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Abstract: In this work, by considering a third-order differential equation with delay-neutral ar-
guments, we investigate the oscillatory behavior of solutions. It is known that the relationships
between the solution and its derivatives of different orders, as well as between the solution and its
corresponding function, can help to obtain more efficient oscillation criteria for differential equations
of neutral type. So, we deduce some new relationships of an iterative nature. Then, we test the
effect of these relationships on the criteria that exclude positive solutions to the studied equation. By
comparing our results with previous results in the literature, we show the importance and novelty of
the new results.
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1. Introduction

Differential equations (DE) play a key role in linking mathematics to various applied
sciences. DEs have applications in engineering, physics, biology, economics, and even
the social sciences. In the past, many applications and phenomena were modeled on the
principle of causality; that is, the future state of the system is independent of its past state
and is affected only by the present. One is often thinking of either ordinary or partial DEs
if it is also assumed that the system is governed by an equation involving the state and rate
of change of the state. A closer examination reveals that the causation principle frequently
just approximates reality and that a more accurate model would incorporate some of the
earlier stages of the system. Also, it is pointless in some situations to not be dependent on
the past. Therefore, the use of delay differential equations (DDE) in modeling phenomena
contributes significantly to understanding and analyzing these problems better than ODEs.

One of the topics of qualitative theory, which is essentially concerned with analyzing
the qualitative features of DEs, is the study of the oscillatory properties of solutions to
DEs. The investigation of the oscillatory features of DDEs has advanced significantly over
the past ten years. This is because there are many applications for DDEs. Additionally,
oscillation theory is filled with intriguing theoretical issues that call for mathematical
analysis methods. There was a lot of interest in the study of the oscillatory behavior of
delay differential equation solutions, but this research was mostly centered on equations of
even order.

The aim of this study is to create new conditions for evaluating the oscillatory behavior
of solutions to the third-order neutral differential equation (NDE)(

r2(t)
(

r1(t)[x(t) + p(t)x(τ(t))]′
)′)′

+ q(t)x(σ(t)) = 0, (1)
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where t ≥ t0, and the following assumptions are satisfied:

(A1) ri ∈ C1([t0, ∞),R+), and ηi(t0, ∞) = ∞, for i = 1, 2, where

ηi(h, k) :=
∫ k

h
r−1

i (s)ds;

(A2) p ∈ C([t0, ∞), [0, ∞)) and p(t) ≤ p0, where p0 is a constant;
(A3) q ∈ C([t0, ∞), [0, ∞)) and q does not vanish eventually;
(A4) τ, σ ∈ C1([t0, ∞),R), τ(t) < t, σ(t) < t, and limt→∞ τ(t) = limt→∞ σ(t) = ∞.

The corresponding function of the solution x is defined as z(t) := x(t) + p(t)x(τ(t)).
For a solution of Equation (1), we mean a function x ∈ C([tx, ∞),R) for tx ≥ t0, which has
the properties z, r1z′, r2(r1z′)′ ∈ C1([tx, ∞),R), and x satisfies (1) for t ≥ tx. We consider
only those solutions of Equation (1) which are not not vanish eventually.

Notation 1. For facilitation, we refer to the category of eventually positive solutions whose corre-
sponding function is increasing by S↑, and whose corresponding function is decreasing by S↓.

The study of the oscillation of solutions of odd-order DDEs has and still contains many
interesting analytical issues. In the canonical case, the positive solutions of third-order
DDEs are classified as increasing solutions or decreasing solutions (called Kneser solutions).
In the case of neutral equations, positive solutions are classified into those having an
increasing corresponding function and those having a decreasing corresponding function.

Most studies have focused on excluding increasing positive solutions using several
techniques, and also setting a condition that ensures that decreasing positive solutions
converge to zero.

During the past few years, there has been a constant interest in obtaining sufficient
conditions for oscillatory and non-oscillatory properties of different order differential
equations. For some groups that developed equations of the second order see [1–4], for the
fourth order see [5–8] and for higher-order we refer the reader to [9–12].

For third-order DDE, the oscillatory properties of solutions to these equations have
been investigated with many different techniques, see for example [13–18]. Recently,
Jadlovská et al. [19] improved the oscillation results for the linear DDE(

r2(t)
(
r1(t)x′(t)

)′)′
+ q(t)x(σ(t)) = 0.

For the NDE, different forms of third-order equations have been studied, see for
example [20–23]. In the following, we review some contributions to the development of the
oscillation theory of third-order NDEs.

