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Abstract: In this paper, the stability problem for the digital redesign of discrete-time switched systems
using H∞ linear matrix inequality (LMI) is investigated. We propose the switching time approach for
digital redesign between controller work and failure, and this switching time will limit the system
output within the system capacity. When the controller fails, the overall system will be unstable.
Therefore, if the digital redesign controller is not restored in a certain period of time, the system
output will exceed the system capacity. To solve this problem, we propose a switching law to
determine the switching time between the stable mode (controller work) and the unstable (controller
failure) mode; this will limit the overall system states in the unstable mode. In addition, the digital
redesign controller has the advantage of faster tracking. After we propose a discrete-time switching
system with stable and unstable modes, we use H∞ linear matrix inequality (LMI) and Lyapunov
functions to prove the stability in detail. Finally, the numerical example illustrates the feasibility of
the proposed approach.
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1. Introduction

Many systems are dynamic systems that exhibit continuous and discrete dynamic
behaviours. These systems that include two kinds of dynamic behaviour and interaction
are called hybrid systems—for example, embedded systems, communication networks,
and aircraft and traffic control. The history of hybrid systems began in the 1950s and
attracted attention in the 1990s to implement the development of digital microcontrollers
and embedded devices. Switched systems [1–8] are a special class of hybrid systems
that might contain continuous-time or discrete-time subsystems and a switching law
orchestrating switching between these subsystems and can be viewed as higher-level
abstractions of hybrid systems.

In fact, many practical systems have multimodal dynamical subsystems to exhibit
diversified behaviour, which might depend on various environments. In recent years,
switched system research has seen an increasing trend and has made great efforts; see,
e.g., [9–11]. The research is always focused on stability analysis and controller design
to guarantee switched systems stability and achieve good performance. As we know,
there are several methods applied to stability analysis of those systems, namely Lyapunov
function [12–15], linear matrix inequality [16–18], and dwell time [19–21]. However, the
above and recent studies have not discussed the stability analysis of the switching system
based on the digital redesign in the stable mode and the unstable mode. This paper is based
on the first and third cases and uses the H∞ linear matrix inequality to cooperate with the
piecewise Lyapunov method functions and the average dwell time to derive switching
laws. In addition, the proposed switching law can be guaranteed to be convergent after the
detailed proof in the Appendices A and B.
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In terms of contributions, this paper successfully derives switching laws by H∞ linear
matrix inequality for unstable discrete-time switched systems and proves that state error
can be bounded. Because state error is bounded, the system performance can also be
bounded in a certain range. That tells us whether the controller will work or fail for an
unstable discrete-time switched system, and we can know beforehand the approximate
bound of system performance, which will be our expectation or not. Finally, the numerical
example illustrates the feasibility of the proposed approach, and the robust performance
and tracking performance for different Q values are shown in detail.

The stability problem for the digital redesign of discrete-time switched systems using
H∞ linear matrix inequality (LMI) is proposed in this paper. The proposed switching law is
derived and strictly proves the stability. This paper is organized as follows. The switched
system is briefly described along with H∞ linear matrix inequality constraint in Section 2.
The prediction-based digital redesign is introduced in Section 3. The main results and
proofs are in Section 4, and an illustrative example is presented in Section 5 to demonstrate
the effectiveness of the proposed methodology. Finally, the conclusion is addressed in
Section 6.

2. Systems Description and Preliminaries

The stability analysis of the switched systems and the controller design have been our
focus points in this paper, given the discrete-time switched systems [22] as follows:{

x(k + 1)= Aσ(k)x(k) + Bσ(k)u(k), x(0) = x0

y(k)= Cσ(k)x(k),
(1)

where σ(k) : N+ → IN = {1, 2, · · · , N}, N > 1 , N+ denotes the set of all nonnegative in-
tegers, and σ(k) is called a switching signal. N is the number of subsystems, which must
be greater than 1, showing that it is N times that we switch over discrete-time switched
systems (1). Every subsystem has its corresponding constant matrix, which gives Ai, Bi,
and Ci (i ∈ IN) to express. To simplify, all k represents kT, and ka − kb represents (ka − kb)T
(T is the sampling time). Since all Ai or some Ai are stable, discrete-time switched systems,
(1) can be exponentially stable under switching laws and satisfy the following inequality:

Nσ (0, k) ≤ N0 +
k
τ

, N0 ≥ 0, τ > 0, (2)

where Nσ (0, k) denotes the number of switching signals of σ(k) on the interval [0, k); τ is
called the average dwell time; and N0 is the chatter bound. For the concept of average
dwell time, see [23]. For example, if N0 = 1, then inequality (2) implies that σ(k) cannot
switch twice on any interval of length smaller than τ. Switching signals with this property
are exactly the switching signals with dwell time τ. Note, also, that N0 = 0 corresponds to
the case of no switching since σ(k) cannot switch at all on any interval of length smaller
than τ. A detailed description is that consecutive switchings are separated by less than τ,
but the average time interval between consecutive switchings is not less than τ. In general,
if we discard the first N0 switchings, then the average time interval between consecutive
switchings is at least τ. We use the idea of average dwell time to derive a class of switching
laws that exponentially stabilize the switched system (1) where both stable and unstable
subsystems exist. As we obtain switching laws, we can know the upper and lower working
time limits, which relate to controller design in the switched system (1).

For the controller design, we use the method of prediction-based digital redesign, and
then our focal point is placed on utilizing H∞ linear matrix inequality to cooperate with the
piecewise Lyapunov method functions [24,25] and the preceding concept of average dwell
time to derive switching laws. From [26–30], the H∞ linear matrix inequality constraint is
as follows:
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Lemma 1 ([29]). Given any transfer function Gi ≡ Di + Ci(zI − Ai)
−1Bi (not necessarily

minimal), we have
‖Gi‖∞ < ri,

Ai asymptotically stable.
If and only if the following LMI in Pi is feasible:AT

i Pi Ai − Pi AT
i PiBi CT

i
BT

i Pi Ai BT
i PiBi − ri I DT

i
Ci Di −ri I

 < 0, Pi > 0 (3)

Lemma 1 stipulates that all Ai must be asymptotically stable. In much research, Ai
addresses the situation of asymptotically stable, but when discrete-time switched system (1)
is not asymptotically stable, and the controller fails (u(k) = 0), how should we deal with
this problem? To address this problem, this paper proposes a method to solve and prove
that the norm of tracker error e(k) is bounded in a certain range and derives switching laws
suitable for unstable discrete-time switched systems (1).

