
Citation: Xing, L.; Wu, R.; Chen, J.; Li,

J. Knowledge-Based Evolutionary

Optimizing Makespan and Cost for

Cloud Workflows. Mathematics 2023,

11, 38. https://doi.org/10.3390/

math11010038

Academic Editors: Linqiang Pan,

Zhihua Cui, Harish Garg, Thomas

Hanne and Gai-Ge Wang

Received: 1 November 2022

Revised: 6 December 2022

Accepted: 19 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Knowledge-Based Evolutionary Optimizing Makespan and
Cost for Cloud Workflows
Lining Xing 1 , Rui Wu 2, Jiaxing Chen 2 and Jun Li 3,*

1 School of Electronic Engineering, Xidian University, Xi’an 710071, China
2 Inner Mongolia Institute of Dynamical Machinery, Hohhot 010010, China
3 School of Management, Hunan Institute of Engineering, Xiangtan 411104, China
* Correspondence: 08036@hnie.edu.cn

Abstract: Workflow scheduling is essential to simultaneously optimize the makespan and economic
cost for cloud services and has attracted intensive interest. Most of the existing multi-objective cloud
workflow scheduling algorithms regard the focused problems as black-boxes and design evolution-
ary operators to perform random searches, which are inefficient in dealing with the elasticity and
heterogeneity of cloud resources as well as complex workflow structures. This study explores the
characteristics of cloud resources and workflow structures to design a knowledge-based evolutionary
optimization operator, named KEOO, with two novel features. First, we develop a task consolidation
mechanism to reduce the number of cloud resources used, reducing the economic cost of workflow
execution without delaying its finish time. Then, we develop a critical task adjustment mechanism
to selectively move the critical predecessors of some tasks to the same resources to eliminate the
data transmission overhead between them, striving to improve the economic cost and finish time
simultaneously. At last, we embed the proposed KEOO into four classical multi-objective algorithms,
i.e., NSGA-II, HypE, MOEA/D, and RVEA, forming four variants: KEOO-NSGA-II, KEOO-HypE,
KEOO-MOEA/D, and KEOO-RVEA, for comparative experiments. The comparison results demon-
strate the effectiveness of the KEOO in improving these four algorithms in solving cloud workflow
scheduling problems.

Keywords: evolutionary computation; workflow scheduling; cloud computing; multi-objective
optimization; evolutionary operator

MSC: 97M40; 97P30

1. Introduction

Big data processing applications from various domains, e.g., the Earthquake and
Internet of Things, can be divided into a series of phases. In addition, tasks belonging to dif-
ferent phases have complex data dependencies. These applications are commonly described
as workflows [1,2]. Due to the substantial computation and data transmission require-
ments, executing these workflows often requires massive high-performance infrastructures.
With the benefits of pay-per-use, elasticity, scalability, high reliability, and flexibility, cloud
computing has become an increasingly attractive choice for enterprises to process their
workflow applications by alleviating the burden of building, operating, and maintaining
infrastructure [3–5].

Scheduling workflows in clouds, which determines the mappings from tasks to re-
sources and the task order on each resource, is of paramount importance to optimize the
execution makespan and economic cost, satisfying the quality of service for cloud users and
earning more profits for cloud providers [6]. Since the cloud workflow scheduling problem
is NP-complete [7,8] and involves multiple conflicting objectives [9], many studies choose
evolutionary optimization techniques to obtain satisfactory solutions within an acceptable
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time [10]. Most existing studies adopt multi-objective optimization for cloud workflow
scheduling by designing new selection or reproduction operators.

Some studies have tried to design selection operators for multi-objective cloud work-
flow scheduling. For instance, Zhou et al. [11] combined a fuzzy-dominance-sort-based
selection operator with the earliest-finish-time-based reproduction operator to balance
makespan and economic cost for workflow execution in clouds. Kumar et al. [12] inte-
grated the entropy weight approach into a multi-criteria decision-making technique to
optimize makespan, economic cost, energy consumption, and reliability. Ye et al. [13]
enhanced knee point-driven evolutionary algorithm to balance makespan, the average
execution time of all workflow tasks, reliability, and economic cost of workflow execution.
Pham et al. [14] considered the volatility of spot cloud instances and employed a multi-
objective evolutionary algorithm to balance makespan and economic cost for workflow
execution in clouds.

