.814 9 90.041 4 1678.483 8 331.01 5 657.945 7 363.791 6 1.822 3 1.488 2 0.974 1

100 10,112.07 10 4937.063 9 197.663 4 3493.092 8 1041.546 5 2366.668 7 1661.885 6 2.86 3 1.595 2 0.961 1

N(0,10)
25 10,436.42 10 5295.542 8 199.85 5 6659.881 9 338.377 6 1901.993 7 42.922 4 1.879 2 5.029 3 0.99 1

50 6323.14 10 3254.598 9 116.117 4 2360.586 8 435.436 5 912.89 7 473.797 6 2.225 3 1.776 2 0.974 1

100 11,664.01 10 5714.259 9 227.127 4 4223.273 8 1202.374 5 2807.84 7 1914.104 6 3.272 3 1.771 2 0.961 1

N(0,16)
25 16,087.81 10 8202.93 8 307.913 5 10930.89 9 530.722 6 3219.682 7 66.818 4 2.773 2 7.922 3 0.99 1

50 8356.78 10 4319.659 9 152.949 4 3382.625 8 584.482 5 1295.433 7 629.169 6 2.784 3 2.175 2 0.975 1

100 13,716.58 10 6744.571 9 267.095 4 5226.255 8 1414.198 5 3411.156 7 2247.096 6 3.822 3 2.007 2 0.961 1

∑ Ranks 120 10 104 9 52 4 100 8 64 5 84 7 72 6 31 3 28 2 13 1
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Table 4. Estimated MSEs considering ρ = 0.90, p = 8, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.90

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 1093.641 10 616.283 9 33.478 4 510.667 8 122.03 5 162.868 6 205.384 7 2.413 3 0.987 1 0.988 2

50 1210.101 10 697.927 8 48.71 4 237.585 6 309.114 7 224.233 5 765.395 9 1.888 3 0.878 1 0.955 2

100 2174.851 10 1280.434 8 88.929 4 385.747 5 727.847 7 514.745 6 1776.34 9 4.626 3 0.944 2 0.939 1

N(0,5)
25 1652.635 10 930.973 9 50.999 4 842.763 8 187.091 5 270.167 6 312.396 7 3.481 3 1.174 2 0.988 1

50 1511.496 10 871.921 8 61.34 4 326.212 6 388.128 7 296.874 5 958.134 9 2.305 3 0.886 1 0.955 2

100 3289.72 10 1940.684 8 133.554 4 699.47 5 1107.272 7 846.495 6 2687.083 9 6.89 3 0.955 2 0.945 1

N(0,10)
25 2327.642 10 1304.555 9 57.817 4 1243.847 8 169.341 5 334.709 7 170.633 6 1.732 3 1.262 2 0.923 1

50 1951.111 10 1126.443 8 79.3 4 467.449 6 503.75 7 406.268 5 1238.94 9 2.917 3 0.896 1 0.956 2

100 2809.673 10 1656.356 8 114.027 4 558.488 5 943.427 7 699.66 6 2294.837 9 5.915 3 0.95 2 0.943 1

N(0,16)
25 3906.63 10 2203.456 8 123.61 4 2341.564 9 453.843 5 769.438 7 749.502 6 7.776 3 1.918 2 0.988 1

50 2570.86 10 1485.758 8 104.403 4 685.798 7 668.081 6 569.89 5 1634.626 9 3.784 3 0.91 1 0.957 2

100 3289.72 10 1940.684 8 133.554 4 699.47 5 1107.272 7 846.495 6 2687.083 9 6.89 3 0.955 2 0.945 1

∑ Ranks 120 10 99 9 48 4 78 7 75 6 70 5 98 8 36 3 19 2 17 1

Table 5. Estimated MSEs considering ρ = 0.95, p = 8, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.95

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 2327.642 10 1304.555 9 57.817 4 1243.847 8 169.341 5 334.709 7 170.633 6 1.732 3 1.262 2 0.923 1

50 2507.469 10 1447.664 9 84.411 4 647.979 7 447.518 5 468.237 6 905.594 8 1.318 3 0.807 2 0.797 1

100 4543.058 10 2655.136 8 153.739 4 1049.733 5 1101.876 7 1056.43 6 2681.906 9 3.028 3 0.92 1 0.94 2

N(0,5)
25 3512.612 10 1967.761 8 88.543 4 2022.867 9 260.115 6 554.775 7 259.449 5 2.432 3 1.676 2 1.007 1

50 3128.193 10 1805.434 9 106.331 4 876.509 7 562.206 5 619.649 6 1134.972 8 1.581 3 0.826 1 0.845 2

100 5106.535 10 2986.468 8 172.684 4 1235.942 6 1240.945 7 1218.049 5 3014.205 9 3.367 3 0.929 1 0.956 2

N(0,10)
25 5405.894 10 3028.696 8 138.846 4 3344.639 9 407.155 6 939.165 7 402.926 5 3.547 3 2.332 2 1.094 1

50 4032.843 10 2327.781 9 137.244 4 1235.388 7 730.713 5 846.664 6 1468.946 8 1.967 3 0.853 1 0.901 2

100 5870.256 10 3435.601 8 197.816 4 1499.343 7 1430.321 5 1437.866 6 3464.905 9 3.825 3 0.941 1 0.973 2

N(0,16)
25 8282.201 10 4641.715 8 215.583 4 5462.628 9 633.163 6 1578.825 7 622.888 5 5.231 3 3.322 2 1.18 1

50 5307.247 10 3065.307 9 181.378 4 1782.508 7 969.607 5 1189.958 6 1938.794 8 2.513 3 0.891 1 0.963 2

100 6873.807 10 4026.574 8 231.465 4 1863.021 7 1679.507 5 1738.749 6 4057.277 9 4.428 3 0.956 1 0.993 2