3. The Prediction-Based Digital Redesign
3.1. Optimal Linearization

We apply the optimal linearization methodology [30] for generating optimal local
models, which provides a tool for digital redesign for the class of time-varying nonlinear
systems. This method is briefly described here and is used in the following.

Consider a class of nonlinear systems as follows:

.
x(t) = f (x(t)) + g(x(t)) u(t), (4)

where f (·) : <n → <n and g(·) : <n → <m are nonlinear functions; x(t) ∈ <n is
the state vector; and u(t) ∈ <m is the control input. Assume that a local “linear model”
(Al , Bl) at the operation state, xl(t) ∈ <n, is desired in the form

.
x(t) = Al x(t) + Bl u(t), (5)

Assume that the operating state, xl 6= 0, is not necessarily an equilibrium of the given
system (4). One wishes to find two constant matrices Al and Bl such that

f (x) + g(x) u ≈ Al x + Bl u for any u, (6)

f (xl) + g(xl) uk = Al xl + Bl u for any u . (7)

g(xl) = Bl . (8)

Therefore, (6) and (7) can be reduced to a brief form as

f (x) ≈ Al x, (9)

and
f (xl) = Al xl . (10)

To satisfy these, aj
T is denoted as the jth row of the matrix Al so that (9) and (10) can

be represented as
f j (x) ≈ aj

T x, j = 1 , 2 , . . . , n (11)

and
f j (xl) = aj

T xl , j = 1 , 2 , . . . , n, (12)
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respectively, where f j(·) : <n → < is the jth component of the vector f (·). Then, expand-
ing the left-hand side of (11) about xl and neglecting the second- and higher-order terms,
we can obtain

f j(xl) + [∇ f j(xl)]
T(x− xl) ≈ aj

Tx, (13)

where ∇ f j(xl) : <n → <n is the gradient column vector of f j evaluated at xl . Now, using
(12), one can rewrite (13) as

[∇ f j(xl)]
T(x− xl) ≈ aj

T(x− xl)

in which x is arbitrary but should be close to xl so that the approximation is good. To
determine a constant vector, aj

T , such that it is as close as possible to [∇ f j(xl)]
T and

satisfies aj
T xl = f j(xl), our objective can, thus, be formulated as a constrained optimization

problem to minimize

E ≡ 1
2
‖∇ f j (xl)− aj‖2

2 subject to aj
Txl = f j (xl), (14)

where aj
T is the jth row of the matrix Al . Note that this is also a convex-constrained

optimization problem. Thus, using the Lagrange multiplier method, the optimal solution is

aj = ∇ f j (xl) +
f j(xl) + xl

T ∇ f j(xl)

‖xl‖2
2 · xl for xl 6= 0, (15)

where ‖xl‖2
2 = xl

T xl is the square magnitude of the components of xl .
The controllability matrix for the nonlinear system (4) at the operating state xl is

derived from the optimal linear model Al , Bl , resulting in

C = [Bl Al Bl Al
2Bl · · · Al

n−1Bl ], (16)

where Al and Bl are constructed via the following rule: the qth columns of Al and Bl are
set to zero whenever the qth component of xl is zero.

Remark 1. ([31]). It is well known that the high-gain property can suppress system uncertain-
ties [31]. For this reason, the high-gain property is adopted in this paper.

3.2. Linear-Quadratic Analogue Tracker Design

Consider a linear-quadratic analogue system described as

.
xc (t) = A xc (t) + B uc (t)
yc (t) = C xc (t) + D uc (t), x c (0) = x0

(17)

which is assumed to be both controllable and observable, where xc(t) ∈ <n, uc(t) ∈ <m,
and yc(t) ∈ <p. The optimal state-feedback control law minimizes the following perfor-
mance index:

J =
∫ ∞

0

{
[C xc (t)− yr (t)]

T Q [C xc (t)− yr (t) ] + uT
c (t)R uc(t)

}
dt, (18)

with Q ≥ 0 and R > 0 for system (17) with D = 0. This optimal control [31] is given by

uc(t) = −Kc xc(t) + Ec yr(t). (19)

The resulting closed-loop system becomes

.
xc(t) = (A− B Kc) xc(t) + B Ec yr(t), (20)
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where
Kc = R−1 BT P, (21)

Ec = −R−1 BT [(A− B Kc)
−1]

T
CT Q. (22)

Here, yr(t) is a reference input and P is the solution of the Riccati equation:

AT P + P A− P B R−1BT P + CTQ C = 0. (23)

Remark 2. ([31]). It is noted that the high-gain property can be obtained by choosing a sufficiently
high ratio of Q to R in (18) so that the system output can closely track the reference input.
However, the high-gain property of the tracker usually yields large control signals, which might
cause the system actuator to saturate and give an unsatisfactory system response. To achieve perfect
performance, sometimes a search process is needed for the selection of the weighting matrices.

3.3. Observer-Based Linear-Quadratic Analogue Tracker Design

Consider the situation in which the system state of (17) cannot all be measured. Then,
the observer can be used to estimate the unmeasured system state. Consider the linear
observable continuous-time system in Figure 1, which is described as follows:

.
x̂c(t) = A x̂c(t) + B uc(t) + L [yc(t)− C x̂c(t)] (24)

where x̂c(t) is the estimate of xc(t), and L ∈ <n×p is the observer gain. Let the estimation
error be

x̃c(t) = xc(t)− x̂c(t), (25)

which implies
.
x̃c(t) =

.
xc(t)−

.
x̂c(t). (26)
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Figure 1. Observer-based linear-quadratic analogue tracker.