Using a condition of Hille and Nehari type, Baculikova and Dzurina [24] studied
the NDE (

r2(t)
(
[x(t) + p(t)x(τ(t))]′′

)α)′
+ q(t)xα(σ(t)) = 0,

where α is a quotient of odd positive integers and asserted that S↑ = ∅ under the condition

lim inf
t→∞

tα

a(t)

∫ ∞

t
q(`)

σ2α(`)

`α
d` >

(2α)α

(α + 1)α+1(1− p0)
α

. (2)

In [25], they also used the technique of comparison with first-order equations to ensure
that S↑ = ∅ if

lim inf
t→∞

∫ t

σ(t)
q(`)

(
(σ(`)− t0)

2(1− p(σ(`)))
2r1/α(`)

)α

d` >
1
e

.
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By using Riccati technique, Thandapani and Li [26] proved that S↑ = ∅ if

lim sup
t→∞

∫ t

t0

(
1

2α−1 ρ(`)Q(`)−
(
1 + pα

0/τ0
)

(α + 1)α+1
(ρ′(`))α+1

(ρ(`)η1(σ(`), t0)σ′(`))
α

)
d` = ∞, (3)

where α is a quotient of odd positive integers, σ′(t) > 0, τ′(t) ≥ τ0 > 0, Q(t) :=
min{q(t), q(τ(t))} and ρ ∈ C([t0, ∞), (0, ∞)). Jiang and Li [27] used the integral aver-
aging technique to establish a Philos-type criteria for oscillation of NDE

(
r2(t)[x(t) + p(t)x(τ(t))]′′

)′
+

m

∑
i=1

qi(t) fi(x(σi(t))) = 0.

In [28], Graef et al. discussed the asymptotic properties of solutions of NDE((
[x(t) + p(t)x(τ(t))]′′

)α)′
+ q(t)xα(σ(t)) = 0,

where α is a quotient of odd positive integers and for p(t) > 1.
On the other hand, many studies have recently focused on the criteria of the absence

of Kneser solutions. Džurina et al. [29] developed criteria that confirm the oscillation of all
solutions of Equation (1) by obtaining criteria that exclude Kneser solutions and combining
them with the criteria obtained by Thandapani and Li in [26]. Later, Moaaz et al. [30,31]
extended and generalized the results in [29] to odd-order equations in the half-linear and
non-linear cases.

Although many results deal with the oscillatory behavior of solutions of third order
NDEs, there are many open analytical issues related to these studies. For example, the tra-
ditional relationship between the solution and its corresponding function, which was used
in all previous studies, is not standard and can be improved upon. Thus, the monotonic
properties of positive increasing solutions can be improved. For Kneser’s solutions, the
problem of obtaining criteria without the need for constraints on delay functions is still
under investigation. Another interesting problem is obtaining criteria for the case of p0 > 1
without requiring that the conditions τ ◦ σ = σ ◦ τ and τ′(t) > 0. It is worth noting that
we will address some of these problems during this study.

In this work, the oscillatory behavior of solutions of third-order differential equations
with neutral-delay arguments was investigated. We derive some new inequalities and
relationships between the solution and its corresponding function. We consider the two
cases p0 < 1 and p0 > 1 without restrictions on the delay functions. Then, we obtain
new monotonic characteristics for the positive solutions using an improved approach. By
using these characteristics, we obtain more efficient criteria for testing the oscillation of the
solutions of the studied equation.

2. Main Results

It is easy to see the significance of classifying the signs of derivatives of non-oscillatory
solutions at the beginning of any study of the oscillatory features of solutions to NDEs.
Based on Lemma 1.1 in [32], we find that the corresponding function z of any eventually
positive solution to the studied equation is characterized by the following properties:

(P1) z and (r1 · z′)′ are positive, and
(

r2 · (r1 · z′)′
)′

is nonpositive;

(P2) z′ is of fixed sign.



Mathematics 2023, 11, 2290 4 of 15

2.1. Properties of Positive Solutions
2.1.1. Category S↑

For convenience, we define G[0](t) := t, G[j](t) = G
(

G[j−1](t)
)

, G[−j](t)

= G−1
(

G[−j+1](t)
)

, for j = 1, 2, ... ,

η̂0(t) :=
∫ t

t0

η2(t0, u)
r1(u)

du,

p1(t; `, m) :=
m

∑
k=0

(
2k

∏
l=0

p
(

τ[l](t)
))[ 1

p
(
τ[2k](t)

) − 1

]
η̂`

(
τ[2k](t)

)
η̂`(t)

,

p2(t; `, m) :=
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](t)

))
1− 1

p
(
τ[−2k](t)

) η̂`

(
τ[−2k](t)

)
η̂`
(
τ[−2k+1](t)

)


and

p̂(t; `, m) :=


1 for p0 = 0,
p1(t; `, m) for p0 < 1,
p2(t; `, m) for p0 > η̂0(t)

η̂0(τ)
,

for ` = 0, 1, ..., where m is a non-negative integer and (η̂`) is a functional sequence to be
specified later.