∑ Ranks 120 10 101 9 48 4 88 7 67 5 76 6 89 8 36 3 17 1 19 2

Tables 4–6 report the results for different estimators used in the study considering
ρ = 0.90, 0.95, and 0.99, respectively. These tables used the same values of n = 25, 50, 100,
p = 8 and σ = 1, 5, 10, 16. From these tables, we can see that our proposed estimators
outperformed the OLS and the existing estimators uniformly. For example, from Table 4,
one can see that our proposed estimators were the best estimators compared to their
competitors. The cumulative ranks for our proposed estimators were 17, 19, and 36,
which were smaller than the OLS and the existing ridge estimators. Within our proposed
estimators, the performance of NIS3 was excellent, as it produced smaller MSEs in most
cases than the other two proposed estimators. Note that as the sample size increased, the
MSE decreased for all estimators. When we increased the value of ρ from 0.90 to 0.95, it is
evident from the results listed in Table 5 that the MSE values became larger for the OLS
compared to the ridge estimators. In addition, as we increased the value of σ, the MSEs
also increased, except for the proposed estimators. It can be noted from the results listed in
Tables 5 and 6 that our proposed estimators produced smaller MSE values compared to the
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OLS and other existing ridge estimators. In addition, Table 6 shows that NIS3 uniformly
produced lower MSE compared to other estimators, and thus, secured a cumulative rank of
12.

Table 6. Estimated MSEs considering ρ = 0.99, p= 8, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.99

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 13,128.31 10 7294.315 8 219.241 5 9103.898 9 329.474 6 1941.774 7 32.392 4 1.102 2 4.214 3 0.844 1

50 13,611.98 10 7859.222 9 324.396 4 5989.592 8 942.143 6 2793.82 7 397.085 5 0.918 3 0.854 2 0.766 1

100 24,962.42 10 14,414.39 9 577.347 4 9884.835 8 2599.056 5 6076.557 7 2852.572 6 1.873 3 1.203 2 0.923 1

N(0,5)
25 19,774.45 10 10,976.48 8 338.566 5 14,377.8 9 508.194 6 3203.909 7 49.744 4 1.457 2 6.318 3 0.921 1

50 16,950.46 10 9777.124 9 404.125 4 7870.337 8 1184.24 6 3668.802 7 497.636 5 1.073 3 0.981 2 0.812 1

100 28,062.59 10 16,217.33 9 647.875 4 11,482.41 8 2930.328 5 6989.467 7 3203.848 6 2.06 3 1.285 2 0.938 1

N(0,10)
25 30,374.84 10 16,852.27 8 532.078 5 23,092.54 9 798.626 6 5391.11 7 77.927 4 2.022 2 9.656 3 1.003 1

50 21,809.75 10 12,570.87 9 522.45 4 10,739.59 8 1540.62 6 4989.527 7 643.829 5 1.298 3 1.165 2 0.866 1

100 32,264.2 10 18,663.74 9 743.941 4 13,711.82 8 3380.966 5 8241.684 7 3679.798 6 2.312 3 1.395 2 0.954 1

N(0,16)
25 46,457.93 10 25,766.1 8 827.775 5 36,727.14 9 1247.087 6 9039.276 7 121.476 4 2.874 2 14.688 3 1.086 1

50 28, 647.34 10 16,510.67 9 689.227 4 14,984.46 8 2044.226 6 6983.99 7 848.519 5 1.617 3 1.426 2 0.925 1

100 37,784.84 10 21,882.92 9 872.384 4 16,740.82 8 3975.24 5 9953.584 7 4305.22 6 2.643 3 1.54 2 0.973 1

∑
Ranks 120 10 104 9 52 4 100 8 68 6 84 7 60 5 32 3 28 2 12 1

Table 7. Estimated MSEs considering ρ = 0.90, p = 16, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.90

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 28,647.34 10 16,510.67 9 689.227 4 14,984.46 8 2044.226 6 6983.99 7 848.519 5 1.617 3 1.426 2 0.925 1

50 2971.53 10 1851.276 9 117.11 4 1040.095 7 699.46 6 622.89 5 1438.423 8 1.581 3 0.871 2 0.856 1

100 4415.715 10 2784.574 8 177.056 4 996.144 5 1555.863 7 1139.971 6 3343.783 9 2.263 3 0.942 2 0.896 1

N(0,5)
25 6856.719 10 4002.994 9 149.061 4 3314.495 8 466.399 6 517.343 7 434.926 5 1.22 2 0.914 1 1.367 3

50 3725.354 10 2322.532 9 145.256 4 1392.276 7 870.677 6 808.915 5 1794.437 8 1.917 3 0.876 1 0.901 2

100 4970.185 10 3135.858 8 197.972 4 1174.677 5 1747.888 7 1307.17 6 3757.2 9 2.52 3 0.942 2 0.915 1

N(0,10)
25 10, 629.23 10 6205.163 9 227.997 4 5603.944 8 718.814 6 868.792 7 669.514 5 1.693 3 1.162 1 1.55 2

50 4825.08 10 3012.872 9 184.215 4 1938.944 7 1119.082 6 1086.885 5 2307.754 8 2.418 3 0.884 1 0.956 2

100 5723.267 10 3613.811 8 226.013 4 1428.22 5 2006.792 7 1538.649 6 4317.917 9 2.87 3 0.943 2 0.937 1

N(0,16)
25 16, 414.5 10 9588.535 9 341.634 4 9368.822 8 1101.217 6 1441.849 7 1023.761 5 2.413 3 1.539 1 1.728 2

50 6375.675 10 3988.354 9 238.462 4 2759.258 7 1464.618 5 1493.671 6 3024.625 8 3.141 3 0.895 1 1.017 2

100 6714.957 10 4243.724 8 263.302 4 1779.026 5 2346.524 7 1849.607 6 5055.342 9 3.332 3 0.945 1 0.961 2