Substituting (17) with D = 0 and (24) into (26) yields

.
x̃c(t) = (A− L C) x̃c(t), (27)
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which contrasts (20) and (27) with yr(t) = 0. One can see that

(A− L C)T = AT − CT LT , (28)

which has the structure as a state-feedback controller. The optimal control gain Kc can be
used to select the observer gain L as follows:

L = Kc
T = Pob CT Rob

− 1, (29)

where Pob is the solution of the following Riccati equation:

A Pob + Pob AT − Pob CT Rob
− 1 C Pob + Qob = 0, (30)

in which Qob ≥ 0, and Rob > 0.

3.4. Digital Redesign of the Linear-Quadratic Analogue Tracker

Let the continuous-time state-feedback controller be

uc(t) = −Kc xc(t) + Ec yr(t), (31)

where Kc ∈ <m×n and Ec ∈ <n×m have been designed to satisfy some specified goals, and
yr(t) ∈ <m is a desired reference input vector. Thus, the analogously controlled system is

.
xc(t) = Ac xc(t) + B Ec yr(t), xc(0) = xc0 = x0, (32)

where Ac = A− B Kc. Let the state equation of a corresponding discrete-time equivalent
model be

.
xd(t) = A xd(t) + B ud(t), xd(0) = xd0 = x0, (33)

where ud(t) ∈ <m is a piecewise-constant input vector, satisfying

ud(t) = ud(kT), for kT ≤ t < (k + 1) T,

and T > 0 is the sampling period. Then, the discrete-time state-feedback controller is
given by [30]

ud(kT) = −Kd xd(kT) + Ed yr
∗(kT) (34)

where
Kd = (Im + Kc H) − 1 Kc G, (35)

Ed = (Im + Kc H) − 1 Ec, (36)

yr
∗(kT) = yr(kT + T), (37)

G = eA T , (38)

H = (G− In) A−1 B, (39)

Whenever A− 1 does not exist, H can be computed by the following formula [32]:

H =
∞

∑
v=1

1
v !

(AT) v−1 B T.
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The digitally controlled closed-loop system thus becomes

.
xd(t) = A xd(t) + B [−Kd xd(kT) + Ed yr

∗(kT) ] , xd(0) = xd0 ,
yd(kT) = C xd(kT), for kT ≤ t < (k + 1) T.

(40)

Remark 3 (sampling period selection). It is noted that the mapping of a continuous-time system
to its corresponding discretized system can be one-to-one if the selected sampling period satisfies the
sampling theorem [33].

3.5. Digital Redesign of the Observer-Based Linear-Quadratic Analogue Tracker

Consider the linear observable continuous-time system

.
x̂c(t) = A x̂c(t) + B uc(t) + L [yc(t)− C x̂c(t)], (41)

by defining the continuous-time and discrete-time state estimate errors, respectively, as

x̃c(t) ≡ xc(t)− x̂c(t),
x̃d(kT) ≡ xd(kT)− x̂d(kT),

(42)

then
x̃d(kT) ≈ x̃c(t)| t = k T .

Using the duality once again, the discrete-time state estimation error dynamics can be
found as follows:

x̃d(kT + T) = (G− M N) x̃d(kT), (43)

where
G = eA T , (44)

M = (G− In) A− 1L, (45)

N = (I m + C M) − 1C G. (46)

Further define
Ld = M (Im + C M) − 1, (47)

then one has

M N = (G− In) A− 1 L (I m + C M) − 1 C G = L C G. (48)

Since
xd(kT + T) = G xd(kT) + H ud(kT),

yd(kT) = C xd(kT),
(49)

from (49), one has
C G xd(kT) = yd(kT + T)− C H ud(kT). (50)

Substituting (48) into (43) yields

x̃ d(kT + T) = xd(kT + T)− x̂ d(kT + T)
= (G− L d C G)(xd(kT)− x̂d(kT))
= (G− Ld C G) xd(kT)− (G− Ld C G) x̂d(kT).

(51)

Substituting (50) into (51), one has

x̃d(kT + T) = xd(kT + T)− x̂d(kT + T)
= [G xd(kT) + H ud(kT)]− x̂d(kT + T)

(52)
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= G xd(kT)− Ld [yd(kT + T)− C H ud(kT)]− (G− Ld C G) x̂d(kT)
= G xd(kT)− Ld yd(kT + T) + Ld C H ud(kT)− (G− Ld C G) x̂d(kT).

(53)

From (52) and (53), one has the discrete observer

x̂d(kT + T) = (G− Ld C G) x̂d(kT) + (In − Ld C) H ud(kT) + Ld yd(kT + T)
= Gd x̂d(kT) + Hd ud(kT) + Ld yd(kT + T)

(54)

and
ŷd(kT + T) = C x̂d(kT + T),

where
Ld = (G− In) A−1L (Im + C (G− In) A−1L)

−1
, (55)

Gd = G− Ld C G, (56)

Hd = (In − Ld C) H, (57)

G = eA T , (58)

H = (G− In) A−1 B. (59)

Considering the practical implementation, the following discrete observer using the
current output yd(kT) and previously estimated state x̂d(kT − T) to compute the currently
estimated state x̂d(kT) is suggested as an alternative:

x̂d(kT) = Gd x̂d(kT − T) + Hd ud(kT − T) + Ld yd(kT),
ŷd(kT) = C x̂d(kT).

