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Abstract: Incremental stability analysis for time-delay systems has attracted more and more attention
for its contemporary applications in transportation processes, population dynamics, economics,
satellite positions, etc. This paper researches the criteria for exponential incremental stability for time-
delay systems with continuous or discontinuous right-hand sides. Firstly, the sufficient conditions for
exponential incremental stability for time-delay systems with continuous right-hand sides are studied,
and several corollaries for specific cases are provided. As for time-delay systems with discontinuous
right-hand sides, after expounding the relevant conditions for the existence and uniqueness of the
Filippov solution, by using approximation methods, sufficient conditions for exponential incremental
stability are obtained. The conclusions are applied to linear switched time-delay systems and Hopfield
neural network systems with composite right-hand sides.

Keywords: time-delay system; exponential incremental stability; discontinuous right-hand sides;
Filippov solutions
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1. Introduction

Stability analysis in mathematics mainly refers to the relevant research on the long-
term performance of the dynamical system’s steady state. With more and more applications
of neural networks and complex systems, the stability analysis of differential equations,
including time-delay dynamical systems, has attracted more and more attention from
academia and industry. Incremental stability [1,2] has been presented to be a perfect
instrument for stability analysis, which is able to address problems of synchronization of
coupled systems.

Incremental stability means that as time approaches infinity, the solutions of the
dynamical system in different initial states will approach each other, that is, the state
variables of the system with different initial states will gradually converge to the same
trajectory. This property has a very wide range of applications in different fields of academia
and industry. In recent years, due to the increasing potential application value in many
frontier fields, such as PI-controlled missiles, Ref. [3] as well as the synchronization problem
of network dynamics [4–6], there is already a lot of literature available on incremental
stability, e.g., Refs. [7,8] provided a systematic exposition and discussion of related issues,
and Ref. [3] provided specific examples of incremental stability-related applications.

In dynamical system analysis, the theoretical research on differential equations with
discontinuous right-hand sides has also been highly valued because of its wide application.
In some fields, such as mechanical engineering, electronic engineering, and automatic
control theory, many problems rely on relevant theories of these ‘discontinuous’ differential
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equations [9]. Among them, switched systems, as a type of differential equation with dis-
continuous right-hand functions, are particularly commonly used in the field of automatic
control, thus driving the development of related theories [10–13].

In 1964, Filippov [14] studied the motion of Coulomb friction oscillators and proposed
a differential equation with a discontinuous right-hand side. In order to study the trajectory
of the solution, ‘differential inclusion’ and set-valued mapping were introduced, and the
existence and uniqueness of the solution of the discontinuous differential equation were
discussed. A detailed discussion on this type of discontinuous differential equation can be
found in reference [15]. Before we study the compressibility of the system, we need to first
ensure the existence and uniqueness of the Carathéodory solution of the system. Filippov’s
theory mainly focuses on the existence and uniqueness of the solution of the non-smooth
dynamical system. The relevant conclusions have been listed in [15].

Research on time-delay differential equations first began in the early 20th century
by Volterra [16,17]. The ordinary differential equations with time delay are commonly
used in contemporary applications, gradually pushing the relevant theories of time-delay
systems to integrity and maturity and producing rich results. There are many important
achievements emerging one after another. It is worth mentioning Hale and Verduyn Lunel’s
comprehensive work [18], which discussed in detail the properties of the solutions for some
time-delay differential equations, e.g., uniqueness, continuous dependence of parameters,
continuity and compactness of solutions, stability and invariance, etc. At the same time,
some concrete analyses and methods on the properties of these solutions for time-delay
systems were proposed in the literature [19–23], among which, Ref. [20] includes an intro-
ductory chapter that provides detailed examples of time-delay differential equations used
to control computer systems, transportation processes, population dynamics, economics,
satellite positions, urban transportation, and so on.

Set-valued dynamical systems, also named Filippov systems, whose right-hand sides
are set-valued mappings, are widely used in these applications mentioned above. These set-
valued dynamical systems are perfect instruments to represent the time-delay differential
equations with discontinuous right-hand sides [20,24–28] or control systems with time
delay [20,29,30]. Therefore, naturally, a large amount of the literature has discussed the
problems along these lines. One of the most important achievements in this field is [31], in
which Haddad focused on upper semicontinuous dynamics, elaborated on the existence
and compactness of the solution set, and also proved the upper semicontinuity of the
solution. Haddad’s work [31] is given under functional differential inclusion, where
the corresponding time-delay term acts on the infinite-dimensional space of continuous
functions.

In recent years, there have been many related analytical studies and achievements on
the incremental stability of Filippov systems. In the case that the local Lipschisz condition is
satisfied, Ref. [32] provided a sufficient condition for the local stability of Filippov solutions.
Ref. [33] used the concept of Filippov solutions to analyze a class of time-delay dynamical
systems with discontinuous right-hand sides. In the sense of the Filippov solution, Ref. [34]
proposed the conditions for global asymptotic stability of the error system of the time-
delay neural network with a discontinuous activation function. While [35] put forward
an approximation method and gave the specific sufficient conditions for the exponential
incremental stability of the switched system.

In this paper, first, several preliminary definitions are given in Section 2. In Section 3,
we research the criteria on the exponential incremental stability of the solutions for time-
delay systems with continuous right-hand sides, involving several specific cases, and
relevant corollaries are provided. Then, in Section 4, under the hypothesis that the system
has a unique solution, we extend the sufficient conditions for exponential incremental
stability to the time-delay system with a discontinuous right-hand side in the sense of the
Filippov solution by using a sequence of ‘continuous systems’ to approach the correspond-
ing Filippov system. In this section, we also provide the conditions for the existence and
uniqueness of the solution for the time-delay dynamical system before stability analysis
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in Section 4.1. The applications on linear switched systems and Hopfield neural network
systems with time delay are given in Section 5, respectively, and corresponding numerical
examples are given in Section 6.

2. Preliminaries

Here, we first introduce some primary definitions, including matrix measure and
multiple norms, incremental stability property, exponential incremental stability, and so on.

Definition 1 (Definition 1 in [35]). For any real matrix A ∈ Rn×n and a given norm ‖ · ‖, we
define the corresponding matrix measure ν(A) as

ν(A, ‖ · ‖) = lim
h→0+

‖I + hA‖ − 1
h

.

The matrix measure above can be considered as the one-sided directional derivative of the
induced matrix norm function ‖ · ‖, evaluated at the point I, in the direction of A.

In the following parts, we will study the incremental stability property of time-delay
systems under multiple norms. Here, we also list the definitions of multiple norms with
subscript χ(t) and the corresponding measures. Note that the function χ(t) is a piecewise
right-continuous function.

Definition 2. For real matrix A ∈ Rn×n and the matrix norm ‖ · ‖χ(t), (the corresponding vector
measure | · |χ(t)), we here define the corresponding matrix measure µχ(t)(A) as follows:

µχ(t)(A) = lim
h→0+

‖I + hA‖χ(t) − 1
h

.

If limh→0+ |x|χ(t+h)(limh→0− |x|χ(t+h)) exists, then we denote the right (left) limit of
the norm | · |χ(t) at time point t by | · |χ(t±). We say the norm | · |χ(t) is continuous at t, if and
only if | · |χ(t+) = | · |χ(t−) = | · |χ(t), that is, | · |χ(t) is right-continuous and left-continuous
as well. If there exists D > 0, such that |x|χ(t) < D|x|χ(s) holds for all t, s ∈ R+, we say
| · |χ(t) is uniformly equivalent.

Then, we extend the definition for matrix measure in the sense of multiple norms.
Consider the time-varying nature of χ(t), as follows:

Definition 3 (Definition 3 in [36]). If the following limit exists, the switched matrix measure
with respect to vector norm | · |χ(t) is defined as follows:

νχ(t)(A) = lim
h→0+

1
h

sup
|x|χ(t)=1

|(In + hA)x|χ(t+h) − 1

where lim stands for the upper superior.

Remark 1. The definition of multiple matrix norms ‖ · ‖χ(t) can be thought of as matrix norms
induced by vector norm | · |χ(t): for a matrix A,

‖A‖χ(t) = sup
|x|χ(t)=1

|Ax|χ(t)

This implies that, if χ(t) is constant over an internal [a, a + δ), then it holds that
νχ(t)(A) = µχ(t)(A) in [a, a + δ).

According to the existence of the switched matrix measure, the definition is as follows,
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Definition 4 ([36]). Define the partial differential of the switched norm | · |χ(t) as follows,

∂t(| · |χ(t)) = lim
h→0+

sup
|x|χ(t)=1

|x|χ(t+h) − 1
h

If ∂t(| · |χ(t)) exists at t, we say the multiple norm | · |χ(t) is right regular at time t.

According to the ‘right regular’ property, we have the following proposition [36]:

Proposition 1 ([36]). If the multiple norm | · |χ(t) is right regular, then

1. The multiple norm | · |χ(t) is right-continuous at time t;
2. νχ(t)(·) exists at time t.

For a clearer statement in the following part, we define a transaction function between
norms | · |χ and | · |χ′ ,

Definition 5. Function C(χ, χ′) > 0 is the transaction function between norms | · |χ and | · |χ′ ,
satisfying that

| · |χ ≤ C(χ, χ′)| · |χ′ .

Definition 6. If the function C(χ(t), χ(t′)) is well-defined for all t and t′, we say the multiple
norm | · |χ(t) is equivalent for all t.

Here, we consider the following dynamical time-delay system:{
ẋ = f (x, xτ1(t), . . . , xτm(t), r(t)), t ≥ t0

x(s) = φ(s), s ∈ [t0 − τ, t0]
(1)

where x ∈ Rn, xτk(t) = x(t − τk(t))(k = 1, . . . , m) is the time-delay term, each τk is a
bounded function, maxk supt∈[t0,∞)τk(t) = τ, function r(t) : [t0,+∞) → R is an upper
continuous staircase function, f = ( f1, . . . , fn) : Rn×(m+1) × [t0,+∞)→ Rn. The function
φ(·) represents the initial value function, and φ(·) ∈ C1([t0 − τ, t0],Rn). Let x(t; φ, rt) be
the solution of system (1).

Then, we will research the sufficient conditions for incremental stability for time-delay
dynamical system (1), which is defined as follows.