Compared with the selection operators, designing problem-specific reproduction
operators attracts more interest. Up to now, considerable efforts have been devoted to
developing new reproduction operators for multi-objective workflow scheduling in cloud
computing [10,15,16]. At first, some works [17–19] replaced the reproduction operator of
the multi-objective optimization framework with the list-based heuristic rule for cloud
workflow scheduling. For instance, Durillo and Prodan [17] improved a task list-based
heuristic rule to obtain a series of intermediate non-dominated solutions for each work-
flow task, and employed the fast non-dominated sorting-based approach [20] to maintain
a predefined number of non-dominated solutions. Wu et al. [21] designed a task list-based
optimization rule and a preference weight evolutionary strategy to balance the economic
cost and makespan of cloud workflows. Although the heuristics-based multi-objective
optimization algorithms pose low time overheads and are effective in specific scenarios,
their global search capacity is poor, especially in the face of complex and diverse workflows.

Then, bio-inspired optimization techniques, such as ant colony optimization [22],
particle swarm optimization [23,24], artificial neural network [25], genetic algorithm [26,27],
and grey wolf optimization [28], were adopted to improve the capacity of reproduction
operators in multi-objective evolutionary algorithms. For instance, Zhu et al. [9] improved
the multi-objective evolutionary algorithm with problem-specific encoding, population
initialization, and reproduction operators to optimize both the makespan and economic cost
of cloud workflows. Chen et al. [22] designed a particle swarm optimization algorithm with
two colonies to balance the makespan and economic cost of workflow execution in clouds.
Ismayilov et al. [25] incorporated an artificial neural network into the NSGA-II to optimize
six objectives of workflow execution in cloud computing. Wang et al. [24] embedded
idle time gap-based strategies into particle swarm optimization to optimize the economic
cost of workflows. In addition, some works integrated heuristic rules and bio-inspired
algorithms to reproduce the new population. For instance, Choudhary et al. [29] suggested
a hybridization of gravitational search algorithm and heterogeneous-earliest-finish-time
for bi-objective scheduling cloud workflows. Mohammadzadeh et al. [30] suggested a hy-
bridization of the antlion and grasshopper optimization algorithm to optimize makespan,
economic cost, energy consumption, and throughput of workflow execution in clouds.
These existing multi-objective cloud workflow scheduling algorithms often regard the
focused problems as black-boxes, and search the solutions in a random way, resulting in
low efficiency in dealing with the elasticity and heterogeneity of cloud resources as well as
complex workflow structures.

By analyzing these existing works, we can derive that workflow scheduling challenges
the randomness of evolutionary search from two aspects. On the one hand, the elasticity,
heterogeneity, and on-demand use of cloud computing resources provide a vast number of
candidate resources for each workflow task, meaning that the search space for scheduling
a cloud workflow is expanding explosively. It is inefficient for the multi-objective evolu-
tionary algorithms to search explosive growth space randomly. On the other hand, due to
data dependency among workflow tasks, randomly adjusting a task’s execution scheme



Mathematics 2023, 11, 38 3 of 19

often successively affects a series of tasks, including its successor tasks and those tasks
being executed after these tasks and their successor tasks.

The current challenges of scheduling cloud workflows motivate us to explore the
knowledge of cloud resources and workflow structures to design an effective multi-
objective evolutionary optimization algorithm. More specifically, we explore the het-
erogeneity, pay-as-you-go, and elasticity of cloud resources to design a consolidation
mechanism to merge workflow tasks on different cloud resources without delaying any
tasks. This way helps reduce the economic cost by reducing the number of cloud resources
used and improve search efficiency by shrinking the set of candidate cloud resources. More-
over, the knowledge that data transmission overheads among tasks on the same resource
are negligible motivates us to design a critical task adjustment mechanism. It selectively
moves the critical predecessors of some tasks to the same resources to eliminate the data
transmission overhead between them, striving to improve the finish time and economic
cost simultaneously. At last, based on real-world workflows and cloud platforms, we
conduct comparative experiments to demonstrate that the proposed approach is capable of
improving the performance of multi-objective evolutionary algorithms in solving cloud
workflow scheduling problems.