(60)

The observer-based digital tracker and observer for the sampled-data optimal linear
model are shown in Figure 2.
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Figure 2. Prediction-based digital tracker and observer.
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4. H∞ Linear Matrix Inequality Constraint with An Unstable Discrete-Time System

We consider an unstable discrete-time system{
xd(k + 1)= Adxd(k) + Bdud(k), xd(0) = x0

yd(k)= Cdxd(k),
(61)

where Ad ∈ <n×n, Bd ∈ <n×m, and Cd ∈ <p×n are system, input, and output matrices,
respectively, and xd ∈ <n, ud ∈ <m, and yd ∈ <p are state, input, and output vectors.
In the controller design, we utilize 3.2 small matters (21)~(23) with 3.4 small matters
(34)~(39), where

G = eA T = Ad, H = (G− In) A− 1 B = Bd. (62)

When the controller works, the unstable discrete-time system (61) changes into a stable
discrete-time system as follows:{

xd(k + 1)= Asxd(k) + Bsy∗r (k), xd(0) = x0

yd(k)= Csxd(k),
(63)

where As = G− HKd, Bs = HEd, and Cs = Cd. When the controller fails (ud(k) = 0), the
unstable discrete-time system (61) becomes{

xd(k + 1)= Auxd(k), xd(0) = x0

yd(k)= Cdxd(k),
(64)

where Au = Ad.
If the controller works, As is stable, and according to [27,28,34,35] and Lemma 1, the

stable discrete-time system (63) will satisfy the following inequalities:

AT
s Ps As − Ps < 0,

AT
s Ps As − Ps AT

s PsBs CT
s

BT
s Ps As BT

s PsBs − r0 I DT
s

Cs Ds −r0 I

 < 0,

Ps > 0, (65)

where ‖Gs‖∞ < r0, Gs ≡ Ds + Cs(zI − As)
−1Bs. In inequality (65), the positive scalar λs

(λs < 1) can exist and can be rewritten as follows:

AT
s Ps As − λ2

s Ps < 0,

AT
s Ps As − λ2

s Ps AT
s PsBs CT

s
BT

s Ps As BT
s PsBs − r0 I DT

s
Cs Ds −r0 I

 < 0,

Ps > 0. (66)

Inequalities (66) can be equivalent to

AT
s Λs As − λ2

s Λs < 0,

[
AT

s Λs As − λ2
s Λs + CT

s Cs AT
s ΛsBs + CT

s Ds
BT

s Λs As + DT
s Cs BT

s ΛsBs − r2
0 I + DT

s Ds

]
< 0,
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Λs > 0, (67)

where Λs = r0Ps. The proof (66) to (67) is available in Appendix A.
Inequalities (67) can be used in the LMI control toolbox to obtain the solution of Λs.

After the solution of Λs, we define the Lyapunov function candidate

V(xd(k)) = [Csxd(k)− y∗r (k)]
T Px[Csxd(k)− y∗r (k)]

= [xd(k)− x∗r (k)]
TΛs[xd(k)− x∗r (k)],

(68)

where Px > αI > 0 (α > 0), y∗r (k) = Csx∗r (k), and Λs = CT
s PxCs. From (68), one obtains

V(xd(k + 1))−V(xd(k))
= [xd(k + 1)− x∗r (k)]

TΛs[xd(k + 1)− x∗r (k)]− [xd(k)− x∗r (k)]
TΛs[xd(k)− x∗r (k)]

= {[Asxd(k) + Bsy∗r (k)]− x∗r (k)}
TΛs{[Asxd(k) + Bsy∗r (k)]− x∗r (k)}−

[xd(k)− x∗r (k)]
TΛs[xd(k)− x∗r (k)]

=
[

xd
T(k) x∗r T(k)

][ AT
s Λs As −Λs AT

s Λs(BsCs − I) + Λs

(BsCs − I)TΛs As + Λs (BsCs − I)TΛs(BsCs − I)−Λs

][
xd(k)
x∗r (k)

]
.

(69)

By (67) and (69) can be represented as (see Appendix B)

V(xd(k+ 1))−V(xd(k)) ≤ (λ2
s − 1)V(xd(k))− cyd

T(k)yd(k)+ (r2
0 +ω)y∗r

T(k)y∗r (k), (70)

where c (c > 0) is a scalar, and ω = α(2λ2
s + 1). We can solve the inequality (70) to obtain

V(xd(k)) ≤ λ
2(k−k0)
s V(xd(k0))−

k−1

∑
j=k0

λ
2(k−1−j)
s Γ(j), (71)

where Γ(j) = cyd
T(j)yd(j) − (r2

0 + ω)y∗r T(j)y∗r (j), and inequality (71) denotes the Lya-
punov function with the controller working over the interval [k2i, k2i+1).

Assume the controller of the unstable discrete-time system (61) works over the interval
[k2i, k2i+1) and fails over the interval [k2i+1, k2i+2), where i = 0, 1, 2, 3 . . ., and k0 = 0. Now,
we first consider that working time k is located in the interval [k0, k1) and use the following
theorem (see [6]):

α1‖xd(k)− x∗r (k)‖
2 ≤ V(xd(k)) ≤ α2‖xd(k)− x∗r (k)‖

2, ∀xd, x∗r ∈ <n (72)

where α1 = λm(Λs), α2 = λM(Λs), λm(·), λM(·) denotes the smallest (largest) eigenvalue
of a symmetric matrix, and then

V(xd(k)) ≥ α1‖xd(k)− x∗r (k)‖
2, V(xd(k0)) ≤ α2‖xd(k0)− x∗r (k0)‖2. (73)

From (71) and (73), we can obtain

α1‖xd(k)− x∗r (k)‖
2 ≤ V(xd(k))

= λ
2(k−k0)
s V(xd(k0))−

k−1
∑

j=k0

λ
2(k−1−j)
s Γ(j)

≤ λ
2(k−k0)
s α2‖xd(k0)− x∗r (k0)‖2 −

k−1
∑

j=k0

λ
2(k−1−j)
s Γ(j),

(74)

and then

‖xd(k)− x∗r (k)‖ ≤

√√√√µλ
2(k−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k−1

∑
j=k0

λcλ
2(k−1−j)
s Γ(j), (75)
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where µ = α2
α1

and λc =
1
α1

. If k→ k1 , we can obtain

‖xd(k1)− x∗r (k1)‖ ≤

√√√√µλ
2(k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1

∑
j=k0

λcλ
2(k1−1−j)
s Γ(j). (76)

When the interval is [k0, k1) to [k1, k2), the controller works to fail, and a stable discrete-
time system (63) will switch to an unstable discrete-time system (64). Thus, we can know

xd(k) = Ak−k1
u xd(k1). (77)