We have the following definition for several types of incremental stability (IS):

Definition 7. Let φ(t; t0, x0) be the solution of system (1) with the initial time t0 and initial value
function x0(·). If there exist a function β(s, t) of class KL, and some norm | · |∞[t0−τ,t0]

induced by
vector norm | · |, defined as |ϕ|∞[t0−τ,t0]

= sups∈[t0−τ,t0]
|ϕ(s)|, such that for any initial function

x0(·), y0(·),
|φ(t + t0; x0, t0)− φ(t + t0; y0, t0)| ≤ β(|x0 − y0|∞[t0−τ,t0]

, t),

then, we say that system (1) is Incrementally Asymptotically Stable (δAS) in the region Σ ⊂ Rn.
If β(s, t) is independent of initial time t, then we say system (1) is Incrementally Uniformly
Asymptotically Stable (δUAS). If function β(s, t) is of class EKL, then we say system (1) is
Incrementally Uniformly Exponentially Asymptotically Stable (δUEAS).

Moreover, if there exists a constant M and c > 0 such that β(·, ·) of class KL satisfies (2)
with some norm | · |, then system (1) is said to be exponentially incrementally stable.

β(|x0 − y0|∞[t0−τ,t0]
, t) = Me−ct|x0 − y0|∞[t0−τ,t0]

, (2)
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3. Contraction Theory for Time-Delay Systems

Here, we list the following hypothesis, denoted by Assumption 1, including the
Carathéodory condition to guarantee the existence and uniqueness of the solution of the
time-delay dynamical system (1) with a continuous right-hand side.

Assumption 1. Dynamical time-delay system (1) satisfies the following conditions:

1. f (x, xτ1(t), . . . , xτm(t), r(t)) is continuously differentiable with respect to x, and continuous
with respect to
(x, xτ1(t), . . . , xτm(t), r) except for the switching time points {t1, . . . , tj, . . .}.

2. τk(t) is upper bounded and has a positive lower bound for each k, and maxk supt∈[t0,∞) τk(t) =
τ, mink inft∈[t0,∞) τk(t) = τ.

3. fi : Rn×(m+1) × [t0,+∞)→ R (i = 1, . . . , n) is locally Lipschitz.

Thus, under Assumption 1, system (1) has a unique solution. (Refer to the Refer-
ence [37] for details.)

Here, we try to research the contraction property for time-delay system (1). First,
enlightened by Ref. [38], we prove the following lemma:

Lemma 1. Assume that | · |χ(t) is right regular, χ(t) is a right-continuous staircase function
with discontinuities in {t1, . . . , tj, . . .} and | · |χ(t) ≤ C0| · |χ(t′) holds for any t, t′ ≥ t0. x(t)
is continuous, t0 is the initial time, and τ = maxk sups≥t0

τk(s). For the following time-delay
system:

ẋ(t) = A(t)x(t) +
n

∑
k=1

Bk(t)x(t− τk(t))

where x(t) ∈ Rn, A(t), Bk(t) ∈ Rn×n(k = 1, 2, . . . , m) is piecewise continuous with respect to
t, and the discontinuities belong to {t1, t2, . . . , ti, . . .}, which is a countable set. If there exists a
piecewise right-continuous function m(t) > 0 whose discontinuities belong to {t1, t2, . . . , ti, . . .},
and matrix-valued functions B(1)

k (t), B(2)
k (t) such that

νχ(t)(A(t) +
m

∑
k=1

B(1)
k (t)) +

m

∑
k=1
‖B(2)

k (t)‖χ(t)
m(t)

m(t− τk(t))
+

m

∑
k=1

τk(t)‖B
(1)
k (t)‖χ(t)(Ãk(t) + B̃k(t)) ≤ −D+m(t)

m(t)

where D+ represents the Dini derivative, and

Ãk(t) = sup
t−τk(t)≤s≤t

‖A(s)‖χ(s)
m(t)
m(s)

,

B̃k(t) = sup
t−τk(t)≤s≤t

‖Bk(s)‖χ(s)
m(t)

m(s− τk(s))
.

Then, for each t ∈ [tj, tj+1), we have

|x(t)|χ(tj)
m(t) ≤ sup

t0−τ≤s≤t
|x(s)|χ(tj)

m(s) ≤ C0 sup
t0−τ≤s≤tj

|x(s)|χ(tj−)m(s)

Proof. Let V(t) = supt0−τ≤θ≤t |x(θ)|χ(θ)m(θ). Assume that V(t) is strictly increasing at
time point t∗, it implies that V(t∗) = |x(t∗)|χ(t∗)m(t∗). There exists j such that t∗ ∈ [tj, tj+1),
and here we calculate the Dini derivative of |x(t)|χ(tj)

m(t),

D+[|x(t)|χ(tj)
m(t)] = ṁ(t)|x(t)|χ(tj)

+ m(t) lim
h→0

|x(t + h)|χ(tj)
− |x(t)|χ(tj)

h
,



Mathematics 2023, 11, 2242 6 of 26

in which ẋ(t) can be rewritten as

ẋ(t) = A(t)x(t) +
m

∑
k=1

Bk(t)x(t− τk(t))

= [A(t) +
m

∑
k=1

B(1)
k (t)]x(t) +

m

∑
k=1

B(1)
k (t)

∫ t−τk(t)

t
ẋ(s)ds +

m

∑
k=1

B(2)
k (t)x(t− τk(t))

Thus, we have

limh→0

|x(t + h)|χ(tj)
− |x(t)|χ(tj)

h

= limh→0
1
h

[∣∣x(t) + h(A(t) +
m

∑
k=1

B(1)
k (t))x(t) + h

m

∑
k=1

B(1)
k (t)

∫ t−τk(t)

t
ẋ(s)ds

+ h
m

∑
k=1

B(2)
k (t)x(t− τk(t))

∣∣
χ(tj)
− |x(t)|χ(tj)

]
= limh→0

1
h
|x(t)|χ(tj)

[
‖I + h(A(t) +

m

∑
k=1

B(1)
k (t))‖χ(tj)

− 1
]
+

m

∑
k=1
‖B(1)

k (t)‖χ(tj)

∫ t

t−τk(t)
|ẋ(s)|χ(tj)

ds

+
m

∑
k=1
‖B(2)

k (t)‖χ(tj)
|x(t− τk(t))|χ(tj)

= νχ(tj)

(
A(t) +

m

∑
k=1

B(1)
k (t)

)
|x(t)|χ(tj)

+
m

∑
k=1
‖B(1)

k (t)‖χ(tj)

∫ t

t−τk(t)
|ẋ(s)|χ(tj)

ds

+
m

∑
k=1
‖B(2)

k (t)‖χ(tj)
|x(t− τ(t))|χ(tj)

that is,

D+[|x(t)|χ(tj)
m(t)]

=
ṁ(t)
m(t)

|x(t)|χ(tj)
m(t) + νχ(tj)

(A(t) +
m

∑
k=1

B(1)
k (t))|x(t)|χ(tj)

m(t)

+
m

∑
k=1
‖B(2)

k (t)‖χ(tj)
|x(t− τk(t))|χ(tj)

+
m

∑
k=1
‖B(1)

k (t)‖χ(tj)
m(t)

∫ t

t−τk(t)
|A(s)x(s) +

m

∑
k=1

Bk(s)x(s− τk(s))|χ(tj)
ds

=
ṁ(t)
m(t)

|x(t)|χ(tj)
m(t) + νχ(tj)

(A(t) +
m

∑
k=1

B(1)
k (t))|x(t)|χ(tj)

m(t)

+
m

∑
k=1
‖B(2)

k (t)‖χ(tj)
|x(t− τk(t))|χ(tj)

m(t− τk(t))
m(t)

m(t− τk(t))

+
m

∑
k=1
‖B(1)

k (t)‖χ(tj)

∫ t

t−τk(t)
‖A(s)‖χ(tj)

|x(s)|χ(tj)
m(s)

m(t)
m(s)

+
m

∑
k=1
‖Bk(s)‖χ(tj)

|x(s− τk(s))|χ(tj)
m(s− τk(s))

m(t)
m(s− τk(s))

ds

Let

Ãk(t) = sup
t−τk(t)≤s≤t

‖A(s)‖χ(tj)
m(t)
m(s)

B̃k(t) = sup
t−τk(t)≤s≤t

‖Bk(s)‖χ(tj)
m(t)

m(s− τk(s))
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then, for t = t∗, we have

D+V(t) ≤
[

ṁ(t)
m(t)

+ νχ(tj)
(A(t) +

m

∑
k=1

B(1)
k (t)) +

m

∑
k=1

τk(t)‖B
(1)
k (t)‖χ(tj)

(Ãk(t) + B̃k(t))

+
m

∑
k=1
‖B(2)

k (t)‖χ(tj)
m(t)

m(t− τk(t))

]
V(t) ≤ 0

which is contradictory to the hypothesis that V(t) is strictly increasing at t∗. Therefore,
V(t) is decreasing for t ∈ [tj, tj+1), that is,

V(t) ≤ V(tj)

that is,

|x(t)|χ(tj)
m(t) ≤ sup

t0−τ≤s≤tj

|x(s)|χ(tj)
m(s) ≤ C0 sup

t0−τ≤s≤tj

|x(s)|χ(tj−)m(s)

The lemma is proved.

With the conclusion in Lemma 1, we can select a proper function m(t) > 0, and prove
the following theorem for exponential incremental stability property of system (1).

Theorem 1. Suppose that Assumption 1 holds for time-delay system (1). χ(t) is a right-continuous
staircase function with discontinuities in {t1, . . . , tj, . . .}. Let N(t) = #{j : t ≥ tj, j = 1, 2, . . .},
and there exist that

1. A constant T0 > 0,
2. Positive constants γk(k = 0, 1, . . .), γ0 ≤ γ1 ≤ . . .,
3. C(χ(t), χ(t′)) ≤ C0 for any t, t′ ≥ t0,

such that the following conditions hold:
Let A(t) = (∂ f /∂x)(x, xτ1 , . . . , xτm , r(t)), Bk(t) = (∂ f /∂xτk )(x, xτ1 , . . . , xτm , r(t)), k =

1, . . . , m be piecewise continuous with respect to t, and the discontinuities belong to {t1, t2, . . . , ti, . . .}.
There exist matrix-valued functions B(1)

k (t), B(2)
k (t), B(1)

k (t) + B(2)
k (t) = Bk(t) such that

νχ(t)(A(t) + ∑m
k=1 B(1)

k (t)) + ∑m
k=1 τk(t)‖B

(1)
k (t)‖χ(t)(Ãk(t) + B̃k(t)) + ∑m

k=1 ‖B
(2)
k (t)‖χ(t)

exp
(
(γN(t)−γN(t−τk(t))

)t
)

exp
(

γN(t−τk(t))
τk(t)

) ≤ −γN(t) (3)

where
Ãk

t = sup
t−τk(t)≤s≤t

‖A(s)‖χ(t) exp
(
γN(t)t− γN(s)s

)
B̃k

t = sup
t−τk(t)≤s≤t

‖Bk(s)‖χ(t) exp
(
γN(t)t− γN(s−τk(s))(s− τk(s))

)
.

and for any t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ −c (4)

where βk = C(χ(tk), χ(tk−)), then system (1) is exponentially incrementally stable.