Lemma 1. ([33] Lemma 1) Suppose that x ∈ S↑ ∪ S↓. Then, eventually,

x(t) >
m

∑
k=0

(
2k

∏
l=0

p
(

τ[l](t)
)) z

(
τ[2k](t)

)
p
(
τ[2k](t)

) − z
(

τ[2k+1](t)
), (4)

for any integer m ≥ 0.

Lemma 2. Suppose that x ∈ S↑. Then, eventually,

d
dt

(
r1(t)z′(t)
η2(t0, t)

)
≤ 0 (5)

and
d
dt

(
z(t)
η̂0(t)

)
≤ 0. (6)

Proof. Assume that x ∈ S↑. We have

r1(t)z′(t) ≥
∫ t

t0

r2(u)[r1(u)z′(u)]
′

r2(u)
du ≥ η2(t0, t)r2(t)

[
r1(t)z′(t)

]′, (7)

and so
d
dt

(
r1z′

η2

)
=

1
r2η2

2

[
η2r2

[
r1z′

]′ − r1z′
]
≤ 0.

Using this fact, we find

z(t) ≥
∫ t

t0

r1(u)z′(u)
η2(t0, u)

η2(t0, u)
r1(u)

du ≥ r1(t)z′(t)
η2(t0, t)

η̂0(t), (8)

which implies
d
dt

(
z
η̂0

)
=

η2

r1η̂2
0

[
r1

η2
z′η̂0 − z

]
≤ 0.
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Hence, the proof ends.

Lemma 3. Suppose that x ∈ S↑. Then, eventually, x(t) > p̂(t; 0, m)z(t), and Equation (1)
turns into (

r2(t)
(
r1(t)z′(t)

)′)′
+ q(t) p̂(σ(t); 0, m)z(σ(t)) ≤ 0. (9)

Proof. Suppose that x ∈ S↑.
Assume that p0 < 1. It follows from Lemma 1 that (4) holds. From the facts that

τ[2k+1](t) ≤ τ[2k](t) ≤ t, z′(t) > 0 and (z(t)/η̂0(t)) ≤ 0, we arrive at

z
(

τ[2k](t)
)
≥ z
(

τ[2k+1](t)
)

and

z
(

τ[2k](t)
)
≥

η̂0

(
τ[2k](t)

)
η̂0(t)

z(t),

for k = 0, 1, ... . Thus, inequality (4) becomes

x(t) > z(t)
m

∑
k=0

(
2k

∏
l=0

p
(

τ[l](t)
))[ 1

p
(
τ[2k](t)

) − 1

]
η̂0

(
τ[2k](t)

)
η̂0(t)

,

which together with (1) gives (9).
On the other hand, assume that p0 > 1. It follows from the definition of z that

p
(

τ−1
)

x(t) = z
(

τ−1
)
− x
(

τ−1
)

= z
(

τ−1
)
− 1

p
(
τ[−2]

) [z(τ[−2]
)
− x
(

τ[−2]
)]

= z
(

τ−1
)
− z
(

τ[−2]
) 2

∏
i=2

1
p
(
τ[−i]

) + [z(τ[−3]
)
− x
(

τ[−3]
)] 3

∏
i=2

1
p
(
τ[−i]

) ,

and so on. Hence, we arrive at

x(t) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](t)

))[z
(

τ[−2k+1](t)
)
− 1

p
(
τ[−2k](t)

) z
(

τ[−2k](t)
)]

. (10)

From the facts that t ≤ τ[−2k+1](t) ≤ τ[−2k](t), z′(t) > 0 and (z(t)/η̂0(t))
′ ≤ 0, we obtain

z
(

τ[−2k](t)
)
≤

η̂0

(
τ[−2k](t)

)
η̂0
(
τ[−2k+1](t)

) z
(

τ[−2k+1](t)
)

and
z
(

τ[−2k+1](t)
)
≥ z(t).