System (76) is unstable, which causes system performances and states to grow quickly.
To solve this problem, we assume there always exists λu (λu ≥ 1), such that

‖Aq
u‖ ≤ huλ

q
u, (78)

holds for ∀ q ≥ 1, where hu is a constant scalar. From (78), we obtain

‖Ak−k1
u ‖ ≤ λk−k1

u , (79)

here we set hu = 1. From (77) and (79), one obtains

‖xd(k)‖ ≤ λk−k1
u ‖xd(k1)‖. (80)

Because

‖xd(k1)‖ − ‖x∗r (k1)‖ ≤ ‖xd(k1)− x∗r (k1)‖ ≤

√√√√µλ
2(k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1

∑
j=k0

λcλ
2(k1−1−j)
s Γ(j), (81)

we obtain

‖xd(k1)‖ ≤

√√√√µλ
2(k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1

∑
j=k0

λcλ
2(k1−1−j)
s Γ(j) + ‖x∗r (k1)‖. (82)

Combining (80) and (82), we can obtain the following inequality:

‖xd(k)‖ ≤ λk−k1
u ‖xd(k1)‖

=

√
µλ

2(k−k1)
u λ

2(k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1
∑

j=k0

λcλ
2(k−k1)
u λ

2(k1−1−j)
s Γ(j) + λk−k1

u ‖x∗r (k1)‖

≤
√

µλ
2(k−k1)
u λ

2(k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1
∑

j=k0

λcλ
2(k−k1)
u λ

2(k1−1−j)
s Γ(j) + ‖x∗r (k)‖,

(83)

and then

‖xd(k)− x∗r (k)‖ ≤

√√√√µλ
2(k−k1)
u λ

2(k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1

∑
j=k0

λcλ
2(k−k1)
u λ

2(k1−1−j)
s Γ(j). (84)

If k→ k2 , we can obtain

‖xd(k2)− x∗r (k2)‖ ≤

√√√√µλ
2(k2−k1)
u λ

2(k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1

∑
j=k0

λcλ
2(k2−k1)
u λ

2(k1−1−j)
s Γ(j). (85)

Similarly, when the working time k is located in the interval [k2, k3), we repeat steps
similar to (73)~(75) and utilize (85) to obtain
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‖xd(k)− x∗r (k)‖ ≤√
µ2λ

2(k2−k1)
u λ

2(k−k2+k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1
∑

j=k0

µλcλ
2(k2−k1)
u λ

2(k−k2+k1−1−j)
s Γ(j)−

k−1
∑

j=k2

λcλ
2(k−1−j)
s Γ(j).

(86)

If k→ k3 , we can obtain

‖xd(k3)− x∗r (k3)‖ ≤√
µ2λ

2(k2−k1)
u λ

2(k3−k2+k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1
∑

j=k0

µλcλ
2(k2−k1)
u λ

2(k3−k2+k1−1−j)
s Γ(j)−

k3−1
∑

j=k2

λcλ
2(k3−1−j)
s Γ(j).

(87)

When the working time k is located in the interval [k3, k4), we repeat (77)~(84) and
utilize (87). We can obtain

‖xd(k)− x∗r (k)‖ ≤√
µ2λ

2(k−k3+k2−k1)
u λ

2(k3−k2+k1−k0)
s ‖xd(k0)− x∗r (k0)‖2 −

k1−1
∑

j=k0

µλcλ
2(k−k3+k2−k1)
u λ

2(k3−k2+k1−1−j)
s Γ(j)−

k3−1
∑

j=k2

λcλ
2(k−k3)
u λ

2(k3−1−j)
s Γ(j).

(88)

By repeatedly working, we can find that the error ‖xd(k)− x∗r (k)‖ of the unstable
discrete-time switched system (61) is limited whether the controller works or not, and the
general form is

‖xd(k)− x∗r (k)‖ ≤

√√√√µId(0,k)λ
2Ku(0,k)
u λ

2Ks(0,k)
s ‖xd(k0)− x∗r (k0)‖2 − ∑

q=0,2,4...

(
k−1(kq+1−1)

∑
j=kq

µId(j,k)−1λcλ
2Ku(kq ,k)
u λ

2Ks(j,k)
s Γ(j)

)
,

k ≥ 0.

(89)

We set e(k) = xd(k)− x∗r (k), then (89) can be written as

‖e(k)‖ ≤

√√√√√µId(0,k)λ
2Ku(0,k)
u λ

2Ks(0,k)
s ‖e(k0)‖2 − ∑

q=0,2,4...

k−1(kq+1−1)

∑
j=kq

µId(j,k)−1λcλ
2Ku(kq ,k)
u λ

2Ks(j,k)
s Γ(j)

, k ≥ 0 (90)

where Γ(j) = cyd
T(j)yd(j) − (r2

0 + ω)y∗r T(j)y∗r (j). Ku(a, b) and Ks(a, b) denote all the
controller working and failure times, respectively, in the interval [a, b).

We define Nσ(a, b) as the switched number in the interval [a, b) and Id(a, b) as the
corresponding constant. The relation that Nσ(a, b) corresponds to Id(a, b) is as follows:

Nσ(a, b) : 0 1 2 3 4 5 · · ·
↓ ↓ ↓ · · ·

Iσ(a, b) : 1 2 3 · · ·

The general solution (90) of all states reflects all conditions where the controller works
or fails. In the next study, we prove that all states of the switched system (61) can be
bounded by L2 and that the response is limited in a certain range.