Proof. For any initial state x0, y0, denote the corresponding initial function by x0(·), y0(·),
x0(·), y0(·) ∈ C([t0− τ, t0],Rm). Here, we define a function ϕλ(·) as ϕλ(s) = (1−λ)x0(s)+
λy0(s), λ ∈ [0, 1], s ∈ [t0 − τ, t0], which is the initial value function of the initial state ϕλ.
Let ϕ0 = x0, ϕ1 = y0. f (x, xτ1 , . . . , xτm , r(t)) is continuous with respect to (x, xτ1 , . . . , xτm , r)
except for the switching time points {tj}, and is continuously differentiable with respect to
x, so we have the solution ψ(t, λ) = x(t; ϕλ, rt), which is continuously differentiable with
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respect to ϕλ. Let ω = ∂ψ/∂λ, thus we can conclude that ω is well-defined and continuous.
From chain rule, ω(t, λ) is the solution of the following system: ω̇ = ∂2ψ

∂λ∂t =
∂ f
∂λ = ∂ f

∂x ω + ∑m
k=1

∂ f
∂xτk

ωτk

ω(s, λ) = ∂ϕλ
∂λ (s), s ∈ [t0 − τ, t0]

∂ψ/∂λ is well-defined and continuous, with condition (3), from the proof of Lemma 1,
select a piecewise right-continuous function m(t) = exp(γN(t)t) > 0 whose discontinuities
belong to {t1, t2, . . . , ti, . . .}, we have

m(t)|ω(t, λ)|χ(t) ≤ V(t) ≤ V(tj) = sup
t0−τ≤s≤tj

m(s)|ω(s, λ)|χ(tj)

holds for any t ∈ [tj, tj+1). Thus, under the condition (4), we have

m(t)|ω(t, λ)|χ(t) ≤ V(t) ≤ V(tj) = sup
t0−τ≤s≤tj

m(s)|ω(s, λ)|χ(tj)

≤ exp
(
(γj − γj−1)tj

)
· β j sup

t0−τ≤s≤tj

m(s)|ω(s, λ)|χ(tj−)

≤ exp
(
(γj − γj−1)tj

)
· β j sup

t0−τ≤s≤tj−1

m(s)|ω(s, λ)|χ(tj−1)

≤
N(t)

∏
j=1

exp
(
(γj − γj−1)tj

)
· β j · sup

t0−τ≤s≤t0

m(s)|ω(s, λ)|χ(t0)

≤
N(t)

∏
j=1

exp
(
(γj − γj−1)tj

)
· β j · sup

θ∈[t0−τ,t0]

m(θ) sup
t0−τ≤s≤t0

|ω(s, λ)|χ(t0)

then, we have

|ω(t, λ)|χ(t) ≤ exp
( N(t)

∑
j=1

(γj − γj−1)tj + log β j
)

exp
(
γ0t0 − γN(t)t

)
sup

t0−τ≤s≤t0

|ω(t0, λ)|χ(t0)
≤ e−ct sup

t0−τ≤s≤t0

|ω(t0, λ)|χ(t0)
.

Therefore, together with the condition (4), we conclude that the time-delay system (1)
is incrementally uniformly asymptotically stable:

|x(t; y0, rt)− x(t; x0, rt)|χ(t0)
≤ C0|x(t; y0, rt)− x(t; x0, rt)|χ(t)

≤C0
∣∣ ∫ 1

0

∂ψ(t, λ)

∂λ
dλ
∣∣
χ(t) ≤ C0

∫ 1

0
|ω(t, λ)|χ(t)dλ

≤C0e−ct
∫ 1

0
sup

t0−τ≤s≤t0

|ω(t0, λ)|χ(t0)
dλ

≤C0e−ct sup
θ∈[t0−τ,t0]

|x0(θ)− y0(θ)|χ(t0)

Actually, the key thought of Theorem 1 is replacing the time-delay term Bk(t)xτk (t)

with B(1)
k (t)xτk (t) + B(2)

k (t)x(t) + B(2)
k (t)

∫ t−τk(t)
t ẋ(s)ds. In some special cases, we can set

B(1)
k (t) = 0 or B(2)

k (t) = 0 for k = 1, 2, . . . , m, which infers the following corollaries.

Corollary 1. Suppose that Assumption 1 holds. χ(t) is a right-continuous staircase function with
discontinuities in {t1, . . . , tj, . . .}. Let N(t) = #{j : t ≥ tj, j = 1, 2, . . .}, and there exist

1. A constant T0 > 0,
2. Positive constants γk(k = 0, 1, . . .), γ0 ≤ γ1 ≤ . . .,
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3. C(χ(t), χ(t′)) ≤ C0 for any t, t′ ≥ t0,

such that the following conditions hold:
Let A(t) = (∂ f /∂x)(x, xτ1 , . . . , xτm , r(t)), Bk(t) = (∂ f /∂xτk )(x, xτ1 , . . . , xτm , r(t)),

k = 1, . . . , m be piecewise continuous with respect to t, and the discontinuities belong to
{t1, t2, . . . , ti, . . .},

νχ(t)(A(t)) +
m

∑
k=1
‖Bk(t)‖χ(t)

exp
(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

and for any t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ −c,

where βk = C(χ(tk), χ(tk−)), then system (1) is exponentially incrementally stable.

Corollary 2. Suppose that Assumption 1 holds. χ(t) is a right-continuous staircase function with
discontinuities in {t1, . . . , tj, . . .}. Let N(t) = #{j : t ≥ tj, j = 1, 2, . . .}, and there exist

1. A constant T0 > 0,
2. Positive constants αk > 0(k = 0, 1, . . .),
3. C(χ(t), χ(t′)) ≤ C0 for any t, t′ ≥ t0,

such that the following conditions hold:
Let A(t) = (∂ f /∂x)(x, xτ1 , . . . , xτm , r(t)), Bk(t) = (∂ f /∂xτk )(x, xτ1 , . . . , xτm , r(t)), k =

1, . . . , m, there exist matrix-valued functions B(1)
k (t), B(2)

k (t), B(1)
k (t) + B(2)

k (t) = Bk(t) such that

νχ(t)(A(t) +
m

∑
k=1

Bk(t)) +
m

∑
k=1

τk(t)‖Bk(t)‖χ(t)(Ãk(t) + B̃k(t)) ≤ −γN(t)

where

Ãk
t = sup

t−τk(t)≤s≤t
‖A(s)‖χ(t) exp

(
γN(t)t− γN(s)s

)
B̃k

t = sup
t−τk(t)≤s≤t

‖Bk(s)‖χ(t) exp
(
γN(t)t− γN(s−τk(s))(s− τk(s))

)
and for any t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ −c,

where βk = C(χ(tk), χ(tk−)), then system (1) is exponentially incrementally stable.

4. Incremental Stability for Time-Delay Dynamical Systems with Discontinuous
Right-Hand Sides

Here, we consider the time-delay dynamical systems [39] with discontinuous right-
hand sides using multiple norms, formulated as follows:

ẋ = f (x(t), xτ1(t), . . . , xτm(t), r(t)) (5)

where x, xτ1 , . . . , xτm ∈ Rn, xτk (t) = x(t− τk(t)), (k = 1, . . . , m) represents the time-delay
term. The right-hand function f may be discontinuous with respect to (x, xτ1 , . . . , xτm). The
solution of the system (5) can be defined as a solution of the following differential inclusion,
which is named a (time-delay) Filippov system,
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{
ẋ ∈ F(x(t), xτ1(t), . . . , xτm(t), r(t)), t ∈ [0, T]
x(s) = φ(s), s ∈ [t0 − τ, t0]

(6)

where xτk (t) = x(t − τk(t)), τk(t) is non-negative for t ∈ [t0, T], T ∈ (t0,+∞], τ =
maxk sups≥t0

τk(s), the initial function φ(·) is defined on [t0 − τ, t0], and F is a set-valued
mapping defined as follows,

F(x(t), xτ1(t), . . . , xτm(t), r(t)) = K[ f ](x(t), xτ1(t), . . . , xτm(t), r(t))

=
⋂
ε>0

⋂
µ(P)=0

co{ f (B((x, xτ1 , . . . , xτm), ε) \ P, r(t))},

where µ(·) stands for the Lebesgue measure, B((x, xτ1 , . . . , xτm), ε) = {(y, yτ1 , . . . , yτm) :
|(y>, y>τ1

, . . . , y>τm)
> − (x>, x>τ1

, . . . , x>τm)
>| ≤ ε} represents the ε-neighborhood of

(x, xτ1 , . . . , xτm) with the given vector norm | · |, and co represents convex closure.

4.1. Existence and Uniqueness of the Solution

Before the main theorem, the existence and uniqueness of the Cauchy problem of
the Filippov system (6) should be proved first. Herein, several of the existing results
on dynamical systems without time-delay terms are presented as follows. Readers are
referred to [15,37,40] for the details. For some dynamical systems without time-delay terms,
formulated as follows,

ẋ = f (x, t)

in which x ∈ Rn, we have the corresponding Filippov system,

ẋ = F(x, t) = K[ f ](x, t) =
⋂
ε>0

⋂
µ(P)=0

co{ f (B(x, ε) \ P, t)} (7)

Then, from Definition 4 and 5 in [40]. We have concluded that under the following
Assumption 2, it can be guaranteed that system (7) has at least one solution.

Assumption 2 ([40]). The set-valued mapping F : Rn ×R+ ⇒ Rn satisfies that for all (x, t) ∈
Rn ×R+, F(x, t) is non-empty, bounded, convex, and closed, and F is upper semicontinuous at
(x, t).

In Assumption 2, ‘upper semicontinuity’ for the set-valued mapping F is defined as
follows.