Thus, inequality (10) becomes

x(t) > z(t)
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](t)

))
1− 1

p
(
τ[−2k](t)

) η̂0

(
τ[−2k](t)

)
η̂0
(
τ[−2k+1](t)

)
,

which together with (1) gives (9).
Hence, the proof ends.
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Theorem 1. Suppose that there is a ϕ ∈ C1([t0, ∞), (0, ∞)) such that

lim sup
t→∞

∫ t

t0

[
ϕ(u) p̂(σ(u); 0, m)q(u)

η̂0(σ(u))
η̂0(u)

− r1(u)(ϕ′(u))2

4η2(t0, u)ϕ(u)

]
du = ∞. (11)

Then, S↑ = ∅.

Proof. Suppose the contrary that x ∈ S↑. We define

w := ϕ · r2 · [r1 · z′]′

z
> 0.

Then,

w′ =
ϕ′

ϕ
w + ϕ · 1

z

(
r2 ·
[
r1 · z′

]′)′ − ϕ · r2 · [r1 · z′]′

z2 z′. (12)

As in the proof of Lemma 2, we obtain that (7) holds. It follows from (7) and (9) that (12)
becomes

w′ ≤ ϕ′

ϕ
w− ϕ · p̂(σ; 0, m) · q · z(σ)

z
− ϕ · η2

r1

(
r2 · [r1 · z′]′

z

)2

, (13)

which, with the fact that (z(t)/η̂0(t))
′ ≤ 0, gives

w′ ≤ ϕ′

ϕ
w− ϕ · p̂(σ; 0, m) · q · η̂0(σ)

η̂0(t)
− η2

ϕ · r1
· w2

= −ϕ · p̂(σ; 0, m) · q · η̂0(σ)

η̂0(t)
+

r1 · (ϕ′)2

4η2 · ϕ
− η2

ϕ · r1

(
w− r1 · ϕ′

2η2

)2

≤ −ϕ · p̂(σ; 0, m) · q · η̂0(σ)

η̂0(t)
+

r1 · (ϕ′)2

4η2 · ϕ
.

Integrating this inequality from t0 to t, we then obtain

w(t0) ≥
∫ t

t0

[
ϕ(u) p̂(σ(u); 0, m)q(u)

η̂0(σ(u))
η̂0(u)

− r1(u)(ϕ′(u))2

4η2(t0, u)ϕ(u)

]
du,

which contradicts to (11).
Hence, the proof ends.

Corollary 1. Suppose that limt→∞ η̂0(t) = ∞ and L > 1/4, where

L := lim inf
t→∞

[
r1(t)η̂0(t)
η2(t0, t)

p̂(σ(t); 0, m)q(t)η̂0(σ(t))
]

. (14)

Then, S↑ = ∅.

Proof. From Theorem 1, we know that S↑ = ∅ when condition (11) is satisfied. By choosing
ϕ(t) = η̂0(t), condition (11) reduces to

lim sup
t→∞

∫ t

t0

[
p̂(σ(u); 0, m)q(u)η̂0(σ(u))−

η2(t0, u)
4r1(t)η̂0(u)

]
du = ∞. (15)

Now, we will prove that (15) is necessary for the validity of L > 0. From the definition of L,
there is a t1 ≥ t0 such that

p̂(σ(t); 0, m)q(t)η̂0(σ(t)) ≥ l
η2(t0, t)

r1(t)η̂0(t)
,
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for t ≥ t1 and for arbitrary l ∈
(

1
4 , L
)

. Therefore,

∫ t

t1

[
p̂(σ(u); 0, m)q(u)η̂0(σ(u))−

η2(t0, u)
4r1(t)η̂0(u)

]
du

>

(
l − 1

4

) ∫ t

t1

[
η2(t0, u)

r1(t)η̂0(u)

]
du

=

(
l − 1

4

) ∫ t

t1

[
η̂′0(u)
η̂0(u)

]
du

=

(
l − 1

4

)
ln

η̂0(t)
η̂0(t1)

. (16)

Taking lim supt→∞ on (16), we have that (15) holds.
Hence, the proof ends.

In the following results, we improve the monotonic properties of the solutions in
category S↑, and then obtain better criteria confirming that S↑ = ∅. For that, we define the
functional sequences (µ`), (ν`), and (η̂`) as

µ`(t) := η2(t0, t) +
∫ t

t0

η2(t0, u)q(u) p̂(σ(u); `, m)η̂0(σ(u))du,

ν`(t) := exp
[∫ t

t0

du
µ`(u)r2(u)

]
and

η̂`+1(t) :=
∫ t

t0

ν`(u)
r1(u)

du,

for ` = 0, 1, ... .