This paper is organized as follows. Section 2 mathematically formulates the multi-
objective workflow scheduling problem. Section 3 describes the proposed KEOO, followed
by experimental verifications in Section 4. Section 5 concludes this paper.

2. Problem Formulation

This section provides the models for workflow and cloud resource, then formulates
the multi-objective cloud workflow scheduling problem.

2.1. Workflow Model

Generally, the workflow structure is modeled as a Directed Acyclic Graph (DAG),
in which the nodes and directed edges denote the tasks and the data dependencies among
the tasks, respectively. In detail, the DAG model of a workflow is formulated as Ψ = {T, D},
where T = {t1, t2, · · · , tn} is the set of nodes representing the workflow tasks, and D ⊆
T× T is the set of edges representing data dependencies among the tasks. The existence
of edge di,j ∈ D means that the start of task tj requires the output result of task ti as input.
Then, task ti is regarded as an immediate predecessor of task tj, and tj is regarded as
an immediate successor of ti. For a task ti, the set of all its immediate predecessors is
represented as P(ti), while the set of all its immediate successors is represented as S(ti).

Figure 1 provides an intuitive example of a DAG model for a workflow having seven
tasks, i.e., T = {t1, t2, · · · , t7}. The edge d1,2 represents the data dependency between t1
and t2, meaning that the start of task t2 needs to wait for the output result of task t1. As can
be seen in Figure 1, for task t7, the set of its immediate predecessors is P(t7) = {t5, t6},
and the set of t6’s immediate successors is S(t6) = {t7}.

1
t

2
t

3
t

4
t

5
t

6
t

7
t

Figure 1. DAG model of a workflow with seven tasks.

2.2. Cloud Resource Model

Infrastructure as a Service (IaaS) is one popular cloud paradigm, where cloud providers
provide unlimited cloud resources with various types [31]. Different resource types differ
in price and performance configurations, such as CPU frequency, network bandwidth,
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memory, and storage size. Given that the cloud platform provides m types of resources,
we describe all these resource types as Γ = {1, 2, · · · , m}, where τ ∈ Γ corresponds to
the τ-th resource type. For a resource type τ, its price and configurations are respectively
represented as pr(τ) and con(τ). Then, a resource instance of type τ in a cloud platform can
be modeled as rτ

k = {k, pr(τ), con(τ)}, where k denotes the index of this resource instance.
We refer to well-known cloud providers, e.g., Amazon EC2 and Alibaba Cloud ECS,

and follow their resource charging mode of pay-as-you-use. This way, each user can rent
cloud instances on-demand and pay for the used instances based on the real usage time.
Generally, the cloud providers charge for resource instances according to the number of
charging periods and round up the partial time of a period to one more period. If the
period length is one hour, the number of charging periods for 60.5 min is two.

The network structure among resource instances in clouds is often heterogeneous and
intricate. Since this paper focuses on scheduling workflow tasks, we simplify the underlying
network structure and assume that all resource instances are interconnected. The symbol
bk,l is employed to denote the communication bandwidth between resource instance rτ

k and
rτ′

l . When two data-dependent tasks are executed on the same resource instance, they will
use the same storage space, and there is no data transmission through the network. Then,
the data transmission overhead between these two tasks can be negligible [9,32].

2.3. Multi-Objective Scheduling Cloud Workflows

Since cloud resource instances are elastic, we construct a resource pool based on the
workflow’s most used resource instances. We use p to represent the maximum parallelism
of the workflow, and then the resource pool contains p instances of each type. That is to
say, the resource pool can be detailed as

R = {r1
1, r1

2, · · · , r1
p, r2

p+1, r2
p+1, · · · , r2

2·p, · · · , rm
m·p}. (1)

This paper defines the decision vector x = {x1, x2, · · · , xn} as the mappings from
workflow tasks to resource instances, where the i-th decision variable xi corresponds to the
i-th workflow task and its value indicates the index of this task mapping resource instance.
Then, the value of each decision variable is one of the elements of the set {1, 2, · · · , m · p}.