Definition 8 (Section 1, Chapter 2 in [37]). A set-valued mapping F : Rn ×R+ ⇒ Y is called
upper semicontinuous at (x, t) ∈ Rn×R+ if and only if for any neighborhood U of F(x, t), ∃δ > 0,
such that ∀(x̃, t̃) ∈ B((x, t), δ), F(x̃, t̃) ⊂ U .

Assumption 3. With respect to a given Euclid norm | · | defined on a n-dimensional space, we
have the following hypothesis:

1. For any (x, y1, . . . , ym, r) ∈ Rn×(m+1) × R, F(x, y1, . . . , ym, r(t)) is non-empty, convex,
closed inRn, and set-valued mapping F is upper semicontinuous with respect to (x, y1, . . . , ym, r).

2. (Linearly increasing) There exists α > 0 such that

sup{|v| : v ∈ F(x, y1, . . . , ym, r)} ≤ α(|x|+ |y1|+ . . . + |ym|+ |r|+ 1)

holds for any (x, y1, . . . , ym, r) ∈ Rn×(m+1) × R. With Gronwall inequality [41], it can
easily be seen as equivalent to: there exists Θ > 0 such that

sup{|v| : v ∈ F(x, y1, . . . , ym, r)} ≤ Θ

holds for any (x, y1, . . . , ym, r) ∈ Rn×(m+1) ×R.
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3. Function τk : [t0, T] → [0, ∞) (k = 1, . . . , m) is continuously differentiable and bounded,
with its upper bound τ := max{τk(t) : t ∈ [t0, T], k = 1, . . . , m} and lower bound
τ = min{τk(t) : t ∈ [t0, T], k = 1, . . . , m} > 0.

4. The initial function φ(·) ∈ L∞([t0 − τ, t0],Rn) is measurable.
5. For any (x, y1, . . . , ym, r) ∈ Rn×(m+1) × Rn × R+, there exists continuous function h(·) :

R+ → R+, such that |F(x1, y1, . . . , ym, r(t))− F(x2, y1, . . . , ym, r(t))| ≤ h(|x1− x2|) holds.

First, we fix a continuous initial function φ(·) ∈ L∞([t0 − τ, t0],Rn), then select a
measurable function ψ : [t0 − τ, t0]→ Rn such that ψ(s) ∈ K[φ](s) holds for s ∈ [t0 − τ, t0]
almost everywhere. For t ∈ [t0, t0 + τ], consider the following differential inclusion [42]:{

ẋ(t) ∈ F(x(t), ψ(t− τ1(t)), . . . , ψ(t− τm(t)), r(t))
x(0) = φ(0)

, (8)

From Assumption 3, together with Assumption 2 and the conclusion for the existence
of the solution of system (8), the inclusion (6) has at least one solution defined in [t0, t0 + τ].

Therefore, similarly, the solution can be extended to [t0,+∞). Assume, as an inductive
step, that the solution x is defined on [t0− τ, t0 + Nτ], for some N = 1, 2, . . .. Then, one can
consider the vector α = x(t0 + Nτ) as the initial state of the following differential inclusion,{

ẋ(t) ∈ F(x(t), ψ(t− τ1(t)), . . . , ψ(t− τm(t)), r(t))
x(0) = φ(0)

t ∈ [t0 + Nτ, t0 + (N + 1)τ] almost everywhere.

Then, one can extend x(t), t ∈ [t0 − τ, t0 + Nτ] to a right neighborhood of t0 + Nτ,
the interval [t0 − τ, t0 + (N + 1)τ]. That is, we have the following lemma,

Lemma 2. If the time-delay Filippov system (6) satisfies Assumption 3, then, the system (6) has at
least on solution in [t0, T], T ∈ (0,+∞].

Then, when it comes to the problem of uniqueness, enlightened by Chapter 2, Section 10,
Theorem 1 in [15], we similarly research the conditions for uniqueness of the solution of
system (6).

Theorem 2. Suppose that function f (x(t), xτ1(t), . . . , xτm(t), r(t)) defined on region D ⊂ Rn ×
Rn × R+ is discontinuous on zero measure set M, and there exists an integral function l(t)
such that | f (x, xτ1 , . . . , xτm , r)| ≤ l(t) holds for any (x, xτ1 , . . . , xτm , r) ∈ D, and l(t) < ∞
almost everywhere. Let ε0 > 0, for any (x0, xτ1 , . . . , xτm , r), (y0, yτ1 , . . . , yτm , r) satisfying that
|x0 − y0| < ε0 and |xτk − yτk | ≤ |x0 − y0|, (k = 1, . . . , m),

(x0 − y0) · ( f (x0, xτ1 , . . . , xτm , t)− f (y0, yτ1 , . . . , yτm , r(t))) ≤ l(t)|x0 − y0|2 (9)

Then, under the simplest convex definition (Page 50 in [15]), equation ẋ = f (x, xτ1 , . . . , xτm , r(t))
is right-unique on D.

Proof. If for all t ∈ R+, any ε0 > 0, x(·) and y(·) satisfying that |x(·) − y(·)|∞[t−τ,t] ≤
|x(t)− y(t)| < ε0, on the basis of (9), we have

(x(t)− y(t)) · ( f (x(t), xτ1(t), . . . , xτm(t), r(t))− f (y(t), yτ1(t), . . . , yτm(t), r(t))) ≤ l(t)|x(t)− y(t)|2,

holds. Thus, we have

1
2

d
dt
|x(t)− y(t)|2 = (x(t)− y(t))(ẋ(t)− ẏ(t))

= (x(t)− y(t)) · ( f (x(t), xτ1(t), . . . , xτm(t), r(t))− f (y(t), yτ1(t), . . . , yτm(t), r(t)))

≤ l(t)|x(t)− y(t)|2.
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Therefore, similar to the proof of Theorem 1, in Section 10, Chapter 2 in [15], it can be
seen that

d
dt

(
|x(t)− y(t)|2e−L(t)

)
≤ 0

where L(t) =
∫ t

t0
l(s)ds, that is, |x(t)− y(t)|2e−L(t) is decreasing with respect to time t. If

|x(·)− y(·)|∞[t0−τ,t0]
= sup{|x(t)− y(t)| : t ∈ [t0 − τ, t0]} = 0, then |x(t)− y(t)| = 0 holds

for t > t0, then we obtained the right uniqueness of the solution of system (6).

If system (5) is a switched system, according to Theorem 2, one can prove the right
uniqueness of the solution.

Here, we formulate a switched system with time delay, that is, the right-hand function
is switched with respect to (x, xτ1 , . . . , xτm).

f (x, t) = fi(x, xτ1 , . . . , xτm , r(t)), (x, xτ1 , . . . , xτm , t) ∈ Ri (10)

in which fi : Rn×(m+1) ×R+ → Rn, regions Ri ⊂ Rn×(m+1) ×R+, i = 1, . . . , K. All of the
regions Ri have non-empty interiors. The discontinuities are composed of several smooth
hypersurfaces of dimension d(d < (m + 1)n + 1). Suppose that {Si}N

i=1 is a sequence
((m + 1)n)-dimensional smooth hypersurfaces, Si = {(x, xτ1 , . . . , xτm , t) ∈ Rn×(m+1) ×
R+ | φi(x, xτ1 , . . . , xτm , t) = 0}, in which φi(x, xτ1 , . . . , xτm , t) ∈ C1(Rn×(m+1) ×R+,R), the
continuous region of the function f is a sequence of connected regions, whose boundaries
are the switching surfaces. Suppose that the switching surfaces never intersect each other.
Denote one of the connected continuous region of f by G+

i (G−i ), then it satisfies that

1. ∂G+
i (∂G−i ) ⊂ ⋃k Sk;

2. f (x, xτ1 , . . . , xτm , r(t)) is continuous in G+
i (G−i );

3. φi(x, xτ , . . . , xτm , t) > 0(< 0) holds in G+
i (G−i ).

in which G+
i and G−i are two different regions with their common boundary on Si.

Take a switched system defined as (10) with K = 2, N = 1 as an example.In the
domain G, consider one of the switching hypersurface S, f+(x, xτ1 , . . . , xτm , r(t)) and
f−(x, xτ1 , . . . , xτm , r(t)) represent the limiting values of the function f (x, xτ1 , . . . , xτm , r(t))
at point (x, xτ1 , . . . , xτm , t) from the regions G+ and G−, respectively. f+N (x, xτ1 , . . . , xτm , r(t))
and f−N (x, xτ1 , . . . , xτm , r(t)) represent the projections of the vectors f+(x, xτ1 , . . . , xτm , r(t))
and f−(x, xτ1 , . . . , xτm , r(t)) onto the normal vector to S directed from G+ to G−, respec-
tively, at the point (x, xτ1 , . . . , xτm , t).

Together with Theorem 2, according to bimodal time-delay systems, we have the
following conclusion:

Theorem 3. Under the notations defined above, for all t ∈ [t0,+∞) and point (x, xτ1 , . . . , xτm , t) ∈ S,
if the inequality f−N (x, xτ1 , . . . , xτm , r(t))− f+N (x, xτ1 , . . . , xτm , r(t)) > 0 is fulfilled, then right
uniqueness of Filippov solution for the bimodal system (10) (K = 2, N = 1) occurs. (Possibly
different inequalities for different (x, xτ1 , . . . , xτm) and t.)

Proof. We use the conclusion in Theorem 2 to prove Theorem 3 above.
For any point (z, zτ1 , . . . , zτm , t) on the switching surface S, and (x, xτ1 , . . . , xτm , t) ∈ R1,

(y, yτ1 , . . . , yτm , t) ∈ R2, which satisfy that |yτk − zτk | ≤ |y− z|, |xτk − zτk | ≤ |x− z|, |xτk −
yτk | ≤ |y − x|. Since ∂ f1/∂x, ∂ f2/∂x and ∂ f1/∂xτi , ∂ f2/∂xτi (i = 1, . . . , m) are bounded,
this implies that there exist l, ki > 0 (i = 1, . . . , m) such that

| f (x, xτ1 , . . . , xτm , r(t))− f1(z, zτ1 , . . . , zτm , r(t))| ≤ l|x− z|+
m

∑
i=1

ki|xτi − zτi |,

| f (y, yτ1 , . . . , yτm , r(t))− f2(z, zτ1 , . . . , zτm , r(t))| ≤ l|y− z|+
m

∑
i=1

ki|yτi − zτi |.
(11)
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Similar to the proof of Theorem 2 in Chapter 2 in [15], if f−N (x, xτ1 , . . . , xτm , r(t)) −
f+N (x, xτ1 , . . . , xτm , r(t)) > 0 holds, then

(x− z)( f1(z, zτ1 , . . . , zτm , r(t))− f2(z, zτ1 , . . . , zτm , r(t))) ≤ 0. (12)

The inequality (12) still holds if vector x− y is substituted with vector x− z, which is
in the same direction. Together with (11) and (12), it infers that

(x− y)( f (x, xτ1 , . . . , xτm , r) + f2(z, zτ1 , . . . , zτm , r)− f1(z, zτ1 , . . . , zτm , r)− f (y, yτ1 , . . . , yτm , r))

≤|y− x| ·
(
| f (x, xτ1 , . . . , xτm , r)− f1(z, zτ1 , . . . , zτm , r)|+ | f (y, yτ1 , . . . , yτm , r)− f2(z, zτ1 , . . . , zτm , r)|

)
<|y− x| ·

(
l|x− z|+

m

∑
i=1

ki|xτi − zτi |+ l|y− z|+
m

∑
i=1

ki|yτi − zτi |
)
.