Lemma 4. Suppose that x ∈ S↑. Then, eventually,

d
dt

(
r1(t)z′(t)
ν`−1(t)

)
≤ 0, (17)

d
dt

(
z(t)
η̂`(t)

)
(18)

and (
r2(t)

(
r1(t)z′(t)

)′)′
+ q(t) p̂(σ(t); `, m)z(σ(t)) ≤ 0, (19)

for ` = 1, 2, ... .

Proof. Suppose that x ∈ S↑. From (9), we have

d
dt

[
r1(t)z′(t)− η2(t0, t)r2(t)

[
r1(t)z′(t)

]′]
= −η2(t0, t)

(
r2(t)

[
r1(t)z′(t)

]′)′
≥ η2(t0, t)q(t) p̂(σ(t); 0, m)z(σ(t)). (20)

Integrating (20) from t0 to t and using (7), we obtain

r1(t)z′(t) ≥ η2(t0, t)r2(t)
[
r1(t)z′(t)

]′
+
∫ t

t0

η2(t0, u)q(u) p̂(σ(u); 0, m)z(σ(u))du. (21)
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Now, integrating (7) from t0 to t, we find

z(t) ≥ r2(t)
[
r1(t)z′(t)

]′ ∫ t

t0

η2(t0, u)
r1(u)

du

= η̂0(t)r2(t)
[
r1(t)z′(t)

]′, (22)

and so

z(σ(t)) ≥ η̂0(σ(t))r2(σ(t))
[
r1(σ(t))z′(σ(t))

]′
≥ η̂0(σ(t))r2(t)

[
r1(t)z′(t)

]′. (23)

Combining (21) and (23), we get

r1(t)z′(t)

≥ r2(t)
[
r1(t)z′(t)

]′[
η2(t0, t) +

∫ t

t0

η2(t0, u)q(u) p̂(σ(u); 0, m)η̂0(σ(u))du
]

= µ0(t)r2(t)
[
r1(t)z′(t)

]′. (24)

Multiplying this inequality by

exp
[
−
∫ t

t0

du
µ0(u)r2(u)

]
,

we arrive at
d
dt

(
r1(t)z′(t)

ν0(t)

)
≤ 0.

Using this fact, we obtain

z(t) ≥
∫ t

t0

r1(u)z′(u)
ν0(t)

ν0(t)
r1(u)

du ≥ η̂1(t)
r1(u)z′(u)

ν0(t)
,

and so
d
dt

(
z
η̂1

)
=

1
η̂2

1

[
η̂1z′ − ν0

r1
z
]
≤ 0. (25)

Now, it follows from (25) that the relationship (4) becomes x(t) > p̂(σ(u); 1, m)z(t). More-
over, Equation (1) turns into (19) at ` = 1.

Next, Using (19) at ` = 1 instead of (9), and completing the proof with the same
previous approach, we get (19) at ` = 2.

Similarly, we can validate the relations (17), (18), and (19) for ` = 3, 4, ... .
Hence, the proof ends.

Using (18) and (19) instead of (6) and (9), respectively, we directly get the following
theorem:

Theorem 2. Suppose that there is a ϕ ∈ C1([t0, ∞), (0, ∞)) such that

lim sup
t→∞

∫ t

t0

[
ϕ(u) p̂(σ(u); `, m)q(u)

η̂`(σ(u))
η̂`(u)

− r1(u)(ϕ′(u))2

4η2(t0, u)ϕ(u)

]
du = ∞, (26)

for any `, m ≥ 0. Then, S↑ = ∅.

Theorem 3. Suppose that

lim inf
t→∞

∫ t

σ(t)
q(u) p̂(σ(u); `, m)µ̂`(σ(u))du >

1
e

, (27)
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for any `, m ≥ 0, where

µ̂`(t) =
∫ t

t0

µ`(u)
r1(u)

du.

Then, S↑ = ∅.

Proof. Suppose the contrary that x ∈ S↑. As in the proof of Lemma 4, we arrive at

r1(t)z′(t) ≥ µ`(t)r2(t)
[
r1(t)z′(t)

]′.
Integrating this inequality from t0 to t, we find

z(t) ≥ µ̂`(t)r2(t)
[
r1(t)z′(t)

]′. (28)

Substituting from (28) into (19), we conclude that(
r2(t)

(
r1(t)z′(t)

)′)′
≤ −q(t) p̂(σ(t); `, m)µ̂`(σ(t))r2(σ(t))

[
r1(σ(t))z′(σ(t))

]′.
Setting G := r2(r1z′)′ > 0, we have that G is a positive solution of the inequality

G ′(t) + q(t) p̂(σ(t); `, m)µ̂`(σ(t))G(σ(t)) ≤ 0. (29)

However, from Theorem 2.1.1 in [34], condition (27) confirms the oscillation of all solutions
to (29), a contradiction.