∑ Ranks 120 10 104 9 48 4 80 7 75 6 73 5 88 8 36 3 17 1 19 2

Finally, using the number of predictors p = 16, the results for different estimators
are listed in Tables 7–9. Although the values for n and σ are the same in these tables,
Tables 7–9 used ρ = 0.90, 0.95, and 0.99, respectively. Looking at these tables, one can see
that the proposed estimators outperformed the competitors in all situations. The proposed
estimators produced significantly lower MSEs compared to the OLS and existing ridge
estimators. It is worth mentioning that the OLS produced the highest MSEs in all cases
compared to the ridge estimators. The individual results of Tables 7–9 can be interpreted in
the same manner as explained for Tables 1–6. On the other hand, the explanatory variables
were generated using the Student-t distribution, and the results are listed in Tables 10–18
for different estimators used in this study. The same simulation studies were adopted in
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this case, with different degrees of freedom. Particularly, the degrees of freedom considered
were ν = 1, 5, 10, and 16. From these tables, one can see that our proposed estimators
performed better than the OLS and existing ridge estimators. This illustrates that the
proposals are efficient, irrespective of the choice of probability distribution used to generate
the explanatory variables. In the following, we summarize the results of each table.

Table 8. Estimated MSEs considering ρ = 0.95, p = 16, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.95

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 9625.219 10 5552.599 9 184.769 4 4781.087 8 438.132 6 669.022 7 195.569 5 740.72 1 0.888 2 0.931 3

50 6141.482 10 3787.198 9 218.116 4 2508.032 8 1041.033 5 1311.449 6 1626.079 7 1.047 3 0.79 2 0.765 1

100 9140.774 10 5695.637 9 327.138 4 2533.253 7 2428.981 6 2377.177 5 4955.738 8 1.485 3 0.896 2 0.852 1

N(0,5)
25 14,585.18 10 8407.425 9 278.33 4 7842.738 8 663.644 6 1098.821 7 296.226 5 0.899 1 1.203 3 1.075 2

50 7701.634 10 4753.261 9 269.444 4 3331.356 8 1295.011 5 1699.047 6 2025.018 7 1.236 3 0.805 1 0.807 2

100 10,296.24 10 6421.081 9 364.776 4 2975.041 7 2727.727 6 2720.361 5 5562.316 8 1.633 3 0.898 2 0.87 1

N(0,10)
25 22,616.9 10 13,038.07 8 427.356 4 13,136.27 9 1024.62 6 1844.035 7 456.321 5 1.186 1 1.707 3 1.22 2

50 9980.359 10 6169.113 9 341.007 4 4599.356 8 1663.364 5 2280.048 6 2598.735 7 1.518 3 0.827 1 0.857 2

100 11,866.42 10 7408.102 9 417.144 4 3598.899 7 3131.537 5 3201.851 6 6384.536 8 1.835 3 0.902 2 0.891 1

N(0,16)
25 34,941.57 10 20,154.79 8 639.721 4 21,761.62 9 1571.027 6 3052.672 7 697.819 5 1.62 2 2.472 3 1.362 1

50 13, 196.68 10 8171.973 9 442.949 4 6488 8 2174.933 5 3126.886 6 3398.295 7 1.925 3 0.861 1 0.913 2

100 13,935.23 10 8708.9 9 486.853 4 4456.779 7 3662.655 5 3844.04 6 7465.376 8 2.102 3 0.908 1 0.915 2

∑ Ranks 120 10 106 9 48 4 94 8 67 5 74 6 80 7 29 3 23 2 20 1

Table 9. Estimated MSEs considering ρ = 0.99, p = 16, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.99

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

N(0,1)
25 54,235.87 10 30,692.08 8 821.287 5 35,004.82 9 892.986 6 4195.162 7 25.274 4 0.573 1 3.18 3 0.646 2

50 33,156.23 10 20,084.7 9 957.684 5 18,843.62 8 2324.778 6 7937.004 7 653.685 4 0.686 1 0.71 3 0.69 2

100 49,475.86 10 30,197.83 9 1417.888 4 21,335.03 8 6044.197 6 14,063.7 7 5548.058 5 1.001 3 0.836 2 0.825 1

N(0,5)
25 82,168.61 10 46,450.04 8 1232.352 5 56,017.79 9 1359.229 6 6832.252 7 38.812 4 0.662 1 4.866 3 0.749 2

50 41,598.15 10 25,219.89 9 1176.379 5 24,602.67 8 2887.217 6 10,227.93 7 813.013 4 0.773 2 0.812 3 0.728 1

100 55,795.63 10 34,094.54 9 1587.811 4 24,806.85 8 6786.417 6 16,076.75 7 6210.114 5 1.078 3 0.868 2 0.842 1

N(0,10)
25 127,448.4 10 72,036.83 8 1891.046 5 91,572.91 9 2100.526 6 11,384.47 7 60.008 4 0.802 1 7.555 3 0.855 2

50 53,950 10 32,754.83 8 1483.747 5 33,326.56 9 3701.053 6 13,660.75 7 1042.594 4 0.903 2 0.966 3 0.772 1

100 64,390.74 10 39,397.42 9 1802.691 4 29,654.18 8 7791.472 6 18,826.17 7 7106.403 5 1.181 3 0.912 2 0.861 1

N(0,16)
25 196,984.3 10 111,399.6 8 2818.039 5 148,300.4 9 3221.971 6 18,710.43 7 92.051 4 1.017 2 11.635 3 0.969 1

50 71,411.4 10 43,439.43 8 1926.475 5 46,108.02 9 4835.912 6 18,640.69 7 1361.179 4 1.09 2 1.18 3 60.821 1

100 75,724.79 10 46,394.93 9 2103.253 4 36,238.51 8 9112.755 6 22,532.52 7 8283.842 5 1.317 3 0.97 2 0.883 1