That is, if |yτi − zτi | ≤ |y− z|, |xτi − zτi | ≤ |x− z|, |xτi − yτi | ≤ |y− x| (i = 1, . . . , m),
it holds that

(x− y)( f (x, xτ1 , . . . , xτm , r(t))− f (y, yτ1 , . . . , yτm , r(t))) < 2(l +
m

∑
i=1

ki)|y− x|2.

Thus, together with Theorem 2, at any point (z, zτ1 , . . . , zτm , t) in the domain, right
uniqueness of the Filippov solution for system (10) (K = 2, N = 1) occurs for t ∈
[t0,+∞).

4.2. Criteria for Incremental Stability for Filippov Systems with Time Delay

Here, with the conclusions above, we then research the conditions of incremental
stability for time-delay systems with discontinuous right-hand sides.

ẋ(t) = f (x, xτ1 , . . . , xτm , r(t)) (13)

where xτk (t) = x(t − τk(t)), τk(t) (k = 1, 2, . . . , m) is a bounded function with respect
to time t, the function f (x, xτ1 , . . . , xτm , r(t)) = ( f1, f2, . . . , fn) : Rn×(m+1) × R+ → Rn is
discontinuous with respect to (x, xτ1 , . . . , xτm , t) on a zero measure set. r(t) is a piecewise
right-continuous switched function, with its discontinuities in {t1, t2, . . . , tj, . . .}.

Then, according to the discontinuous right-hand side f (x, xτ1 , . . . , xτm , r(t)), with
corresponding set-valued mapping F(x, xτ1 , . . . , xτm , r(t)) = K[ f ](x, xτ1 , . . . , xτm , r(t)), we
construct a sequence of functions { f p(x, xτ1 , . . . , xτm , r(t))}∞

p=1 satisfying the following

conditions, denoted by Condition Ctime−delay(Σ), where Σ ∈ Rn×(m+1):

1. f p(x, xτ1 , . . . xτm , r(t)) = ( f p
1 , f p

2 , . . . , f p
m) : Rn×(m+1) ×R+ → Rn is continuous and

continuously differentiable with respect to (x, xτ1 , . . . xτm), and continuous with re-
spect to (x, xτ1 , . . . xτm , r). Moreover, f p

i , i = 1, . . . , m satisfies local Lipschitz condi-
tions for (x, xτ1 , . . . xτm) ∈ Σ.

2. For each t ≥ t0 and compact set Σ ⊂ Rn×(m+1),

lim
m→∞

dH{Graph( f p(Σ, r(t))), Graph(F(Σ, r(t)))} = 0

holds, where F(x, xτ1 , . . . xτm , r(t)) = K[ f ](x, xτ1 , . . . xτm , r(t)) and dH represents
the Hausdorff metric. Graph(F) and Graph( f p) are considered on Rm×(n+1) ×
[t0,+∞), where Graph(F(x, xτ1 , . . . xτm , r(t))) = {(x, t, y) : y ∈ F(x, xτ1 , . . . xτm , r(t)),
(x, xτ1 , . . . xτm) ∈ Σ, t ≥ t0}, and so it is with Graph( f p(x, xτ1 , . . . xτm , r(t))).

3. For any compact set Σ ⊂ Rm×(n+1), there exists measure w(·), defined as w(Σ) =
q(λ(Σ)), in which λ represents the Lebesgue measure, q is a measurable function map-
ping R+ to R+, such that | f p(x, xτ1 , . . . xτm , t)| ≤ w(Σ) holds for each (x, xτ1 , . . . xτm) ∈
Σ and t ≥ t0.
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Thus, we have the following conclusion on incremental stability of time-delay systems
with discontinuous right-hand sides:

Theorem 4. Suppose that system (13) has a unique solution, and there exists a sequence of functions
{ f p}∞

p=1 satisfying Condition Ctime−delay(Σ). χ(t) is a right-continuous staircase function with
discontinuities in {t1, . . . , tj, . . .}. Let N(t) = #{j : t ≥ tj, j = 1, 2, . . .}, and suppose that
there exist

1. A constant T0 > 0,
2. Positive constants γk(k = 0, 1, . . .), γ0 ≤ γ1 ≤ . . .,
3. C(χ(t), χ(t′)) ≤ C0 for any t, t′ ≥ t0,

such that the following conditions hold:
Let Ap(t) = (∂ f p/∂x)(x, xτ1 , . . . , xτm , r(t)), Bp

k (t) = (∂ f p/∂xτk )(x, xτ1 , . . . , xτm , r(t)),
k = 1, . . . , m, there exist matrix-valued functions Bp

1k(t), Bp
2k(t), Bp

1k(t) + Bp
2k(t) = Bp

k (t) such
that

νχ(t)(Ap(t) +
m

∑
k=1

Bp
1k(t)) +

m

∑
k=1

τk(t)‖B
p
1k(t)‖χ(t)(Ãp

k (t) + B̃p
k (t)) +

m

∑
k=1
‖Bp

2k(t)‖χ(t)
exp

(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

where

Ãp
k (t) = sup

t−τk(t)≤s≤t
‖Ap(s)‖χ(t) exp

(
γN(t)t− γN(s)s

)
B̃p

k (t) = sup
t−τk(t)≤s≤t

‖Bp
k (s)‖χ(t) exp

(
γN(t)t− γN(s−τk(s))(s− τk(s))

)
.

and for any t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ −c,

where βk = C(χ(tk), χ(tk−)), then system (6) is exponentially incrementally stable in Σ for
t ∈ [t0,+∞).

Proof. First, we construct a sequence of functions satisfying Condition Ctime−delay(Σ), and
the corresponding sequence of time-delay system:

ẋ(t) = f p(x, xτ1 , . . . xτm , r(t)) (14)

in which, according to Condition Ctime−delay(Σ), fi, i = 1, . . . , m satisfy local Lipschitz
conditions, so it can be seen that (14) has a unique solution for t ∈ R+.

Therefore, from Theorem 1, for each p, system (14) is exponentially incrementally
stable.

Denote any two of the solutions of (6) with different initial function x0(·) and y0(·) by
x(t) and y(t). Then, here, try to approximate x(t) and y(t) by two sequences of solutions
of (14), denoted by xp and yp, respectively. The initial functions x0(s) and y0(s) here are
defined for s ∈ [t0 − τ, t0], where τ = maxk sups∈[t0,+∞) τk(s).

With f p satisfying condition Ctime−delay(Σ), for each given T, t0 ≤ t ≤ T, we have
xp(t) and ẋp(t) are bounded regarding (x0(·), T). It is the same with yp(t). Thus, xp(t)
(yp(t)) is uniformly bounded on [t0, T], and ẋp(t) (ẏp(t)) is uniformly bounded on [t0, T]
as well.

Because of Condition 1 in Ctime−delay(Σ), xp(t) (yp(t)) is continuous with respect to
t. Together with Condition 3 in Ctime−delay(Σ), we conclude that xp(t) (yp(t)), p ∈ N+ are
equicontinuous for t ∈ [t0, T].

Here, we present the Arzela–Ascoli lemma (similar to Theorem 2.2 in [43]):
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Lemma 3. (Arzela–Ascoli Lemma) X is a compact set on Rn. If a sequence { fn}∞
1 in C(X) is

bounded and equicontinuous, then it has a uniformly convergent subsequence.

From Lemma 3, one can find a sub-sequence of {xp(t)}p∈N+ and {yp(t)}p∈N+ (still
denoted by xm(t) and ym(t)) satisfying that xp(t) (yp(t)) uniformly converges to a con-
tinuous function x∗(t) (y∗(t)) on [t0, T], T ∈ (t0,+∞]. For all k ∈ N+, one can find a
subsequence {xkj(t)}j∈N+ of {xp(t)}p∈N+ such that |xkj(t)− x∗(t)| < 1

j holds on the in-
terval [t0, t0 + k + 1]. Then, by diagonal selection principle, select a new subsequence
{xkk(t)}k∈N+ such that {xkk(t)}k∈N+ uniformly converges to a continuous function x∗(t)
on [t0, T], T ∈ (t0,+∞]. It is the same with x∗τk

(t), for k = 1, . . . , m.
The system ẋp(t) = f p(x, xτ1 , . . . , xτm , r(t)) has a unique solution. xp(t) satisfies

Lipschitz condition:

|xp(t)− xp(t′)|χ(t0)
≤ L|t− t′|χ(t0)

where t, t′ ∈ [t0, T], L > 0. Because of norm equivalence, the Lipschitz condition above
also holds with other norms defined in Rn. Therefore, x∗(t) (y∗(t)) also satisfies the
Lipschitz condition, that is, ẋ∗(t) (ẏ∗(t)) exists and is bounded and measurable for [t0, T),
T ∈ (t0,+∞].

We then have the conclusion that ẋp(t) (ẏp(t)) weakly converges to ẋ∗(t) (ẏ∗(t)) on
the space L1([t0, T],Rn), the demonstrations are as follows.

C∞
0 ([t0, T],Rn) is dense in the Banach space L∞([t0, T],Rn), which is the conjugate

space L1([t0, T],Rn). Therefore, the following equation∫ T

t0

〈ẋp(t)− ẋ∗, q(t)〉dt = −
∫ T

t0

〈q̇(t), xp(t)− x∗〉dt.

holds for each q(t) ∈ C∞
0 ([t0, T],Rn). Since {ẋp(t)} is bounded for each p, from the

Lebesgue-dominant convergence theorem we have

lim
p→∞

∫ T

t0

〈ẋp(t)− ẋ∗, q(t)〉dt = −
∫ T

t0

〈q̇(t), lim
p→∞

xp(t)− x∗(t)〉dt = 0.