Hence, the proof ends.

For the following result, we assume that r1(t) = 1. In Corollary 1 in [24], by replacing
the inequality (

r2(t)z′′(t)
)′
+ (1− p(σ(t)))q(t)z(σ(t)) ≤ 0

by (19), we obtain the following theorem:

Theorem 4. Suppose that r1(t) = 1, and

lim inf
t→∞

t
r2(t)

∫ ∞

t
q(`)

σ2(`)

`
d` >

1
2p̂(t; `, m)

,

for any `, m ≥ 0. Then, S↑ = ∅.

Example 1. Consider the NDE of Euler type

(x(t) + p0x(αt))′′′ +
q0

t3 x(βt) = 0, (30)

where t > 0, p0 ≥ 0, q0 > 0, and α, β ∈ (0, 1). Now, we define the sequences (A`) and (B`) as
B0 = 1,

A` :=


1 for p0 = 0,
[1− p0]∑m

k=0 p2k
0 α2(1+B`)k for p0 < 1,[

p0 − α−1−B`
]

∑n
k=1 p−2k

0 for p0 > 1/α2,

and
B`+1 :=

1
1 + 1

2 A`β2q0
,

for ` = 0, 1, ... . It is easy to verify that p̂(σ(u); `, m) = A`,

η̂`(t) =
1

1 + B`
t1+B` ,
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µ`(t) =
1

B`+1
t

and
ν`(t) = tB`+1 ,

for ` = 0, 1, ... . Using Theorems 2 and choosing ϕ(t) = t2, we have that S↑ = ∅ if

A`β1+B`+1 q0 > 1. (31)

While Theorem 3 confirms that S↑ = ∅ if

q0 A`β2 1
2B`+1

ln
1
β
>

1
e

. (32)

Moreover, Theorem 4 confirms that S↑ = ∅ if

q0 >
1

2β2 A`
. (33)

Remark 1. In [24–26,28], several conditions are presented that guarantee that S↑ = ∅. By
applying these results to Equation (30), we get the following, see Table 1:

1. Corollary 1 in [24] guarantees that S↑ = ∅ if

q0 >
2

4(1− p0)β2 ; (34)

2. Theorem 2.7 in [25] guarantees that S↑ = ∅ if

1
2

q0(1− p0)β2 ln
1
β
>

1
e

; (35)

3. Theorem 1 in [26] guarantees that S↑ = ∅ if

q0 >
1
β2

(
1 +

p0

α

)
; (36)

4. Theorem 2.8 in [28] guarantees that S↑ = ∅ if α ≥ β and

q0 p∗

(
β

α

)2
> 2, (37)

where

p∗ =
1
p0

(
1− 1

p0α2

)
.

Table 1. Lower bounds for the values of q0 in conditions (31)–(37).

Criterion
p0 α β

(31) (32) (33) (34) (35) (36) (37)

0.5 0.5 0.5 6.4399 6.0415 3.9375 4.0000 8.4918 8.0000 fail
3.0 0.7 0.5 27.282 25.594 16.681 fail fail 21.143 36.780
0.7 0.9 0.1 133.74 63.388 113.09 166.67 106.51 177.78 fail
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2.1.2. Category S↓
For convenience, we define

η̃0(h, k) :=
∫ k

h

η2(u, k)
r1(u)

du

and
q̃(t) = min{q(t), q(τ(t))}.

In this section, in addition to conditions (A1)–(A4), we also need the following as-
sumption:

(A5) τ ◦ σ = σ ◦ τ and τ′(t) ≥ τ0 > 0,where (τ ◦ σ)(t) = τ(σ(t)).

Lemma 5. Suppose that x ∈ S↓ and there is a positive function ρ ∈ C([t0, ∞)) such that
σ(t) < ρ(t) < τ(t). Then

z(h) ≥ η̃n(h, k)r2(k)
[
r1(k)z′(k)

]′, n = 0, 1, ..., (38)

for h ≤ τ(k), where q̃(t) := min{q(τ(t)), q(t)}, and

η̃n+1(h, k) :=
∫ k

h

1
r1(v)

∫ k

v

1
r2(s)

exp
[

τ0

τ0 + p0

∫ k

τ−1(s)
q̃(u)η̃n(σ(u), ρ(u))du

]
dsdv.