Considering (90), set e(k0) = 0.
Case 1: When µ = 1, because ‖e(k)‖ ≥ 0, from (90), we know that

∑
q=0,2,4...

k−1(kq+1−1)

∑
j=kq

λ
2Ku(kq ,k)
u λ

2Ks(j,k)
s Γ(j)

 ≤ 0. (91)

If there exists a positive number λ∗, then

λ
2Ku(kq ,k)
u λ

2Ks(j,k)
s ≤ λ∗2(Ku(kq ,k)+Ks(j,k)) (92)
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holds. We set j = 0, kq = 0 and then

ln
(

λ
2Ku(0,k)
u λ

2Ks(0,k)
s

)
≤ ln

(
λ∗2(Ku(0,k)+Ks(0,k))

)
, (93)

because k = Ks(0, k) + Ku(0, k), we obtain the switching law from (93)

Ku(0, k)
k

≤ ln λ∗ − ln λs

ln λu − ln λs
. (94)

We observe (91); when q = 0 (or q = 2, 4 · · · ), we sum (91) from k = 1 to k = ∞, then

∞

∑
k=1

(
k−1

∑
j=0

λ
2Ku(0,k)
u λ

2Ks(j,k)
s Γ(j)

)
=

∞

∑
j=0

Γ(j)

(
∞

∑
k=j+1

λ
2Ku(0,k)
u λ

2Ks(j,k)
s

)
≤ 0. (95)

Because
∞

∑
k=j+1

λ
2Ku(0,k)
u λ

2Ks(j,k)
s > 0, (96)

then
∞

∑
j=0

Γ(j) ≤ 0. (97)

Inequality (97) denotes

∞

∑
j=0

yd
T(k)yd(k) ≤

(
r2

0 + ω

c

)
∞

∑
j=0

y∗r
T(k)y∗r (k). (98)

This result tells us that an L2 gain r2
0+ω

c is achieved for the switching system under the
switching law. Thus, the switching system is bounded by L2.

Case 2: When µ > 1 and j = 0, kq = 0, we obtain

µId(0,k)−1λ
2Ku(0,k)
u λ

2Ks(0,k)
s ≤ µId(0,k)−1λ∗2(Ku(0,k)+Ks(0,k))

= µId(0,k)−1λ∗2k.
(99)

If there exists a positive number λ, then

µId(0,k)−1λ∗2k ≤ λ2k. (100)

We can obtain another switching law as follows:

Id(0, k) ≤ 2k(ln λ− ln λ∗)

ln µ
+ 1, τ =

ln µ

2(ln λ− ln λ∗)
, N0 = 1. (101)

We know that the average time between consecutive switching is larger than or equal
to τ and (90) still holds from (101). Imitating the Case 1 proof, we know that Case 2 is also
bounded by L2.

The above discussion is e(k0) = 0. If the initial state e(k0) 6= 0, because we care
about the same terms (91) and (99), we can obtain the same switching laws (94) and (101).
The different part is that the term µId(0,k)λ

2Ku(0,k)
u λ

2Ks(0,k)
s ‖e(k0)‖2 in (90) can be ignored.

Combining the above analysis and results, we successfully provide switching laws and
know that we can effectively bound the states of the unstable discrete-time system (61)
under the switching laws. Inequalities (94) and (101) are our important results, and we
combine them with the digital redesign method to simulate an example.
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5. An Illustrative Example

In this section, we study an example to apply to this paper’s result. Consider an
unstable MIMO continuous-time system as follows:

.
xc(t) =

 −9.996 −3.41 2.641
0 −7.985 5.157
0 0 1.043

xc(t) +

 0.987 0.016
−0.011 0.99
1.043 1.043

uc(t), xc(0) =
[

0 0 0
]
,

yc(t) =
[

1 0 0
0 1 0

]
xc(t).

(102)

The optimal controller (19) is given by

uc(t) = −Kcxc(t) + Ecyr(t),

for Q = 105 I2 and R = I2 where

Kc =

[
306.266 −4.528 2.584

1.293 308.346 5.105

]
, and Ec =

[
316.069 −1.212
1.215 316.223

]
.

The corresponding discrete-time model is
xd(kT + T)=

0.368 −0.139 0.126
0 0.45 0.377
0 0 1.11

xd(kT) +

0.071 0
0.021 0.09
0.11 0.11

ud(kT), xd(0) =
[
0 0 0

]
,

yd(kT)=
[

1 0 0
0 1 0

]
xd(kT),

(103)

where T = 0.1 s. The digital redesign controller is

ud(kT) = −Kdxd(kT) + Edy∗r (kT),

where

Kd =

[
4.908 −1.917 1.753
−1.177 5.193 3.738

]
, and Ed =

[
13.763 0.005
−3.305 10.786

]
.

Depending on whether the controller works well or fails, the corresponding switched
forms of the system (103) will be similar to (63) or (64), where

As = G− HKd =

 0.0195 −0.002 0.001
0.002 0.022 0.003
−0.41 −0.36 0.505

, Bs = HEd =

 0.977 0.0004
−0.008 0.97

1.15 1.187


Au = Ad = G =

 0.368 −0.139 0.126
0 0.45 0.377
0 0 1.11

, Cs = Cd = C =

[
1 0 0
0 1 0

]
.

To satisfy the H∞ linear matrix inequalities in (66), set r0 = 2 and choose parameters
λs = 0.9, λu = 3.8, λ∗ = 1.65, and λ = 1.7. By using the LMI control toolbox, we can obtain
Ps and

Λs =

 4.2 0.096 −0.517
0.096 4.92 −0.632
−0.517 −0.632 0.898


and then µ = λM(Λs)

λm(Λs)
∼= 6.9. According to (94) and (101), one has the switching laws for the

controller working and not, respectively, as
Switching law 1:

τ =
ln µ

2(ln λ− ln λ∗)
= 31.428, τT ∼= 3.1
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Switching law 2:
Ku(0, k)

k
≤ ln λ∗ − ln λs

ln λu − ln λs
∼= 0.4.

Switching law 1 denotes the minimum value of the average time interval, which must
be greater than or equal to 3.1, and switching law 2 denotes the unavailability rate of
the switched system (103) with controller failure. We use switching laws to simulate the
tracking of a switched system (103). Here, we choose 0.4 s for which the switched system
(103) controller works and 3.2 s for which the controller fails. Figure 3a,b show the compar-

isons of the output response and the reference, where the reference y∗r =

[
cos(t)

1 + sin(t)

]
, the

sampling time T = 0.1 s, the initial state xd(0) = 0, and the simulation time is 30 s.
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Figure 3. (a) The output response 1( )dy k  and the reference *
1( )ry k , (b) The output response 

2( )dy k  and the reference *
2 ( )ry k . 