That is, {ẋp(t)} weakly converges to ẋ∗(t) on the space L1([t0, T],Rn).
With Mazur’s convexity theorem [43], one can find an

l (bn
l ) with ∑m

l=1 am
l = 1 (∑m

l=1 bm
l = 1)

such that ˙̃xp converges to ẋ∗(t) almost everywhere on [t0, T], where x̃p(t) = ∑
p
l=1 ap

l xp.
Notice that x̃p is in the convex closure of {xp}, ˙̃xp converges to ẋ∗ uniformly. So it is with
˙̃yp(t) with ỹp(t) = ∑

p
l=1 bp

l yp, and it is the same with {ẋp
τk (t)} and {ẋ∗τk

(t)}.
Recall Condition 3 in Ctime−delay(Σ). For Σ ∈ Rn, it holds that

lim
p→∞

dH{Graph( f p(Σ, t)), Graph(F(Σ, t))} = 0, ∀t ≥ t0,

With ˙̃xp(t) in the convex closure of { f p(xp, xp
τ1 , . . . , xp

τm , r(t))} , for any ε > 0, there ex-
ists N > 0 such that ẋp(t) ∈ B(F(x∗, x∗τ1

, . . . , x∗τm , r(t)), ε) for all p > N and (x∗, x∗τ1
, . . . , x∗τm),

(xp, xp
τ1 , . . . , xp

τm) ∈ Σ, t ∈ [t0, T].
Since ε can be arbitrarily small, it can be seen that ẋ∗(t) ∈ F(x∗, x∗τ1

, . . . , x∗τm , r(t)) with
x∗ ∈ Σ, which infers that the solution of (6) equals to x∗(t) in Σ almost everywhere on
[t0, T]. For x(t) and x∗, both are continuous because x̃p converges to x∗ uniformly on [t0, T],
it can be seen that x∗ is the solution of (6). So it is with y∗(t).

Because system (6) has a unique solution, x(t) = x∗(t) and y(t) = y∗(t) almost
everywhere for t ≥ t0. That is, xp converges to x(t) uniformly in [t0, T], T ∈ (t0,+∞]. A
similar proof can be applied to yp(t) and y(t).

For { f p(x, xτ1 , . . . , xτm , r(t))} is exponentially incrementally stable from Theorem 1,
there exists some M > 0 and α > 0,
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|xp(t)− yp(t)|χ(t0)
≤ Me−α(t−t0) sup

s∈[t0−τ,t0]

|x0(s)− y0(s)|χ(t0)

for all p ∈ N+ and t ≥ t0. For each given t ≥ t0, let ε(t) = 3Me−α(t−t0) sups∈[t0−τ,t0]
|x0(s)−

y0(s)|χ(t0)
, there exists some p0(ε, t) with which |xp(t) − x(t)|χ(t0)

≤ ε/3 and |yp(t) −
y(t)|χ(t0)

≤ ε/3 hold for p ≥ p0(ε, t), which implies that

|x(t)− y(t)|χ(t0)
≤ |x(t)− xp(t)|χ(t0)

+ |y(t)− yp(t)|χ(t0)
+ |xp(t)− yp(t)|χ(t0)

≤ ε = 3Me−α(t−t0) sup
s∈[t0−τ,t0]

|x0(s)− y0(s)|χ(t0)
.

This completes the proof.

Remark 2. Similar to Theorem 4, Corollary 1 and Corollary 2 can also be extended to discontinuous
cases.

5. Applications

In this section, with the conclusion in Theorem 4, the applications to switched time-
delay systems and Hopfield time-delay systems are given.

5.1. Linear Switched Time-Delay System

Consider the following linear switched time-delay system:

ẋ(t) = f (x, xτ1 , . . . , xτm , t) =

{
A1(t)x(t) + ∑m

k=1 B1k(t)x(t− τk(t)) + J1(t), φ(x, xτ1 , . . . , xτm) > 0
A2(t)x(t) + ∑m

k=1 B2k(t)x(t− τk(t)) + J2(t), φ(x, xτ1 , . . . , xτm) < 0
. (15)

in which x(t) ∈ Rn, A1(t), A2(t) ∈ Rn×n, B1k(t), B2k(t)(k = 1, . . . , m) ∈ Rn×n is piecewise
continuous, bounded matrix-valued functions, whose discontinuities are in {t1, t2 . . . .ti, . . .}.
Take a simple bimodal system as an example, with the switching surface S = {(x, xτ1 , . . . , xτm) :
φ(x, xτ1 , . . . , xτm) = 0}.

In order to guarantee the uniqueness of the Filippov solution for system (15), the linear
time-delay system satisfies the following hypothesis:

Assumption 4. The linear time-delay system (15) satisfies:

1. The right-hand function of system (15) satisfies Assumption 3.
2. For each point (x, xτ1 , . . . , xτm) ∈ S, the time-delay system (15) satisfies

∂φ

∂x
(x, xτ1 , . . . , xτm) ·

(
(A1(t)− A2(t))x +

m

∑
k=1

(B1k(t)− B2k(t))xτk + J1(t)− J2(t)
)
< 0

Under the definitions and Assumption 4 above, from Lemma 2 and Theorem 3, it can be
obtained that system (15) has a unique solution.

Assumption 5. Suppose that in the continuous regions, the right-hand side f (x, xτ1 , . . . , xτm , t)
satisfies the conditions for exponential incremental stability in Theorem 1, which are formulated as
follows.

Let N(t) = #{j : t ≥ tj, j = 1, 2, . . .}, χ(t) be a right-continuous staircase function with its
discontinuous points belonging to {t1, . . . , tj, . . .}, and there exist

1. A constant T0 > 0,
2. Positive constants γk(k = 0, 1, . . .), γ0 ≤ γ1 ≤ . . .,
3. C(χ(t), χ(t′)) ≤ C0 for any t, t′ ≥ t0,

4. Matrix B(1)
1k , B(2)

1k , B(1)
2k , B(2)

2k ∈ Rn×n satisfying that B(1)
1k (t)+ B(2)

1k (t) = B1k(t) and B(1)
2k (t)+

B(2)
2k (t) = B2k(t),
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such that the following conditions are satisfied:

L1(t) =νχ(t)(A1(t) +
m

∑
k=1

B(1)
1k (t)) +

m

∑
k=1

τk(t)(Ã1k(t) + B̃1k(t))‖B
(1)
1k (t)‖χ(t)

+
m

∑
k=1
‖B(2)

1k (t)‖χ(t)
exp

(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

L2(t) =νχ(t)(A2(t) +
m

∑
k=1

B(1)
2k (t)) +

m

∑
k=1

τk(t)(Ã2k(t) + B̃2k(t))‖B
(1)
2k (t)‖χ(t)

+
m

∑
k=1
‖B(2)

2k (t)‖χ(t)
exp

(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

in which, for i = 1, 2,

Ãik(t) = sup
t−τk(t)≤s≤t

‖Ai(s)‖χ(t) exp
(
γN(t)t− γN(s)s

)
B̃ik(t) = sup

t−τk(t)≤s≤t
‖Bik(s)‖χ(t) exp

(
γN(t)t− γN(s−τk(s))(s− τk(s))

)
and for all t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ −c, (16)

where βk = C(χ(tk), χ(tk−)).

Thus, together with Theorem 4, we have the following corollary on incremental
stability for bimodal linear time-delay systems.

Corollary 3. Suppose that time-delay system (15) satisfies Assumptions 4 and 5. Meanwhile, in
the neighborhood of switching surface S, that is, when −δ/2 < φ(x, xτ1 , . . . , xτm) < δ/2, let w =
(A1(t)− A2(t))x(t) + ∑m

k=1(B1k(t)− B2k(t))x(t− τk(t)) + J1(t)− J2(t), if it is satisfied that

pL1(t) + (1− p)L2(t) +
1
δ

νχ(t)

(
w · ∂φ

∂x

)
+

1
δ

m

∑
k=1

∥∥∥∥w · ∂φ

∂xτk

∥∥∥∥
χ(t)

exp(γN(t)t)

exp
(
γN(t−τk(t))(t− τk(t))

)
+ p(1− p)

m

∑
k=1

τk(t)
[
(‖B(1)

1k ‖χ(t) − ‖B
(1)
2k ‖χ(t))(Ãk

2(t)− Ãk
1(t) + B̃2k(t)− B̃1k(t))

+
1
δ

∥∥pB(1)
1k + (1− p)B(1)

2k

∥∥
χ(t)

(
sup

t−τk(t)≤s≤t

∥∥∥∥w · ∂φ

∂x

∥∥∥∥
χ(t)

exp
(
γN(t)t

)
exp

(
γN(s)s

) + ∥∥∥∥w · ∂φ

∂xτk

∥∥∥∥
χ(t)

exp
(
γN(t)t

)
exp

(
γN(s−τk(s))(s− τk(s))

))]
≤ −γN(t)

(17)

holds for − δ
2 < φ(x, xτ1 , . . . , xτm) <

δ
2 and p = σ(φ(x, xτ1 , . . . , xτm)/δ) ∈ [0, 1], then the linear

switched time-delay system (15) is exponentially incrementally stable.