Proof. Assume that x ∈ S↓. Since r1 · [r1 · z′]′ is nonincreasing, we find, for all h ≤ k,

−r1(h)z′(h) ≥
∫ k

h

r2(u)[r1(u)z′(u)]
′

r2(u)
du ≥ η2(h, k)r2(k)

[
r1(k)z′(k)

]′,
and so

−z′(h) ≥ r2(k)
[
r1(k)z′(k)

]′ η2(h, k)
r1(h)

, for h ≤ k.

Moreover,

z(h) ≥ r2(k)
[
r1(k)z′(k)

]′ ∫ k

h

η2(u, k)
r1(u)

du = η̃0(h, k)
[
r2(k)

(
r1(k)z′(k)

)′] for h ≤ k.

Next, by using induction, we will demonstrate that (38) holds at n + 1 depending on the
assumption that

z(h) ≥ η̃n(h, k)
[
r1(k)z′(k)

]′. (39)

It follows from (A5) and (1) that

p0(q ◦ τ) · (x ◦ τ ◦ σ) = p0(q ◦ τ) · (x ◦ σ ◦ τ)

= − p0

τ′(t)

(
(r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′)′
≤ − p0

τ0

(
(r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′)′.
Combining this inequality and (1), we arrive at

q̃ · (z ◦ σ) ≤ q · (x ◦ σ) + p0(q ◦ τ) · (x ◦ τ ◦ σ) (40)

≤ −
(

r2 ·
(
r1 ·
(
z′
))′)′ − p0

τ0

(
(r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′)′.
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Using (39) with h = σ and k = ρ, we get z ◦ σ ≥ η̃n(σ, ρ) · [(r1 ◦ ρ) · (z′ ◦ ρ)]′, which with
(40) gives[

r2 ·
(
r1 ·
(
z′
))′

+
p0

τ0
(r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′]′ ≤ −q̃ · η̃n(σ, ρ) ·
[
(r1 ◦ ρ) ·

(
z′ ◦ ρ

)]′. (41)

Now, we define the function

φ := r2 ·
(
r1 ·
(
z′
))′

+
p0

τ0
(r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′.
From (P1), we get

r2 ·
(
r1 ·
(
z′
))′ ≤ (r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′.
Thus, [

1 +
p0

τ0

]
r2 ·
(
r1 ·
(
z′
))′ ≤ φ ≤

[
1 +

p0

τ0

]
(r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′, (42)

or
τ0

τ0 + p0

(
φ ◦ τ−1

)
≤ r2 ·

(
r1 · z′

)′,
which with (41) gives

φ′ +
τ0

τ0 + p0
q̃ · η̃n(σ, ρ) ·

(
φ ◦ τ−1 ◦ ρ

)
≤ 0. (43)

Hence, φ is nonincreasing, and so φ ≤
(
φ ◦ τ−1 ◦ ρ

)
. Now, Equation (43) reduces to

φ′ +
τ0

τ0 + p0
q̃ · η̃n(σ, ρ) · φ ≤ 0.

By separating the variables and integrating from h to k, we get

φ(h) ≥ φ(k) exp
[

τ0

τ0 + p0

∫ k

h
q̃(u)η̃n(σ(u), ρ(u))du

]
,

which with (42) yields

φ
(

τ−1(h)
)
≥
[

1 +
p0

τ0

]
r2(k)

(
r1(k)z′(k)

)′ exp
[

τ0

τ0 + p0

∫ k

τ−1(h)
q̃(u)η̃n(σ(u), ρ(u))du

]
,

and then

(
r1(s)z′(s)

)′ ≥ r2(k)
(
r1(k)z′(k)

)′ 1
r2(s)

exp
[

τ0

τ0 + p0

∫ k

τ−1(s)
q̃(u)η̃n(σ(u), ρ(u))du

]
.

Integrating this inequality twice from h to k, we get

−z′(v) ≥ r2(k)
(
r1(k)z′(k)

)′ 1
r1(v)

∫ k

v

1
r2(s)

exp
[

τ0

τ0 + p0

∫ k

τ−1(s)
q̃(u)η̃n(σ(u), ρ(u))du

]
ds,

and
z(h) ≥ η̃n+1(h, k)

[
r2(k)

(
r1(k)z′(k)

)′].
Hence, the proof ends.
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Theorem 5. Suppose that there is a positive function ρ ∈ C([t0, ∞)) such that σ(t) < ρ(t) < τ(t)
and σ(t) ≤ τ(ρ(t)). If

lim inf
t→∞

∫ t

τ−1(ρ(t))
q̃(u)η̃n(σ(u), ρ(u))du >

τ0 + p0

eτ0
, (44)

then S↓ = ∅.