For a decision vector, we assume that the workflow task ti is mapped to resource
instance rτ

k . This task’s start time sti,k is the maximum time to collect the output results
from all its predecessors and the available mapped resource instance.

On resource instance rτ
k , the task set ahead of task ti is described as:

Bi = {tp|O(tp) < O(ti)}, (2)

where O(tp) denotes the order number of task tp on the resource instance rτ
k .

Then, the start time sti,k of workflow task ti on the mapped resource instance rτ
k is

calculated as follows:

sti,k = max{max
tb∈Bi

f tb,k, max
tp∈P(ti)

{ f tp,∗ + dtp,i}}, (3)

where f tb,k denotes the finish time of task tb on resource instance rτ
k , f tp,∗ denotes the finish

time of task tp on its mapped resource instance, and dtp,i denotes the data transmission
time from tp to ti.

Before scheduling, the execution time eti,k of workflow task ti on resource instance rτ
k

can be estimated by the computation amount of the task and the performance configuration
of the resource instance. Then, the relationships among sti,k, eti,k, and f ti,k can be described
as follows:

f ti,k = sti,k + eti,k. (4)
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The data dependencies among workflow tasks mean that a task ti cannot start execu-
tion before receiving the output data from all its predecessors, which creates the follow-
ing constraint:

sti,k ≥ max
tp∈P(ti)

{ f tp,r(tp) +
I{r(ti) 6= r(tp)} × w(ep,i)

bw
}, ∀ti ∈ T, (5)

where I{·} is an indicator function. If tp and ti are mapped to different resources, I{·}
is 1; otherwise, it is 0. The indicator function is employed to reflect the fact that once
two dependent tasks are executed by the same resource, the data transmission overhead
between these two tasks is negligible and assumed to be zero. bw denotes the bandwidth.

Given a decision vector, the set of all tasks mapped to resource instance rτ
k can be

described as:
Tk = {ti|xi = k, i ∈ {1, 2, · · · , n}}. (6)

With the mapped task set Tk, the startup time utk and shutdown time ntk of resource
instance rτ

k can be calculated as follows:

utk = min
ti∈Tk
{sti,k − max

tp∈P(ti)
dtp,i},

ntk = max
ti∈Tk
{ f ti,k + max

ts∈S(ti)
dti,s}.

(7)

With the formulation above, we formulate the first optimization objective, i.e., mini-
mizing the economic cost, as follows:

Min f1(x) = ∑
rτ

k∈R
pr(τ)× dntk − utk

C
e, (8)

where C denotes the length of charging period for resource instances.
The second optimization objective is to minimize the makespan of the workflow, which

refers to the maximum finish time of all the workflow tasks. We formulate this optimization
objective as follows:

Min f2(x) = max
ti∈T

f ti,∗. (9)

To summarize, the model for multi-objective scheduling cloud workflows can be
formulated as follows:

Min f (x) = [ f1(x), f2(x)],
S.t.

x ∈ {1, 2, · · · , m · p}n,

sti,k ≥ maxtp∈P(ti)
{ f tp,r(tp) +

I{r(ti) 6=r(tp)}×w(ep,i)

bw }, ∀ti ∈ T.

(10)

To improve readability, we take the workflow in Figure 1 as an example to visually
illustrate the decision variable and the calculation of the corresponding objective vector.
Assuming that the resource set is R = {r1, r2, · · · , r5}, one decision variable of the workflow
with seven tasks in Figure 1 is x = {2, 1, 3, 2, 4, 5, 2}. The configurations of the five cloud
resources and the execution time from tasks to resources are summarized in Table 1.
The data transmission time among workflow tasks is given in Table 2. Based on the above
assumptions, Figure 2 illustrates the Gantt chart of the schedule. Then, we can calculate
each workflow task’s start and finish time, which is given in Table 3.
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Table 1. Examples of task execution time (in minute).