Proof. With the conclusion in Theorem 4, by constructing a sequence of time-delay systems
with continuous right-hand sides satisfying Condition Ctime−delay(Σ) as follows, we can
prove the exponential incremental stability property of system (15):

ẋ = f δ =σ(
φ(x, xτ1 , . . . , xτm)

δ
)[A1(t)x(t) +

m

∑
k=1

B1k(t)x(t− τk(t)) + J1(t)]

+ (1− σ(
φ(x, xτ1 , . . . , xτm)

δ
))[A2(t)x(t) +

m

∑
k=1

B2k(t)x(t− τk(t)) + J2(t)]
(18)
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in which σ(·) is defined as

σ(ρ) =


1, ρ > 1/2,
ρ + 1/2, ρ ∈ [−1/2, 1/2],
0, ρ < −1/2.

let w = (A1(t)− A2(t))x(t) + ∑m
k=1(B1k(t)− B2k(t))x(t− τk(t)) + J1(t)− J2(t) and p = σ

(φ(x, xτ1 , . . . , xτm)/δ), the partial derivative of the right-hand function f δ with respect to x
and xτk are as follows,

∂ f δ(x, xτ1 , . . . , xτm , r(t))
∂x

=σ(
φ(x, xτ1 , . . . , xτm)

δ
)A1(t) + [1− σ(

φ(x, xτ1 , . . . , xτm)

δ
)]A2(t) +

1
δ

w · ∂φ

∂x
∂ f δ(x, xτ1 , . . . , xτm , r(t))

∂xτk

=σ(
φ(x, xτ1 , . . . , xτm)

δ
)B1k(t) + [1− σ(

φ(x, xτ1 , . . . , xτm)

δ
)]B2k(t) +

1
δ

w · ∂φ

∂xτk

Thus, it needs to satisfy

L( f δ, t) =νχ(t)

(
pA1 + (1− p)A2 +

1
δ

w · ∂φ

∂x
+

m

∑
k=1

[pB(1)
1k + (1− p)B(1)

2k ]

)
+

m

∑
k=1

τk(t)(Ũk(t) + Ṽk(t))
∥∥∥∥pB(1)

1k + (1− p)B(1)
2k

∥∥∥∥
χ(t)

+
m

∑
k=1

∥∥∥∥pB(2)
1k + (1− p)B(2)

2k +
1
δ

w · ∂φ

∂xτk

∥∥∥∥
χ(t)

exp
(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

in which

Ũk(t) = sup
t−τk(t)≤s≤t

‖ ∂ f δ

∂x
(x(s), xτ1 (s), . . . , xτm (s), s)‖χ(tj) exp

(
γN(t)t− γN(s)s

)
Ṽk(t) = sup

t−τk(t)≤s≤t
‖ ∂ f δ

∂xτ
(x(s), xτ1 (s), . . . , xτm (s), s)‖χ(tj) exp

(
γN(t)t− γN(s−τk(s))(s− τk(s))

)
where t ∈ [tj, tj+1). That is,

L( f δ, t) ≤pL1(t) + [1− p]L2(t) +
1
δ

νχ(t)

(
w · ∂φ

∂x

)
+

1
δ

m

∑
k=1

∥∥∥∥w · ∂φ

∂xτk

∥∥∥∥
χ(t)

exp
(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

)
+ p(1− p)

m

∑
k=1

τk(t)
[
(‖B(1)

1k ‖χ(t) − ‖B
(1)
2k ‖χ(t))(Ãk

2(t)− Ãk
1(t) + B̃2k(t)− B̃1k(t))

+
1
δ

∥∥pB(1)
1k + (1− p)B(1)

2k

∥∥
χ(t)

(
sup

t−τk(t)≤s≤t

∥∥∥∥w · ∂φ

∂x

∥∥∥∥
χ(t)

exp
(
γN(t)t

)
exp

(
γN(s)s

) + ∥∥∥∥w · ∂φ

∂xτk

∥∥∥∥
χ(t)

exp
(
γN(t)t

)
exp

(
γN(s−τk(s))(s− τk(s))

))]
Together with (17), it infers that L( f δ, t) ≤ −γN(t), that is, system (18) is exponentially

incrementally stable for each δ = 1
m , m ∈ N+. From Theorem 4, it can be proved that the

time-delay system is exponentially incrementally stable.

Here, let B(1)
1k = B(1)

2k = 0, (k = 1, . . . , m), we have the following corollary, which is a
variant of Corollary 3.

Corollary 4. Let N(t) = #{j : t ≥ tj, j = 1, 2, . . .}, and suppose that system (15) satisfies
Assumption 4, and there exist

1. A constant T0 > 0,
2. Positive constants γk(k = 0, 1, . . .), γ0 ≤ γ1 ≤ . . .,
3. C(χ(t), χ(t′)) ≤ C0 for any t, t′ ≥ t0,

such that the following conditions are satisfied:
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L1(t) = νχ(t)(A1(t)) +
m

∑
k=1
‖B1k(t)‖χ(t)

exp
(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

L2(t) = νχ(t)(A2(t)) +
m

∑
k=1
‖B2k(t)‖χ(t)

exp
(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

and for all t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ −c,

where βk = C(χ(tk), χ(tk−)). Moreover, in the neighborhood of switching surface S, that is,
when −δ/2 < φ(x, xτ1 , . . . , xτm) < δ/2, let w = (A1(t) − A2(t))x(t) + ∑m

k=1(B1k(t) −
B2k(t))x(t− τk(t)) + J1(t)− J2(t), if it is satisfied that

pL1(t) + (1− p)L2(t) +
1
δ

νχ(t)

(
w · ∂φ

∂x

)
+

1
δ

m

∑
k=1

∥∥∥∥w · ∂φ

∂xτk

∥∥∥∥
χ(t)

exp
(
γN(t)t

)
exp

(
γN(t−τk(t))(t− τk(t))

) ≤ −γN(t)

holds for −δ/2 < φ(x, xτ1 , . . . , xτm) < δ/2 and p = φ(x, xτ1 , . . . , xτm)/δ ∈ [0, 1], then the
linear switched time-delay system (15) is exponentially incrementally stable.

5.2. Hopfield Neural Network Systems with Time Delay

Consider the following Hopfield neural network system with time delay:

ẋ(t) = −D(t)x(t) + T(t)g(x(t)) + S(t)u(xτ(t))) + J(t) (19)

where x = (x1, x2, . . . , xn)> is the state variable, the time-delay term xτ(t) = x(t− τ(t)).
For any t ∈ R+, D(t) = diag{d1(t), . . . , dn(t)}, T(t) = (Tij(t)) ∈ Rn,n, S(t) = (Sij(t)) ∈
Rn,n, J = (J1, J2, . . . , Jn) ∈ Rn is the input vector, g(x) = (g1(x1), g2(x2), . . . , gn(xn))>,
u(x) = (u1(x1), u2(x2), . . . , un(xn))>.

Here, we list the following hypothesis, denoted by Condition C2:

1. There exists D̃ = diag{D1, D2, . . . , Dn}, Di > 0, such that di(·) is continuous and
di(ζ1)−di(ζ2)

ζ1−ζ2
≥ Di holds for i = 1, 2, . . . , n and ζ1 6= ζ2.

2. gi(·) is non-decreasing and non-trivial in any compact set in R, and each gi(·) has only
finite discontinuous points. Therefore, in any compact set in R, except a finite points ρk,
where there exist finite right and left limits gi(ρ

+
k ) and gi(ρ

−
k ) with gi(ρ

+
k ) > gi(ρ

−
k ),

gi(·) is continuous.
3. ui(·) is non-decreasing and non-trivial in any compact set in R, and each ui(·) has only

finite discontinuous points. Therefore, in any compact set in R, except a finite points ηk,
where there exist finite right and left limits ui(η

+
k ) and ui(η

−
k ) with ui(η

+
k ) > ui(η

−
k ),

ui(·) is continuous.
4. Here, define a matrix measure νξ,1(A) = maxj[ajj + ∑i 6=j |ξiξ

−1
j aij|] for matrix A = (aij),

with respect to vector norm | · |ξ,1 and matrix norm ‖A‖ξ,1 = ‖ξ Aξ−1‖1, where ξ =
diag{ξ1, . . . , ξn}. There exists a positive diagonal matrix ξ(r(t)) = diag{ξ1(r(t)), . . . ,
ξn(r(t))} such that

νξ(r(t)),1(T) = max
j
{Tjj(t) + ∑

i 6=j
|ξi(r(t))ξ j(r(t))−1Tij(t)|} ≤ 0

holds for t ∈ R+.

Therefore, we have the following corollary:

Corollary 5. Suppose the system (19) has a unique solution for t ∈ R+, and satisfies Condition C2
above. Let N(t) = #{j : t ≥ tj, j = 1, 2, . . .}, and there exists
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1. Positive piecewise right-continuous function m(t) > 0,
2. A constant T0 > 0,
3. Positive constants αk > 0(k = 0, 1, . . .),
4. C(r(t), r(t′)) ≤ C0 for any t, t′ ≥ t0,

such that in the continuous regions of g and u,

νξ(r(t)),1
(
− D(t) + T(t)

∂g
∂x

(x, xτ)
)
+

exp
(
γN(t)t

)
exp

(
γN(t−τ(t))(t− τ(t))

)‖S(t) ∂u
∂xτ

(x, xτ)‖ξ(r(t)),1 ≤ −γN(t) (20)

Let Ki = mink[gi(ρk+)− gi(ρk−)], Mi = maxk[ui(γk+)− ui(γk−)], and K = mini Ki,
M = maxi Mi,

K · νξ(r(t)),1(T(t)) + M ·
exp

(
γN(t)t

)
exp

(
γN(t−τ(t))(t− τ(t))

)‖S(t)‖ξ(r(t)),1 < 0 (21)

For any t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ −c,

where βk = C(r(tk), r(tk−)), then system (19) is exponentially incrementally stable.

Proof. Suppose that system (19) has a unique solution for t ∈ R+, then we construct a
sequence of ‘continuous systems’ as follows,

ẋ(t) = f δ(x, xτ , t) = −D(t)x(t) + T(t)g̃(x(t)) + S(t)ũ(xτ(t)))

where g̃(x) = (g̃1(x1), g̃2(x2), . . . , g̃n(xn))>, ũ(x) = (ũ1(x1), ũ2(x2), . . . , ũn(xn))>. For
each i, denote one of the discontinuous points of gi(x) by ρi, and one of the discontinuous
point of ui(x) by ηi.

Function g̃δ(x) is formulated as follows, if xi /∈ [ρi − δ
2 , ρi +

δ
2 ], g̃δ

i (xi) = gi(xi), and if
xi ∈ [ρi − δ

2 , ρi +
δ
2 ],

g̃i
δ(xi) =

gi(ρi +
δ
2 )− gi(ρi − δ

2 )

δ
[xi − ρi +

δ

2
] + gi(ρi −

δ

2
).