∑ Ranks 120 9 102 8 56 5 102 8 72 6 84 7 52 4 24 2 32 3 16 1

Table 10 reports the results for different estimators used in the study considering
ρ = 0.90, p = 4, n = 25, 50, 100, and ν = 1, 5, 10, and 16. From the results, we can see that
our proposed estimators performed relatively well compared to the OLS and the existing
estimators. Within our proposed estimators, the performance of NIS3 is evident, as it
produced the smallest MSE values compared to NIS1 and NIS2. The cumulative rank
of NIS3 was 16, whereas NIS1 and NIS2 had ranks of 28 and 86, respectively. The good
performance of the existing estimator KSM is also evident from this table, as it produced
lower MSEs than our proposed estimator NIS2. Moreover, the results reveal that when the
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sample sizes increased, the overall MSEs decreased, whereas when the degree of freedom
increased, the overall MSEs increased. Furthermore, again the poor performance of the
OLS estimator is evident in the case of high correlation.

Keeping the values of n, p, and ν similar to Table 10–12, consider values of ρ = 0.95
and 0.99, respectively. From these tables, one can see that as we increased the value of
ρ, the good performance of our proposed estimators was more evident than compared
to the OLS and the existing ridge estimators. In particular, when ρ = 0.99, our proposed
estimators were the best compared to all other estimators used in this study. Furthermore,
our proposed estimator NIS3 was uniformly better than all the competitors by producing
smaller MSEs. Finally, the results of Table 13–18 suggest that our proposed estimators were
the best in every situation. The performance of our proposed estimators was not dependent
on the values of p or ρ as they produced smaller MSEs compared to their competitors. The
result of each table can be interpreted in the same manner as discussed above.

Table 10. Estimated MSEs considering ρ = 0.90, p = 4, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.90

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 4190.235 10 1915.856 6 225.719 4 3594.731 9 913.961 5 2604.462 8 2549.857 7 27.729 3 2.371 2 0.687 1

50 3,140,622 10 1,210,774 5 159,649.9 4 3,132,875 9 1,228,267 6 3,036,462 8 2,901,731 7 9332.283 3 154.776 2 0.641 1

100 48,713.52 10 26,074.74 6 5930.58 4 45,165.85 9 25,964.3 5 41,738.44 7 44,062.66 8 301.45 3 2.22 2 0.664 1

t(5)
25 1.974 10 1.097 9 0.377 5 0.197 2 0.617 6 0.263 4 0.831 8 0.232 3 0.64 7 0.149 1

50 0.986 10 0.604 7 0.232 5 0.183 4 0.437 6 0.129 2 0.661 8 0.132 3 0.714 9 0.066 1

100 0.417 9 0.317 7 0.135 4 0.23 5 0.248 6 0.073 3 0.362 8 0.044 1 0.744 10 0.056 2

t(10)
25 1.208 10 0.722 9 0.294 5 0.154 3 0.476 6 0.193 4 0.635 7 0.142 2 0.638 8 0.123 1

50 0.678 10 0.457 7 0.183 5 0.159 4 0.326 6 0.097 3 0.467 8 0.085 2 0.676 9 0.062 1

100 0.337 9 0.255 7 0.095 4 0.184 6 0.171 5 0.049 3 0.27 8 0.041 1 0.687 10 0.043 2

t(16)
25 1.121 10 0.653 9 0.215 5 0.143 3 0.344 6 0.123 2 0.456 7 0.19 4 0.611 8 0.093 1

50 0.532 9 0.371 8 0.146 4 0.156 5 0.245 6 0.091 3 0.369 7 0.078 2 0.658 10 0.069 1

100 0.278 9 0.224 7 0.088 4 0.173 6 0.156 5 0.048 2 0.231 8 0.032 1 0.669 10 0.051 3

∑
Ranks 120 10 87 8 53 4 65 5 68 6 49 3 91 9 28 2 86 7 16 1

Table 11. Estimated MSEs considering ρ = 0.95, p = 4, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.95

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 8484.372 10 3893.242 7 334.195 4 7532.103 9 1181.936 5 5181.234 8 2901.272 6 21.427 3 5.243 2 0.638 1

50 6,100,242 10 2,304,251 6 1120.046 3 6,088,629 9 1,392,989 5 4,818,257 7 4,954,487 8 7429.845 4 522.498 2 0.639 1

100 105,318.1 10 57,709.86 6 9523.677 4 99,586.21 9 43,470.68 5 88,982.65 8 77,070.45 7 214.933 3 5.928 2 0.65 1

t(5)
25 4.059 10 2.156 9 0.605 6 0.276 2 0.82 8 0.474 4 0.793 7 0.306 3 0.532 5 0.169 1

50 2.057 10 1.13 9 0.381 5 0.137 2 0.651 7 0.224 3 0.849 8 0.233 4 0.648 6 0.077 1

100 0.855 10 0.552 7 0.216 5 0.187 4 0.413 6 0.117 3 0.618 8 0.095 2 0.727 9 0.038 1

t(10)
25 2.478 10 1.351 9 0.469 5 0.161 2 0.66 8 0.334 4 0.654 7 0.224 3 0.553 6 0.12 1

50 1.408 10 0.82 9 0.3 5 0.123 2 0.498 6 0.164 3 0.622 7 0.178 4 0.63 8 0.052 1

100 0.712 10 0.453 8 0.146 4 0.149 5 0.276 6 0.071 2 0.431 7 0.102 3 0.668 9 0.028 1

t(16)
25 2.379 10 1.273 9 0.342 5 0.147 2 0.478 7 0.206 3 0.467 6 0.306 4 0.531 8 0.107 1

50 1.095 10 0.652 9 0.224 5 0.125 2 0.377 6 0.143 3 0.507 7 0.158 4 0.624 8 0.062 1

100 0.58 9 0.393 8 0.136 4 0.143 5 0.259 6 0.07 2 0.387 7 0.075 3 0.659 10 0.027 1