r1 r2 r3 r4 r5

CPU (GHz) 2.9 3.3 2.9 2.9 3.3
Memory Size (GB) 4.0 6.0 4.0 4.0 6.0
Bandwidth (MB/s) 20.0 30.0 20.0 20.0 30.0
Storage (GB) 500.0 1000.0 500.0 500.0 1000.0
Price ($/h) 0.025 0.032 0.025 0.025 0.032

t1 6.25 5.0 6.25 6.25 5.0
t2 5.0 4.0 5.0 5.0 4.0
t3 10.0 8.0 10.0 10.0 8.0
t4 6.25 5.0 6.25 6.25 5.0
t5 15.0 12.0 15.0 15.0 12.0
t6 25.0 20.0 25.0 25.0 20.0
t7 22.5 18.0 22.5 22.5 18.0

Table 2. Examples of data transmission time (in minutes) among tasks.

t1 t2 t3 t4 t5 t6 t7

t1 − 3 3 − − − −
t2 − − − 2 − − −
t3 − − − − 5 − −
t4 − − − − 3 5 −
t5 − − − − − − 10
t6 − − − − − − 3
t7 − − − − − − −

time (min)

50 60 704010 20 300

1
t

2
t

3
t

4
t

5
t

6
t

7
t

1r

2r

3r

4r

5r

Figure 2. Example of a schedule.

Table 3. Start time st(·) and finish time f t(·) (in minute) of each workflow task.

t1 t2 t3 t4 t5 t6 t7

st(·) 0.0 8.0 8.0 15.0 23.0 25.0 48.0
f t(·) 5.0 13.0 18.0 20.0 38.0 45.0 66.0

According to the charging mode of cloud resources, i.e., the partial time of a charging
period is rounded up to one, the charging periods of the five resources are 1, 2, 1, 1, and 1,
respectively. Then, the execution cost of the workflow is 0.025× 1 + 0.032× 2 + 0.025× 1 +
0.025× 1 + 0.032× 1 = 0.171 dollars, which corresponds to the first optimization objective.
Besides, the makespan of a workflow refers to the maximum finish time of all the tasks. We
can obtain this optimization objective as max{5.0, 13.0, 18.0, 20.0, 38.0, 45.0, 66.0} = 66.0 min.



Mathematics 2023, 11, 38 7 of 19

Pareto dominance is commonly used to compare solutions with multiple conflicting
objectives [33,34].

Pareto-Dominance: Suppose x1 and x2 are two feasible solutions for the cloud work-
flow scheduling. x1 is regarded to Pareto dominate x2 (expressed as x1 ≺ x2) if and only if
the two objectives of x1 is no larger than that of x2 (i.e., f j(x1) ≤ f j(x2), ∀j ∈ {1, 2}) and x1
is less than x2 on at least one objective (i.e., f j(x1) < f j(x2), ∃j ∈ {1, 2}).

Pareto-optimal Solution: A solution x∗ ∈ {1, 2, · · · , m · p}n is generally defined as
Pareto-optimal when there exists no feasible solution dominating it.

Pareto-optimal Set/Front: All the Pareto-optimal solutions are defined as Pareto-Set
(PS) in the decision space and Pareto-Front (PF) in the objective space.

3. Algorithm Design

The framework of traditional multi-objective evolutionary algorithms includes initial-
ization, reproduction operator, and selection operator [35]. The proposed KEOO contributes
to strengthening reproduction operators’ search capability by exploring the knowledge of
cloud resources and workflow structures. It incorporates a task consolidation mechanism
to efficiently search explosive growth solution space caused by the heterogeneity and elas-
ticity of cloud resources, and a critical task adjustment mechanism to handle the complex
workflow structures. Algorithm 1 provides the overall framework of a multi-objective
evolutionary algorithm embracing the proposed KEOO.

Algorithm 1: The main framework of KEOO
Input: The optimization problem in (10); population size N;
Output: A final population P;

1 P← Randomly generate a population;
2 while does not reach termination condition do
3 if rand < 0.5 then
4 Q← Reproduce an offspring population;
5 Q← Adjust Q using TaskConsolidation();
6 else
7 Q← Reproduce an offspring population by CriticalTaskReschedule();

8 P← EnvironmentalSelection(P
⋃

Q, N);

As illustrated in Algorithm 1, the inputs of the proposed KEOO are the multi-objective
cloud workflow scheduling problem and the population size. Once the KEOO reaches the
termination condition, it outputs an up-to-date population.