Function ũ(x) is similarly constructed. It can be seen that when δ→ 0, the function
sequence f δ(x, xτ , t) converges to the Filippov differential inclusion of the right-hand
side of (19), that is, { f δ(x, xτ , t)} satisfies Condition Ctime−delay(Rn×2). Let ḡi(ρi, δ) =
gi(ρi+

δ
2 )−gi(ρi− δ

2 )
δ , ūi(ηi, δ) =

ui(ηi+
δ
2 )−ui(ηi− δ

2 )
δ . Here, denote the Jacobi matrix of functions

g̃δ(·) and ũδ(·) by matrix Gδ and Uδ. In the neighborhood of the discontinuous point,

Gδ =
∂g̃(x)

∂x
|x=(ρ1,ρ2,...,ρn)= diag{ḡ1(ρ1, δ), ḡ2(ρ2, δ), . . . , ḡn(ρn, δ)}

Uδ =
∂ũ(xτ)

∂xτ
|xτ=(η1,η2,...,ηn)= diag{ū1(η1, δ), ū2(η2, δ), . . . , ūn(ηn, δ)}

that is, we have

∂ f δ(x, xτ , t)
∂x

= −D(t) + T(t)Gδ,

∂ f δ(x, xτ , t)
∂xτ

= S(t)Uδ,
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In the continuous regions, the function sequence { f δ(x, xτ , t)} satisfies (20), and
νξ(r(t)),1(T(t)) < 0. Meanwhile, in the neighborhood of the discontinuities, together with
the condition (21), it holds that,

νξ(r(t)),1(−D(t) + T(t)Gδ) +
exp

(
γN(t)t

)
exp

(
γN(t−τ(t))(t− τ(t))

)‖S(t)Uδ‖ξ(r(t)),1

≤νξ(r(t)),1(−D(t)) + νξ(r(t)),1(T(t)G
δ) +

exp
(
γN(t)t

)
exp

(
γN(t−τ(t))(t− τ(t))

)‖S(t)Uδ‖ξ(r(t)),1

≤νξ(r(t)),1(−D(t)) + min
i

ḡi(ρi, δ)νξ(r(t)),1(T(t))

+ max
i

ūi(ηi, δ)
exp

(
γN(t)t

)
exp

(
γN(t−τ(t))(t− τ(t))

)‖S(t)‖ξ(r(t)),1

≤− γN(t)

for δ → 0. Therefore, if there exists a large enough number m0 > 0, such that for each
m > m0, m ∈ N+,

νξ(r(t)),1(−D(t) + T(t)Gδ) +
exp

(
γN(t)t

)
exp

(
γN(t−τ(t))(t− τ(t))

)‖S(t)Uδ‖ξ(r(t)),1 ≤ −γN(t)

holds for δ = 1/m. According to Theorems 1 and 4, the time-delay system (19) is exponen-
tially incrementally stable.

6. Numerical Experiments
6.1. Linear Time-Delay System

Consider a linear switched time-delay system formulated as follows:

ẋ(t) =

{
A1x(t) + B1x(t− τ(t)) + J1, z>x > 0
A2x(t) + B2x(t− τ(t)) + J2, z>x < 0

(22)

where x, xτ ∈ R2. The switching surface of system (22) is {x : φ(x) = z>x = 0} where
z = [1, 3]>.

Let τ(t) = 1 and

A1 =

[
−6 1
0 −7

]
, A2 =

[
−7 −2
−1 −10

]
, B1 = B2 =

[
−1 0
0 1

]
, J1 =

[
−1
−2

]
, J2 =

[
0
1

]
.

Here, we first prove that system (22) has a unique solution for t ∈ [1,+∞). On the
switching surface {x : φ(x) = z>x = 0}, we have

dφ

dx
(x) ·

(
(A1 − A2)x + J1 − J2

)
= [1, 3]>

([
1 3
1 3

]
x(t) +

[
−1
−3

])
= −4,

According to Assumption 4, the uniqueness of the Filippov solution for (22) occurs for
t ∈ [0,+∞). Let γN(t) = 1− 1/2[t] and the number [t] represents the floor of time t. So, for
t > 1,

L1(t) = ν2(A1) + ‖B1‖2
eγN(t)t

eγN(t)−1(t−1)
= −5.75 +

e(1−1/2[t])t

e(1−1/2[t−1])(t−1)
< −3.5 < −1 +

1
2[t]

L2(t) = ν2(A2) + ‖B2‖2
eγN(t)t

eγN(t)−1(t−1)
= −6.35 +

e(1−1/2[t])t

e(1−1/2[t−1])(t−1)
< −4 < −1 +

1
2[t]

where ‖ · ‖2 stands for 2-norm. Then, for −δ/2 < φ(x) < δ/2 and p = φ(x)/δ + 1/2 ∈ [0, 1],
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pL1(t) + (1− p)L2(t) +
1
δ

ν2

(([
1 3
1 3

]
x(t) +

[
−1
−3

])
· [1, 3]

)
< −1.5 < −γN(t),

and for all t > T0,

1
t

[ N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t
]
≤ 1

t

[ N(t)−1

∑
i=0

[
1

2i+1 (i + 1)]− (1− 1
2[t]

)t
]
≤ −0.5

Thus, from Corollary 4, the switched time-delay system (22) is exponentially incremen-
tally asymptotically stable.With the initial state x0(s) = [5× (0.5 + s)2, 6× (1− s)− 1.5]
and y0(s) = [−3× (1 + s)3 − 2,−3× (1− s)] for s ∈ [0, 1], the corresponding solution of
system (22) are x(t) = (x1(t), x2(t)) and y(t) = (y1(t), y2(t)), respectively.

Figure 1 shows the dynamical trajectories of two of the solutions with the initial
function defined as x0(·) and y0(·) for system (22). Moreover, Figure 2 shows the errors
between the two dynamical trajectories of their segments.

Figure 1. Dynamical trajectories of the solutions for time-delay system (22).

Figure 2. A diagram for exponential incremental uniform stability (the error of each segment) of
time-delay system (22).
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6.2. Hopfield Neural Network with Time Delay

Here, we take an example of the Hopfield system with time delay for illustration. The
system is formulated as follows,

ẋ(t) = D(t)x(t) + T(t)g(x(t)) + σ(t)S(t)u(xτ(t))) + J(t) (23)

where x = [x1, x2]
> is the state vector, σ(t) is the switched function with respect to time t,

takes value between 0 and 1. The parameter matrix are

σ(t) =

{
0 t ∈ [kT0, kT0 +

1
2 T0)

1 t ∈ [kT0 +
1
2 T0, (k + 1)T0)

, τ(t) =

{
t t ≤ 0.2
0.1× | sin(πt/0.4)|+ 0.1 t > 0.2

D(t) =
[
−0.3 + 0.1× sin(t) 0

0 −0.3 + 0.1× cos(t)

]
, J(t) =

[
10 sin(2t)
−10 sin(2t)

]
,

T(t) =
[
−5− sin(t) 2.5 + cos(t)
2.5− cos(t) −5− sin(t)

]
, S(t) =

[
0.1× sin(t) 0.1 + 0.1× cos(t)

0.1− 0.1× cos(t) 0.1× sin(t)

]

gi(x) =

{
x + 2.5 x > 0
x− 2.5 x < 0

, ui(x) =

{
x + 1 x > 0
x− 1 x < 0

, i = 1, . . . , n

where k ∈ N≥0, T0 = 1. According to the uniqueness conditions for the Filippov solution
of the time-delay system, Lemma 2 and Theorem 3, it can be seen that (23) has a unique
solution in compact set Σ ∈ R2.

Here, define the norm with subscript σ(t) as |x|0 = 0.8|x1|+ |x2|, |x|1 = |x1|+ |x2|,
β01 = 1.25, β10 = 1, then ν0(T) < −0.5, ν1(T) = −2.5+

√
2 < −1, ‖S‖1 < 0.3, ‖S‖0 < 0.25,

therefore, let N(t) = j, t ∈ [tj−1, tj), γj = max{1/4, (1/2) − (1/2)j}, tj = (T0/2) · j,
j = 1, 2, . . ., such that in the continuous region of the right-hand side of system (23), it
holds that

αN(t) + ν0(−D(t) + T(t)) < 0

αN(t) + ν1(−D(t) + T(t)) +
exp

(
γN(t)t

)
exp

(
γN(t−τ(t))(t− τ(t))

)‖S(t)‖1 < 0.5− 1 + 0.25 < 0

As for condition (21), after calculation, we have K = 5, M = 2; thus, condition (21)
holds for σ(t) = 0, 1. Moreover, for t > 10, we have

N(t)−1

∑
i=0

[(γi+1 − γi)ti+1 + log βi+1] + γ0t0 − γN(t)t ≤ 1.75 + log(1.25)t− 0.49t < −0.25t

Together with Corollary 5, the switched time-delay system (23) is exponentially incremen-
tally asymptotically stable. With the initial state x0(s) = [5× (0.5 + s)2, 6× (1− s)− 1.5]
and y0(s) = [−2 ∗ (1 + s)2 − 2,−3× (1− s)] for s ∈ [0, 0.5], the corresponding solution of
system (23) are x(t) = (x1(t), x2(t)) and y(t) = (y1(t), y2(t)), respectively. When t > 0.5,
σ(t) = 1 and time lag occurs.

Figure 3 shows the dynamical trajectories of two of the solutions with the initial
function defined as x0(·) and y0(·) for system (23). Moreover, Figure 4 shows the errors
between the two dynamical trajectories of their segments.
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Figure 3. Dynamical trajectories of the solutions for time-delay system (23).

Figure 4. A diagram for exponential incremental uniform stability (the error of each segment) for
system (23).

7. Conclusions

This paper researches the criteria for incremental stability for time-delay dynamical
systems, including systems with continuous right-hand sides and systems with discontinu-
ous right-hand sides, respectively. In this paper, the corresponding sufficient conditions
for the exponential incremental stability of solutions for time-delay dynamical systems
with continuous right-hand sides are proposed and proved. Before studying sufficient
conditions for incremental stability of the systems with discontinuous right-hand sides,
we first provide the conditions for the existence and uniqueness of the Filippov solution.
Then, by constructing a sequence of systems with continuous right-hand sides and using
the approximation method, sufficient conditions for exponential incremental stability of
the systems with discontinuous right-hand sides are obtained.

There still needs to be much further work. Our theorem can be helpful for applications
in other more complex scenarios and we may propose more corollaries for some more
complex systems in the future. Furthermore, we may seek some other approaches to
construct “continuous systems” to approximate discontinuous systems.
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Notations

| · |χ(t) Vector norm with subscript χ(t)
‖ · ‖χ(t) Matrix norm induced by | · |χ(t)
νχ(t) Matrix measure induced by | · |χ(t)
χ(t) A right-continuous staircase function with respect to t, with switching points

belonging to {tj}
r(t) A piecewise right-continuous function with respect to t, with switching points {tj}
t0 The initial time
τ The upper bound of τk: maxk supt∈[t0,∞)τk(t) = τ

τ The lower bound of τk: mink in ft∈[t0,∞)τk(t) = τ

N(t) N(t) = #{j : t ≥ tj, j = 1, 2, . . .}
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