Figure 3. (a) The output response yd1(k) and the reference y∗r1(k), (b) The output response yd2(k) and
the reference y∗r2(k).

From Figure 3a,b, we know that the MIMO discrete-time switched system (103) output
responses yd1(k) and yd2(k) are bounded in the intervals [−0.99, 0.99] and [−0.44, 3.25].
Thus, we can bound the output response in a certain range. The next consideration is
the initial state xd(0) 6= 0 in the system (103). Additionally, we use the same conditions
(y∗r , T and the simulation time) as in Figure 3 to get the simulation results in Figure 4a,b.
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For system (103), the switching laws are the same whether xd(0) = 0 or not, and we set
xd =

[
1 −0.7 0

]
to simulate as follows (Figure 4a,b):
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Figure 4. (a) The output response yd1(k) and the reference y∗r1(k). (b) The output response yd2(k) and
the reference y∗r2(k).

From Figure 4a,b, we know that the MIMO discrete-time switched system (103) output
responses yd1(k) and yd2(k) are bounded in the intervals [−0.99, 1] and [−0.7, 3.25]. Next,
for different Q (R = I2) selections, the robust performance and tracking performance are
shown in Figures 5–8 and Table 1.
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Table 1. The robust performance and tracking performance comparison for different Q values. 

Q Bounded in the Intervals Tracking Performance 

210Q I= ×  1

2

( ) :  [ 0.17,  0.26]
( ) :  [0,  2.38]

d

d

y k
y k

−
 poor 

2
210Q I= ×  1

2

( ) :  [ 0.53,  0.53]
( ) :  [ 0.03,  2.97]

d

d

y k
y k

−
−

 poor 

3
210Q I= ×  1

2

( ) :  [ 0.9,  0.91]
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Figure 7. Q = 103 × I2: the robust performance and tracking performance.
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Figure 8. The robust performance and tracking performance.

Table 1. The robust performance and tracking performance comparison for different Q values.

Q Bounded in the Intervals Tracking Performance

Q = 10× I2
yd1(k) : [− 0.17, 0.26]
yd2(k) : [0, 2.38] poor

Q = 102 × I2
yd1(k) : [− 0.53, 0.53]
yd2(k) : [− 0.03, 2.97] poor

Q = 103 × I2
yd1(k) : [− 0.9, 0.91]
yd2(k) : [− 0.38, 3.14] acceptable

Q = 104 × I2
yd1(k) : [− 0.99, 0.99]
yd2(k) : [− 0.45, 3.26] good

Q = 105 × I2
yd1(k) : [− 0.99, 0.99]
yd2(k) : [− 0.44, 3.25] good

6. Conclusions

This paper successfully derives switching laws by H∞ linear matrix inequality for
unstable discrete-time switched systems (61) and proves that state error (90) can be bounded.
Because state error (90) is bounded, the system performance can also be bounded in a
certain range. That tells us whether the controller will work or fail for an unstable discrete-
time switched system (61), and we can know beforehand the approximate bound of system
performance, which will be our expectation or not. However, we must note that Ps in
the H∞ linear matrix inequality might not have a solution, so it is necessary to choose
appropriate parameters. In this paper, when the controller fails, we consider the controller
to be zero, which denotes that all control signals are broken, and this is the worst situation.
In the future, we will study when the controller fails and only several control factors are
lost and use the method in this paper for further discussion.
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Appendix A

Consider (66) and set Ps = r−1
0 Λs, which will obtain
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 AT
s Ps As − λ2

s Ps AT
s PsBs CT

s
BT

s Ps As BT
s PsBs − r0 I DT

s
Cs Ds −r0 I

 < 0

=

 √r0
−1 0 0

0 1 0
0 0 1


 AT

s Λs As − λ2
0Λs

√
r0
−1 AT

s ΛsBs
√

r0CT
s√

r0
−1BT

s Λs As r−1
0 BT

s ΛsBs − r0 I DT
s√

r0Cs Ds −r0 I


 √r0

−1 0 0
0 1 0
0 0 1

 < 0.

The above inequality denotes thatAT
s Λs As − λ2

0Λs
√

r0
−1 AT

s ΛsBs
√

r0CT
s√

r0
−1BT

s Λs As r−1
0 BT

s ΛsBs − r0 I DT
s√

r0Cs Ds −r0 I

 < 0.

Similarly, the above inequality can be decomposed as1 0 0
0
√

r0
−1 0

0 0
√

r0

AT
s Λs As − λ2

0Λs AT
s ΛsBs CT

s
BT

s Λs As BT
s ΛsBs − r2

0 I DT
s

Cs Ds I

1 0 0
0
√

r0
−1 0

0 0
√

r0

 < 0,

and then  AT
s Λs As − λ2

0Λs AT
s ΛsBs CT

s
BT

s Λs As BT
s ΛsBs − r2

0 I DT
s

Cs Ds −I

 < 0.

It has the following decomposition: AT
s Λs As − λ2

0Λs AT
s ΛsBs CT

s
BT

s Λs As BT
s ΛsBs − r2

0 I DT
s

Cs Ds −I

 =

[
I A12 A−1

22
0 I

][
∆̂ 0
0 A22

][
I 0

A−1
22 A21 I

]
< 0,

where

A11 =

[
AT

s Λs As − λ2
0Λs AT

s ΛsBs
BT

s Λs As BT
s ΛsBs − r2

0 I

]
, A12 =

[
CT

s
DT

s

]
, A21 =

[
Cs Ds

]
, A22 = −I,

and ∆̂ = A11 − A12 A−1
22 A21. The matrix ∆̂ is the Schur complement of A22 in A. Represent

the above inequality as

∆̂ =

[
AT

s Λs As − λ2
0Λs AT

s ΛsBs
BT

s Λs As BT
s ΛsBs − r2

0 I

]
−
[

CT
s

DT
s

]
(I)−1[Cs Ds

]
< 0,

which is equivalent to (67).