In the initialization stage, one population is generated randomly (Line 1). Then,
the KEOO iterates the reproduction and environmental selection stages until the termi-
nation condition is reached. During the reproduction stage, either the task consolidation
mechanism (Line 5) or the critical task adjustment mechanism (Line 7) is triggered to
reproduce an offspring population. Because the task consolidation mechanism is a heuristic
rule and lacks global search capability, this mechanism is designed to further optimize
the offspring solutions generated by traditional evolutionary algorithms (Line 4), rather
than being used alone. Because the focused cloud workflow scheduling problem in this
paper only optimizes two objectives of makespan and economic cost, many classical en-
vironmental selection operators are competent. Thus, this paper does not design a new
selection operator but directly employs existing ones, such as NSGA-II [20], HypE [36],
MOEA/D [37], and RVEA [38].

Algorithm 2 gives the pseudo-code of the task consolidation mechanism, which
explores the heterogeneity, pay-as-you-go, and elasticity of cloud resources to consolidate
workflow tasks to as few cloud resources as possible. Then, the number of leased resources
can be reduced to achieve the goal of reducing the economic cost.
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Algorithm 2: Function TaskConsolidation()
Input: Current population P;
Output: A new population P;

1 Sort R according to their CPU configurations;
2 k← 1;
3 Gk ← {R1};
4 con f ← CONF(R1);
5 for j = 2→| R | do
6 if CONF(Rj) == con f then
7 Gk ← Gk

⋃{Rj};
8 else
9 k← k + 1;

10 Gk ← {Rj};
11 con f ← CONF(Rj);

12 for h = 1→ k do
13 Sort Gh according to their completion time;
14 r ← G1

h;
15 ct← ct(G1

h);
16 for j = 2→| Gh | do
17 if st(Gj

h) ≥ ct then
18 for i = 1→ n do
19 if xi == I(Gj

h) then
20 xi ← I(r);

21 else
22 r ← Gj

h;

23 ct← ct(Gj
h);

As illustrated in Algorithm 2, the function TaskConsolidation() consists of two phases:
resource classification and task consolidation. To avoid affecting the task execution, the func-
tion only merges tasks on the resources with the same configurations. Then, during the
phase of resource classification, all the resources are classified into a series of groups (Lines
1–11). At first, this function sorts all the resources according to their CPU configurations
(Line 1). The symbol k is used to record the group number, initialized as 1 (Line 2). The set
Gk is used to record the resources belonging to the k-th group (Line 3). The operator
CONF(·) means to obtain the configuration information of a cloud resource. Next, each
resource is checked (Line 5). If its configuration is consistent with the recorded one, it will
be added to the current group (Line 7). Otherwise, a new group is created (Lines 9–10),
and the recorded configuration is updated (Line 11).

After resource classification, the function TaskConsolidation() enters the task consol-
idation phase. It sorts a group of cloud resources in ascending order according to the
maximum finish time of the mapped tasks (Line 13). Then, the first resource in this group
is selected (Line 14), and the completion time of this resource is recorded (Line 15). If the
earliest start time of all tasks mapped to a cloud resource is greater than the record time
(Line 17), all tasks on this resource are consolidated to the selected resource (Lines 18–20).
Otherwise, a cloud resource is reselected and the record time is updated (Lines 22–23).

To illustrate the function TaskConsolidation() clearly, Figure 3 gives a visual example
based on the schedule in Figure 2. According to the configurations of the five cloud
resources in Table 1, they can be divided into two groups, i.e., G1 = {r1, r3, r4} and
G2 = {r2, r5}. The three cloud resources in the first group will be sorted as r1, r3, and r4.
The earliest start time of tasks on resource r3 is not greater than the maximum finish time
of tasks on resource r1, so the task consolidation requirements are not met. On the contrary,
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the earliest start time of tasks on resource r4 is greater than the maximum finish time of
task on resource r1, then the task on r4 is consolidated to r1, as illustrated in Figure 3.
By comparing Figures 2 and 3, we can observe that resource r4 can be released, reducing the
economic cost of this resource. After task consolidation, according to the charging mode of
cloud resources, the charging period of resource r3 is still 1, and the economic cost remains
unchanged. This means that the proposed task consolidation mechanism helps reduce the
economic cost without affecting the task execution.

time (min)

50 60 704010 20 300

1
t

2
t

3
t

4
t

5
t

6
t
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t

1r

2r

3r

4r

5r

Figure 3. Example of consolidating tasks in different resources.