Proof. Assume that x ∈ S↓. As in the proof of Lemma 5, we obtain that (41) holds. Next,
we suppose that

w := r2 ·
(
r1 ·
(
z′
))′

+
p0

τ0
(r2 ◦ τ) ·

(
(r1 ◦ τ) ·

(
z′ ◦ τ

))′
> 0.

It is follows from (P1) and (41) that

w′ +
τ0

τ0 + p0
q̃ · η̃n(σ, ρ) ·

(
w ◦ τ−1 ◦ ρ

)
≤ 0. (45)

Then, w is a positive solution of (45). However, from Theorem 2.1.1 in [34], condition (44)
confirms the oscillation of all solutions to (45), a contradiction.

Hence, the proof ends.

Example 2. Consider the NDE (30), where β ∈
(

0, α2

2−α

)
. By choosing ρ(t) = α+β

2 t := γt, we
note that σ(t) < ρ(t) < τ(t) and σ(t) ≤ τ(ρ(t)). Now, we define the sequences (ai) and (bi) as
a0 := (γ− β)2/2,

bi :=
q0α

α + p
ai

and

ai+1 =
αbi

bi − 1
γbi

(
1

bi − 2
β2−bi − bi − 1

bi − 2
γ2−bi + βγ1−bi

)
,

for i = 0, 1, ... . Then, we have η̃0(h, k) = 1
2 (k− h)2and

η̃i(h, k) =
1

1− bi
αbi kbi

(
1− bi
2− bi

k2−bi −
(

hk1−bi − 1
2− bi

k2−bi

))
.

Therefore, condition (44) reduce to

q0an ln
α

γ
>

α + p0

αe
. (46)

Using Theorem 5, we have that S↓ = ∅ if (46) for some n ∈ N.

2.2. Oscillation Criteria

By combining the criteria that ensure that S↑ = ∅ and S↓ = ∅, we obtain oscillation
criteria for solutions of Equation (1).

Theorem 6. Suppose that there are ϕ ∈ C1([t0, ∞), (0, ∞)) and ρ ∈ C([t0, ∞),R) such that
σ(t) < ρ(t) < τ(t), σ(t) ≤ τ(ρ(t)), and (11) and (44) hold. Then, Equation (1) is oscillatory.

Theorem 7. Suppose that limt→∞ η̂0(t0, t) = ∞, L > 1/4, and there is a ρ ∈ C([t0, ∞),R) such
that σ(t) < ρ(t) < τ(t), σ(t) ≤ τ(ρ(t)), and (44) holds, where L is defined as in (14). Then,
Equation (1) is oscillatory.
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Theorem 8. Suppose that there are ϕ ∈ C1([t0, ∞), (0, ∞)) and ρ ∈ C([t0, ∞),R) such that
σ(t) < ρ(t) < τ(t), σ(t) ≤ τ(ρ(t)), and (44) hold. If that there is a ϕ ∈ C1([t0, ∞), (0, ∞))
such that (26) holds for some `, m ≥ 0, then Equation (1) is oscillatory.

Theorem 9. Suppose that there are ϕ ∈ C1([t0, ∞), (0, ∞)) and ρ ∈ C([t0, ∞),R) such that
σ(t) < ρ(t) < τ(t), σ(t) ≤ τ(ρ(t)), and (44) hold. If (27) holds for some `, m ≥ 0, then Equation
(1) is oscillatory.

Example 3. Consider the NDE(
x(t) +

1
2

x
(

t
2

))′′′
+

q0

t3 x
(

t
7

)
= 0, (47)

where q0 > 0. Using Theorem 6, Equation (47) is oscillatory if q0 > 104.44.

3. Conclusions

The idea of obtaining oscillation criteria for differential equations is often based on
obtaining conditions that exclude each case of the derivatives of the positive solution. In this
work, in the canonical case, the oscillatory behavior of third-order NDEs is investigated. In
the oscillation theory of NDEs, the relationships between the solution and its corresponding
function are crucial. So, using the modified monotonic properties of positive solutions,
we enhance these relationships. The lack of solutions in Categories S↑ and S↓ was then
confirmed by the conditions we obtained using these relationships. Afterward, we applied
several techniques to infer a set of oscillation criteria utilizing the new relationships and
features. Also, we provided examples that highlight the significance of the findings and
contrast them with comparable findings in the literature. Extending the findings to half-
linear higher-order neutral DDEs will be an interesting suggestion for the future.
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