Appendix B

From (67), the following inequality is satisfied[
1 0
0 CT

s

][
AT

s Λs As − λ2
s Λs + CT

s Cs AT
s ΛsBs + CT

s Ds
BT

s Λs As + DT
s Cs BT

s ΛsBs − r2
0 I + DT

s Ds

][
1 0
0 Cs

]
=

[
AT

s Λs As − λ2
s Λs + CT

s Cs AT
s ΛsBsCs + CT

s DsCs
CT

s BT
s Λs As + CT

s DT
s Cs CT

s BT
s ΛsBsCs − r2

0CT
s Cs + CT

s DT
s DsCs

]
< 0,

thus

[
xd

T(k) x∗r T(k)
]([ AT

s Λs As −Λs AT
s Λs(BsCs − I) + Λs

(BsCs − I)TΛs As + Λs (BsCs − I)TΛs(BsCs − I)−Λs

]
+[ (

1− λ2
s
)
Λs + CT

s Cs AT
s Λs −Λs + CT

s DsCs
Λs As −Λs + CT

s DT
s Cs CT

s BT
s Λs + ΛsBsCs − r2

0CT
s Cs + CT

s DT
s DsCs

])[
xd(k)
x∗r (k)

]
< 0.
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Thus, (69) becomes

V(xd(k + 1))−V(xd(k))

=
[

xd
T(k) x∗r T(k)

][ AT
s Λs As −Λs AT

s Λs(BsCs − I) + Λs

(BsCs − I)TΛs As + Λs (BsCs − I)TΛs(BsCs − I)−Λs

][
xd(k)
x∗r (k)

]
≤ −

[
xd

T(k) x∗r T(k)
][ (

1− λ2
s
)
Λs + CT

s Cs AT
s Λs −Λs + CT

s DsCs
Λs As −Λs + CT

s DT
s Cs CT

s BT
s Λs + ΛsBsCs − r2

0CT
s Cs + CT

s DT
s DsCs

][
xd(k)
x∗r (k)

]
where Ds = 0. The above matrix can be decomposed as[

−CT
s Cs −AT

s Λs
−Λs As −

(
ΛsBsCs + CT

s BT
s Λs

) ] = [I ϕ12 ϕ−1
22

0 I

][
∆̂ϕ 0
0 ϕ22

][
I 0

ϕ−1
22 ϕ21 I

]
,

where ϕ11 = −CT
s Cs, ϕ12 = −AT

s Λs, ϕ21 = −Λs As, ϕ22 = −
(
ΛsBsCs + CT

s BT
s Λs

)
, and

∆̂ϕ = ϕ11−ϕ12 ϕ−1
22 ϕ21. If

(
ΛsBsCs + CT

s BT
s Λs

)−1
< CT

s Cs, then ϕ22 < 0 and ∆̂ϕ < 0,
which implies[

−CT
s Cs −AT

s Λs
−Λs As −

(
ΛsBsCs + CT

s BT
s Λs

)] = [I ϕ12 ϕ−1
22

0 I

][
∆̂ϕ 0
0 ϕ22

][
I 0

ϕ−1
22 ϕ21 I

]
< 0.

By the above inequality can be represented as

V(xd(k + 1))−V(xd(k)) <
[
xd

T(k) x∗r T(k)
][(λ2

s − 1
)
Λs Λs

Λs r2
0CT

s Cs

][
xd(k)
x∗r (k)

]
=
[
xd

T(k) x∗r T(k)
][λ2

s Λs 0
0 Λs

][
xd(k)
x∗r (k)

]
−V(xd(k)) + r2

0x∗r T(k)CT
s Csx∗r (k).

Because [
λ2

s Λs 0
0 Λs

]
≤
[
(λ2

s + 1)Λs 0
0 (λ2

s + 1)Λs

]
,

It can be represented as

V(xd(k + 1))−V(xd(k))

≤
[

xd
T(k) x∗r T(k)

][ (λ2
s + 1)Λs 0

0 (λ2
s + 1)Λs

][
xd(k)
x∗r (k)

]
−V(xd(k)) + r2

0x∗r T(k)CT
s Csx∗r (k)

= · · · · · ·
≤ (λ2

s − 1)V(xd(k)) + xd
T(k)Λsxd(k) + x∗r T(k)Λsx∗r (k) + r2

0x∗r T(k)CT
s Csx∗r (k) + Ψ,

where the coupling terms Ψ = λ2
s xd

T(k)Λsx∗r (k) + λ2
s x∗r T(k)Λsxd(k). The coupling terms

Ψ can simplify as Ψ = 2λ2
s x∗r T(k)Λsx∗r (k), because our target is yd(k)→ y∗r (k) , then

xd(k)→ x∗r (k) .
Thus,

V(xd(k + 1))−V(xd(k))
≤ (λ2

s − 1)V(xd(k)) + xd
T(k)Λsxd(k) + (2λ2

s + 1)x∗r T(k)Λsx∗r (k) + r2
0x∗r T(k)CT

s Csx∗r (k)
= (λ2

s − 1)V(xd(k)) + xd
T(k)CT

s PxCsxd(k) + (2λ2
s + 1)x∗r T(k)CT

s PxCsx∗r (k) + r2
0x∗r T(k)CT

s Csx∗r (k)
= (λ2

s − 1)V(xd(k)) + yd
T(k)Pyd(k) + (2λ2

s + 1)y∗r T(k)Py∗r (k) + r2
0y∗r T(k)y∗r (k)

= (λ2
s − 1)V(xd(k)) +

[
yd

T(k) y∗r T(k)
][ P 0

0 (2λ2
s + 1)P

][
yd(k)
y∗r (k)

]
+ r2

0y∗r T(k)y∗r (k).

The matrix [
P 0
0 (2λ2

s + 1)P

]
≥
[
−cI 0

0 (2λ2
s + 1)αI

]
,

Finally, we can obtain (70) by the above result and its solution (71).
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