The start time of a workflow task is constrained by the completion time of collecting
the output results from all its predecessors. Besides, if two data-dependent tasks run on the
same cloud resource, the data transmission overhead between them is negligible. The above
facts motivate us to adjust some tasks to the same resources to simultaneously improve the
finish time and economic cost of workflow execution, as illustrated in Algorithm 3.

Algorithm 3: Function CriticalTaskReschedule()
Input: Current population P;
Output: A new population P;

1 CI ← 01×n;
2 for i = 1→ n do
3 for tp ∈ Pred(ti) do
4 if xp == xi then
5 Continue;

6 if st(ti) == f t(tp) + w(tp, ti)/bw then
7 CI(i)← p;

8 Tags← 01×n;
9 for i = 1→ n do

10 p← CI(i);
11 if p 6= 0&Tags(p) == 0&Tags(i) == 0 then
12 if rand < 0.5 then
13 xp ← xi;
14 Tags(p)← 1;
15 Tags(i)← 1;

The Function (CriticalTaskReschedule) consists of two parts: identification and adjust-
ment of critical predecessor tasks. For a workflow task, its start time is limited by all its
predecessors, and its critical predecessor is defined as the one with the latest result arrival.
This function first identifies the critical predecessor for each task (Lines 1–7). The value of
the i-th element in CI denotes the index of the critical predecessor for the i-th task.
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Due to the complex workflow structure, a task may be the critical predecessor for
multiple tasks, and there may be a critical predecessor. To alleviate the offset of critical
task adjustments, adjusting the critical predecessor of a task to its mapped resource should
satisfy the following three conditions: (1) this task has a critical predecessor, i.e., p 6= 0;
(2) the critical predecessor has not been adjusted, i.e., Tags(p) == 0; (3) this task has not
been adjusted as a critical predecessor, i.e., Tags(i) == 0.

Take the scheduling scheme in Figure 3 as an example. According to the definition of
a critical predecessor in Function (CriticalTaskReschedule), t1 is the critical predecessor of
t2, and t6 is the critical predecessor of t7. Adjusting task t1 from resource r2 to r1, as shown
in Figure 4a, the data transmission overhead between task t1 and t2 can be eliminated
to advance the start time of those tasks including t2 and its successor tasks. Added to
that, adjusting task t6 from cloud resource r5 to r2, as shown in Figure 4b, advances the
start/finish time of task t7. This helps to simultaneously reduce the makespan and economic
cost of executing the workflow.
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Figure 4. Example of adjusting critical tasks. (a) schedule result of adjusting task t1 from resource r2

to r1; (b) schedule result of adjusting task t6 from resource r5 to r2.

4. Experimental Studies

The main work of this paper is to propose a task consolidation and a critical task
adjustment mechanism, thereby improving the quality of reproducing new populations.
The proposal does not involve environmental selection. We employ the proposed two
mechanisms to replace the reproduction operators of four classical multi-objective evolu-
tionary algorithms, i.e., NSGA-II [20], HypE [36], MOEA/D [37], and RVEA [38], forming
four variants, namely, KEOO-NSGA-II, KEOO-HypE, KEOO-MOEA/D, and KEOO-RVEA.
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Then, the four variants are compared with their original versions to verify the effectiveness
of the two proposed mechanisms.

4.1. Experimental Setting

We perform the comparison experiments based on five different types of resources
provided by the Amazon EC2 cloud platform. These five types of resource instances are
t3.nano, t3.micro, t3.small, t3.medium, t3.medium, and t3.large. The main parameters of
the five resource types are summarized in Table 4. The length of a charging period is set to
60 seconds, and the bandwidth among resource instances is set to 5.0 Gbps.