∑
Ranks 119 10 96 9 55 5 53 4 75 7 50 3 79 8 40 2 74 6 12 1
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Table 12. Estimated MSEs considering ρ = 0.99, p = 4, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.99

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 44,750.82 10 20,708.49 7 853.11 4 42,063.01 9 1925.582 6 26,707.6 8 1006.675 5 15.471 2 25.734 3 0.631 1

50 30,275,079 10 11,109,864 7 672,521.6 9 30,248,126 9 1,582,263 5 29,387,873 8 6,583,411 6 5657.171 2 7720.366 3 0.647 1

100 612,818.6 10 343,088.6 7 28,701.8 4 596,284.8 9 114,919.5 6 510,770.8 8 70,218.83 5 130.245 3 58.937 2 0.648 1

t(5)
25 21.866 10 11.371 9 1.955 6 2.517 8 1.207 5 2.225 7 0.221 2 0.371 4 0.234 3 0.208 1

50 11.317 10 5.888 9 1.292 8 0.296 2 1.107 7 1.024 6 0.432 5 0.366 4 0.342 3 0.146 1

100 4.593 10 2.471 9 0.724 6 0.097 1 0.926 8 0.505 4 0.782 7 0.299 3 0.523 5 0.114 2

t(10)
25 13.332 10 7.01 9 1.506 7 1.096 6 0.944 5 1.51 8 0.175 2 0.331 4 0.258 3 0.157 1

50 7.707 10 4.102 9 1.013 8 0.187 2 0.884 7 0.733 6 0.335 3 0.349 4 0.354 5 0.113 1

100 3.989 10 2.099 9 0.483 6 0.077 1 0.615 8 0.294 3 0.493 7 0.342 4 0.479 5 0.101 2

t(16)
25 13.459 10 6.907 9 1.124 8 0.925 7 0.766 5 0.921 6 0.194 2 0.428 4 0.262 3 0.176 1

50 5.907 10 3.078 9 0.726 7 0.2 2 0.733 8 0.624 6 0.385 5 0.353 3 0.384 4 0.158 1

100 3.2 10 1.682 9 0.45 5 0.071 1 0.605 8 0.29 3 0.48 6 0.311 4 0.495 7 0.088 2

∑ Ranks 120 9 101 8 78 7 57 5 78 7 73 6 55 4 41 2 46 3 15 1

Table 13. Estimated MSEs considering ρ = 0.90, p = 8, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.90

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 15,329.55 10 8797.027 8 415.556 4 13,134.61 9 2093.24 5 5938.713 7 3944.143 6 15.286 3 2.209 2 0.871 1

50 10,358,337 10 3,659,540 6 198,194.7 4 10,322,179 9 1,496,151 5 8,864,309 8 5,207,725 7 8468.502 3 299.81 2 0.611 1

100 43,180.67 10 21,146.55 6 2473.749 4 38,367.54 8 19,448.56 5 32,639.25 7 39,881.68 9 152.814 3 1.161 2 0.586 1

t(5)
25 4.809 10 2.865 9 0.467 5 0.171 2 1.18 7 0.315 4 1.66 8 0.258 3 0.706 6 0.161 1

50 2.497 10 1.534 9 0.252 5 0.108 2 0.757 6 0.203 3 1.335 8 0.22 4 0.792 7 0.082 1

100 0.973 10 0.698 7 0.119 4 0.134 5 0.417 6 0.077 2 0.772 8 0.09 3 0.848 9 0.053 1

t(10)
25 5.984 10 3.428 9 0.377 5 0.334 3 0.839 7 0.318 2 1.004 8 0.354 4 0.594 6 0.153 1

50 1.531 10 1.013 9 0.179 5 0.083 2 0.522 6 0.111 3 0.915 8 0.152 4 0.789 7 0.07 1

100 0.725 9 0.566 7 0.105 4 0.108 5 0.346 6 0.058 2 0.593 8 0.049 1 0.82 10 0.073 3

t(16)
25 3.682 10 2.161 9 0.303 5 0.171 2 0.73 7 0.235 3 0.987 8 0.275 4 0.666 6 0.134 1

50 1.387 10 0.911 9 0.149 4 0.077 2 0.439 6 0.083 3 0.775 7 0.159 5 0.776 8 0.063 1

100 0.666 9 0.519 7 0.096 4 0.1 5 0.309 5 0.06 2 0.533 8 0.052 1 0.807 10 0.067 3

∑ Ranks 120 10 95 8 53 5 49 4 71 6 46 3 102 9 38 2 75 7 16 1

Table 14. Estimated MSEs considering ρ = 0.95, p = 8, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.95

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 31,956.69 10 18,472.45 8 724.925 4 28,268.24 9 2930.543 5 12,258.81 7 3631.138 6 9.267 3 3.972 2 0.718 1

50 21,079,258 10 7,129,596 7 343,020.8 4 21,018,374 9 2,134,812 5 17,871,708 8 5,914,655 6 6847.95 3 1060.235 2 0.588 1

100 89,523.41 10 42,741.63 6 4572.151 4 81,303.64 9 30,809.85 5 66,710.22 7 70,743.01 8 97.11 3 1.607 2 0.563 1

t(5)
25 9.929 10 5.814 9 0.829 6 0.409 3 1.639 8 0.646 5 1.502 7 0.304 2 0.563 4 0.13 1

50 5.27 10 3.074 9 0.444 5 0.136 2 1.131 7 0.406 4 1.553 8 0.31 3 0.688 6 0.085 1

100 2.045 10 1.291 9 0.206 5 0.091 2 0.666 6 0.146 3 1.194 8 0.199 4 0.811 7 0.036 1

t(10)
25 12.668 10 7.161 9 0.664 5 0.898 7 1.172 8 0.648 4 0.867 6 0.385 2 0.443 3 0.152 1

50 3.195 10 1.929 9 0.313 5 0.068 2 0.805 7 0.218 3 1.17 8 0.263 4 0.715 6 0.053 1

100 1.502 10 1.014 9 0.182 5 0.074 2 0.557 6 0.109 3 0.955 8 0.129 4 0.796 7 0.028 1

t(16)
25 7.727 10 4.425 9 0.532 6 0.407 3 1.035 8 0.469 4 0.887 7 0.332 2 0.524 5 0.123 1

50 2.908 10 1.732 9 0.263 4 0.06 2 0.68 6 0.163 3 0.995 8 0.28 5 0.706 7 0.045 1

100 1.389 10 0.931 9 0.164 5 0.07 2 0.496 6 0.111 3 0.848 8 0.138 4 0.784 7 0.028 1

∑
Ranks 120 10 102 9 62 6 52 4 77 7 54 5 88 8 39 2 51 3 12 1
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Table 15. Estimated MSEs considering ρ = 0.99, p = 8, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.99

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 174,621.7 10 101,519.1 8 2665.715 5 163,439 9 5830.829 6 68,450.21 7 824.344 4 3.512 2 20.854 3 0.553 1

50 1,104,682,06 10 35,056,616 7 1,264,832 4 110,297,566 9 4,207,414 6 93,673,350 8 3,136,071 5 5492.431 2 11,957.61 3 0.575 1

100 498,140.4 10 224,600.1 7 17,786.33 4 472,044.2 9 86,248.34 5 368,950.3 8 121,778.9 6 50.763 3 11.131 2 0.557 1

t(5)
25 53.566 10 31.025 9 3.307 6 5.132 8 2.733 5 3.901 7 0.333 3 0.335 4 0.203 2 0.081 1

50 29.434 10 16.74 9 1.762 6 1.467 5 2.176 7 2.369 8 0.748 4 0.368 3 0.318 2 0.096 1

100 11.343 10 6.538 9 0.812 5 0.116 2 1.65 8 0.839 6 1.46 7 0.357 3 0.536 4 0.07 1

t(10)
25 70.907 10 39.639 9 2.663 6 10.3 8 1.964 5 3.868 7 0.189 3 0.404 4 0.151 2 0.132 1

50 17.524 10 10.087 9 1.245 6 0.443 4 1.703 8 1.272 7 0.689 5 0.355 2 0.37 3 0.058 1

100 8.144 10 4.798 9 0.725 6 0.05 2 1.41 8 0.63 5 1.148 7 0.312 3 0.546 4 0.036 1

t(16)
25 42.752 10 24.177 9 2.122 6 4.784 8 1.751 5 2.746 7 0.22 3 0.368 4 0.186 2 0.098 1

50 16.039 10 9.024 9 1.056 7 0.329 2 1.517 8 0.959 6 0.659 5 0.387 4 0.374 3 0.055 1

100 7.625 10 4.402 9 0.654 6 0.061 2 1.272 8 0.631 5 1.026 7 0.334 3 0.534 4 0.049 1

∑
Rank 120 10 103 9 67 5 68 6 79 7 81 8 59 4 37 3 34 2 12 1

Table 16. Estimated MSEs considering ρ = 0.90, p = 16, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.90

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 93,295.66 10 52,472.02 8 1172.597 4 88,978.23 9 5330.207 6 25,608.32 7 4668.6 5 11.534 3 4.741 2 0.77 1

50 33,529,711 10 20,017,548 7 1,145,490 4 33,492,751 9 10,493,305 5 31,418,087 8 19,906,844 6 1171.461 3 18.637 2 0.561 1

100 262,446.3 10 178,755.4 7 9422.17 4 251,046.9 9 70,274.53 5 190,263 8 170,815 6 191.054 3 1.847 2 0.498 1

t(5)
25 28.743 10 16.894 9 0.884 5 2.713 8 2.216 7 0.792 4 1.906 6 0.376 2 0.499 3 0.236 1

50 7.405 10 4.731 9 0.394 5 0.113 1 1.573 7 0.302 4 2.684 8 0.273 3 0.793 6 0.171 2

100 2.259 10 1.613 8 0.162 5 0.062 1 0.86 6 0.126 3 1.675 9 0.154 4 0.907 7 0.12 2

t(10)
25 14.846 10 9.033 9 0.542 4 1.05 6 1.482 7 0.43 3 1.588 8 0.279 2 0.583 5 0.244 1

50 4.129 10 2.698 9 0.242 4 0.088 1 1.032 7 0.204 3 1.867 8 0.27 5 0.828 6 0.106 2

100 1.611 10 1.206 9 0.119 4 0.051 1 0.625 6 0.086 2 1.176 8 0.12 5 0.892 7 0.091 3

t(16)
25 14.537 10 3.343 9 0.564 5 0.791 6 1.458 8 0.349 3 1.435 7 0.315 2 0.562 4 0.169 1

50 3.539 10 2.338 9 0.216 5 0.05 1 0.924 7 0.146 3 1.758 8 0.21 4 0.843 6 0.105 2

100 1.588 10 1.178 9 0.115 4 0.046 1 0.586 6 0.075 3 1.093 8 0.13 5 0.882 7 0.071 2

∑ Rank 120 9 111 8 48 3 53 4 77 6 57 5 87 7 36 2 57 5 19 1

Table 17. Estimated MSEs considering ρ = 0.95, p = 16, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.95

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 205,892.7 10 115,282.9 7 2137.216 3 198,383.2 9 7280.15 5 53,291.83 6 2754.897 4 7.054 1 9.79 2 136,956.5 8

50 68,008,720 10 39,108,854 6 2,163,610 3 67,939,363 9 15,388,984 4 63,324,660 7 23,137,665 5 555.451 2 46.056 1 67,892,353 8

100 576,843.5 10 393,668.6 6 17,581.14 3 557,053.2 8 107,712.6 4 404,821.7 7 217,585 5 123.915 2 4.305 1 567,996 9

t(5)
25 59.449 10 34.702 9 1.659 5 7.1 8 3.06 7 1.718 6 1.326 4 0.386 3 0.342 2 0.22 1

50 15.328 10 9.667 9 0.737 6 0.319 3 2.322 7 0.66 5 2.714 8 0.307 2 0.658 4 0.123 1

100 4.705 10 3.097 9 0.298 5 0.049 1 1.35 7 0.267 3 2.464 8 0.269 4 0.857 6 0.069 1

t(10)
25 30.012 10 18.198 9 1.014 5 2.701 8 2.115 7 0.924 4 1.232 6 0.281 2 0.422 3 0.196 1

50 8.623 10 5.427 9 0.451 5 0.219 2 1.555 7 0.443 4 2.164 8 0.338 3 0.718 6 0.082 1

100 3.349 10 2.257 9 0.219 4 0.039 1 0.99 7 0.181 3 1.767 8 0.247 5 0.853 6 0.044 2

t(16)
25 30.403 10 18.302 9 1.061 6 2.156 8 2.073 7 0.754 4 1.049 5 0.334 2 0.394 3 0.127 1

50 7.348 10 4.649 9 0.4 5 0.097 2 1.382 7 0.312 4 1.994 8 0.29 3 0.742 6 0.07 1

100 3.324 10 2.232 9 0.213 4 0.034 1 0.926 7 0.157 3 1.608 8 0.26 5 0.836 6 0.036 2

∑
Rank 120 10 100 9 54 4 60 4 72 6 56 5 77 8 34 1 45 3 36 2
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Table 18. Estimated MSEs considering ρ = 0.99, p = 16, and n = 25, 50, and 100 (superscript
represents ranks).

ρ = 0.99

n OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

t(1)
25 1,222,384 10 673,986.3 8 9212.835 4 1,198,574 9 13,710.99 5 317,124.7 6 298.569 3 3.72 1 52.646 2 360,525.3 7

50 357,008,988 10 191,963,981 6 9,386,963 4 356,774,450 5 31,699,699 9 331,414,785 7 6,940,253 3 238.026 1 407.167 2 352,219,373 8

100 3,405,965 10 2,312,607 6 76,342.04 3 3,344,188 9 268,166.9 5 2,363,639 7 153,422.6 4 69.5 2 32.836 1 3, 183, 112 8

t(5)
25 320.715 10 185.071 9 7.442 6 68.102 8 5.567 5 11.45 7 0.194 3 0.4 4 0.104 1 0.106 2

50 82.856 10 51.578 9 3.255 5 4.462 6 4.559 8 4.521 7 0.849 4 0.337 3 0.27 2 0.046 1

100 25.756 10 16.306 9 1.312 5 0.429 3 3.355 8 1.788 6 2.468 7 0.35 2 0.554 4 0.032 1

t(10)
25 156.732 10 94.491 9 4.532 6 26.481 8 3.908 5 6.116 7 0.226 3 0.289 4 0.123 2 0.083 1

50 47.311 10 29.164 9 1.993 5 2.938 6 3.332 8 3.009 7 0.887 4 0.374 3 0.341 2 0.045 1

100 18.255 10 11.474 9 0.961 5 0.256 2 2.551 8 1.218 6 1.987 7 0.366 3 0.574 4 0.028 1

t(16)
25 167.012 10 99.065 9 4.766 6 22.825 8 3.741 5 5.071 7 0.17 3 0.36 4 0.106 2 0.055 1

50 40.018 10 24.863 9 1.763 6 1.401 5 2.989 8 2.103 7 0.838 4 0.338 2 0.357 3 0.03 1

100 18.29 10 11.458 9 0.942 5 0.231 2 2.381 8 1.066 6 1.712 7 0.378 3 0.545 4 0.025 1

∑
Rank 120 10 101 9 60 6 59 5 82 8 74 7 52 4 32 2 29 1 33 3

5. Real Data Application
5.1. Cruise Ship Info Data

In order to assess the performance of the proposed estimators on real data, we used
cruise ship info data obtained from the University of Florida website http://www.truecruse.
com, (accessed on 12 January 2022). From these data, we selected five highly correlated
variables, namely age (age until 2013), tonnage (weight of ship in tonnage), passengers
(passengers on board in 100 s), length (length of the ship in 100 s), and cabins (number
of cabins in 100 s), and used them as explanatory variables. On the other hand, the crew
(number of crews available) variable was used as a response variable in the analysis. Some
numerical summaries of these variables are listed in Table 19. Looking to the table, one
can see that variables are on different scales, for example, the age variable ranges from
about 4 years to 48 years, while the tonnage variable ranges from 2 to 220. Thus, before
conducting the analysis, we standardized all the variables.

Table 19. Descriptive statistics for cruise ship info data.

Age Tonnage Passengers Length Cabins Crew

Min. 4.00 2.32 0.66 2.79 0.33 0.59
Median 14.00 71.89 19.50 8.56 9.57 8.15
Mean 15.00 71.29 18.46 8.13 8.83 7.79
Max. 48.00 220.00 54.00 11.82 27.00 21.00

Figure 1 shows the correlation plot of the data, where one can see that most of the
variables are highly intercorrelated. For example, correlation between passengers and
tonnage is 0.95. Similarly, the correlation between passengers and cabins is 0.98. By
looking at the correlation plot, we can say that variables are highly correlated with each
other, and there may exist multicollinearity problem in the data. To verify the existence
of multicollinearity in the data, we calculated the variance inflation factor (VIF) from the
data. VIF is one of the widely used methods to detect multicollinearity in any data set. It
measures the strength of linear association (correlation) between the predictor variables
in a regression model. In THE case of multiple regression, the VIF for the jth regressor
variable can be defined as

VIFj =
1

1− R2
j

, j = 1, · · · , p

where R2
j is the correlation coefficient between zj and the remaining predictors of the

model. A general rule of thumb to interpret the VIF value is as follows. A value of VIF

http://www.truecruse.com
http://www.truecruse.com
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between 1 and 5 indicates a moderate correlation between a given regressor and other
regressor variables in the model, and does not require any action. However, a value of VIF
greater than 5 suggests that there is a severe correlation between a given predictor and
the remaining regressors. In this case, multicollinearity exists, which should be addressed
by the researcher to obtain reliable estimates. For the cruise ship info data, we calculated
the VIF, and the results are listed in Table 20. From this table, we can see that out of
five regressors, four regressors have a VIF value higher than 5, which indicates a serious
multicollinearity problem in the data.
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Figure 1. Correlation plot for cruise ship info data.

Table 20. Variance inflation factor values for cruise ship info data.

Age Tonnage Passengers Length Cabins

1.706 18.086 23.155 6.824 25.389

Finally, a regression model was fitted to the data using the OLS and different ridge
estimators, and the results are listed in Table 21. From this table, one can see that the ridge
estimators, existing as well as the proposed ones, had the smallest MSEs compared to the
OLS estimator. In addition, our proposed estimators outperformed all the existing ridge
estimators. Within our proposed estimators, The superior performance of NIS3 is evident
as it produced lower MSEs than NIS1 and NIS2 Table 21.

Table 21. Mean square error for different estimators of cruise ship info data (superscript represents
ranks).

OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

0.640 10 0.632 9 0.485 7 0.435 4 0.525 8 0.437 5 0.483 6 0.421 3 0.357 2 0.242 1

5.2. Economic Survey Data of Pakistan

We examined another dataset extracted from [24] to assess the performance of the
proposed estimators. The data set has a dependent variable Y that denotes the number of
persons employed (in millions). The independent variables are Z1 = land cultivated (in
millions of hectares); Z2 = inflation rate (in %); Z3 = number of establishments; Z4 = popu-
lation (in millions); and Z5 = literacy rate (in %). From Table 22, one can see that variables
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are on different scales. For example, the variable Z1 ranges from 19.55 to 21.99, whereas Z3
ranges from 3248 to 5128. Therefore, the variables were standardized before the estimation
of the model.

Table 22. Descriptive statistics for economic survey data of Pakistan.

Y Z1 Z2 Z3 Z4 Z5

Min. 20.08 19.55 0.0387 3248 68.92 22.20
Median 29.49 20.73 0.2400 4558 103.82 28.05
Mean 29.73 20.85 0.2502 4382 103.21 31.93
Max. 41.20 21.99 0.6121 5128 140.47 52.00

To check the linear association among the different variables of the data set, a correla-
tion plot is given in Figure 2. This plot shows that the regressors are highly correlated. For
example, the correlation between Z1 and Z3 is 0.94, whereas it is 0.98 between Z1 and Z4.
Similarly, Z3 and Z4 have a correlation coefficient value of 0.96. The correlation coefficient
values suggest that there may exist a serious problem of multicollinearity. To assess the
strength of multicollinearity, VIF was calculated for the data, and the results are listed in
Table 23. The table suggests that the regressors are strongly correlated and their VIF values
are much higher. For example, the VIF value for Z1 is 32.144, which is an indication of a
severe multicollinearity problem in the data.

We fitted the following model to our data, and the results are listed in Table 24.

Yi = δ1Z1i + δ2Z2i + δ3Z3i + δ4Z4i + δ5Z5i + ηi

From this table, the poor performance of the OLS is evident, as it results in a larger
MSE value compared to the ridge estimators. The proposed estimators performed relatively
well compared to the existing ridge estimators, as NIS3 and NIS2 were ranked 1st and
2nd. Within the proposed estimators, NIS3 outperformed the other two proposals by
producing a lower MSE value. From the simulation and real data analysis, it is concluded
that the proposed estimators are efficient and can be used in a situation where strong
multicollinearity exists in the data.
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Table 23. Variance inflation factor values for economic survey data of Pakistan.

Z1 Z2 Z3 Z4 Z5

32.144 2.538 26.213 70.772 22.677

Table 24. Meansquare error for different estimators of economic survey data of Pakistan (superscript
represents ranks).

OLS HK KGM KMS MKED KSM MK NIS1 NIS2 NIS3

0.652 10 0.634 9 0.513 8 0.451 6 0.472 7 0.451 5 0.418 3 0.423 4 0.415 2 0.389 1

6. Conclusions

In this article, we proposed some new developments to the existing estimators of
ridge parameters. Some of these existing estimators were modified, which resulted in
three novel estimators of ridge parameters, which are NIS1, NIS2, and NIS3. The proposed
estimators depend on the eigenvalues, the number of predictors, the standard deviation,
and the number of observations. A simulation and real data study were conducted, and
the performance of the ridge regression methods was evaluated on the basis of the mean
squared error criterion. Based on the simulation results, the new proposed estimators NIS1,
NIS2, and NIS3 were found to have the smallest MSEs in general. Comparing different
parameter values, the simulation results suggested that the proposed estimators have the
smallest MSEs than the OLS and existing ridge regression estimators. Finally, two real data
sets were used to demonstrate the ability and the performance of the proposed estimators
and it was found that the presented estimators performed relatively well compared to the
existing ridge estimators by producing lower MSE values. From the simulation and real
data analysis, it is concluded that the proposed estimators are efficient and can be used
in a situation where strong multicollinearity exists in the data. Although the proposals
perform relatively well compared to some of the existing estimators, more study is required
before making any definite statement. In the future, some of the recently proposed ridge
estimators from the literature can be compared with the proposed estimators to evaluate the
proposals’ performance. Moreover, the theoretical properties of the proposed estimators
can be studied in a future research work.
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