Table 4. Parameters for the five types of cloud resources.

Type Price ($/h) vCPU Memory (GB)

t3.nano 0.0062 2 0.5
t3.micro 0.0125 2 1.0
t3.small 0.025 2 2.0

t3.medium 0.0499 2 4.0
t3.large 0.0998 2 8.0

The five types of workflows from different application domains, i.e., Montage (Astron-
omy), Epigenomics (Biology), Inspiral (Gravitational physics), CyberShake (Earthquake),
and Sipht (Bioinformatics), have been widely used in evaluating cloud workflow schedul-
ing algorithms. For each type of workflow, we select three workflow instances with about
30, 50, and 100 tasks in the experiments. Besides, the DAG diagrams of the workflow
instances with around 30 tasks are illustrated in Figure 5. It is clear that these workflow in-
stances cover various complicated structures, including in-tree, out-tree, fork-join, pipeline,
and mixture. For more details on these workflows, please refer to Pegasus repository.

Hypervolume [39] metric is designed to measure the quality of a population con-
cerning both convergence and diversity, and has been frequently used to evaluate the
performance of multi-objective evolutionary algorithms. Assume that r = {r1, r2} is a
reference point. The hypervolume value of a population P, corresponding to the volume
between the reference point and the objective vectors of the solutions in P, can be calculated
as follows.

HV(P) = L(
⋃

p∈P[ f1(p), r1]× [ f2(p), r2]), (11)

where L(4) represents the Lebesgue measure.
The population size of the eight algorithms is set as 120. The maximum number of

fitness evaluations is set as the termination condition for all the five algorithms and is set
as n × 5 × 103, where n is the number of decision variables.

The eight algorithms are independently repeated 31 times on each workflow instance
to mitigate the impact of random factors. We run all the experiments on a PC with two
Cores i7-6500U CPU @ 2.50 GHz 2.59 GHz, 8.00 GB RAM, Windows 10.
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(a) (b) (c)

(d) (e)

Figure 5. DAG diagrams of workflows with about 30 tasks. (a) Montage. (b) Epigenomics. (c) Inspiral.
(d) CyberShake. (e) Sipht.

4.2. Comparison Results

Table 5 summarizes the average and standard deviation (in brackets) of the hypervol-
ume values for the eight algorithms, i.e., NSGA-II, KEOO-NSGA-II, HypE, KEOO-HypE,
MOEA/D, KEOO-MOEA/D, RVEA, and KEOO-RVEA, in scheduling the 15 workflow
instances to cloud resources. For each workflow instance, the largest hypervolume value
among the eight algorithms is highlighted using a gray background.

Besides, we resort to the Wilcoxon rank-sum test with a significance of 0.1 to differen-
tiate the significant difference between each variant and its source baseline. The signs −, +,
and ≈ indicate that the variant is significantly inferior to, superior to, and similar to the
corresponding baseline, respectively.

From Table 5, we can observe that except for Inspiral 50 and Cybershake 100, the results
marked with a gray background on the other 13 workflow instances are either KEOO-NSGA-
II or KEOO-HypE. Specifically, KEOO-NSGA-II significantly improves the hypervolume
values of NSGA-II on 10 out of 15 workflow instances, and KEOO-HypE improves its
original version on 10 out of 15 workflow instances. The KEOO-NSGA-II and KEOO-
HypE are variants of NSGA-II or HypEA by integrating the proposed task consolidation
and critical task adjustment mechanisms. The comparison results demonstrate that the
proposed mechanisms can effectively improve the performance of the NSGA-II or HypEA.
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Table 5. Comparison results for the 8 algorithms on 15 workflows in terms of the hypervolume metric.

Workflows n NSGA-II KEOO-NSGA-II HypE KEOO-HypE MOEA/D KEOO-MOEA/D RVEA KEOO-RVEA

Montage

25 7.013 × 102 7.113 × 102 + 6.924 × 102 7.142 × 102 + 6.078 × 102 6.253 × 102 + 6.741 × 102 6.777 × 102 ≈
(2.23 × 101) (1.55 × 101) (1.38 × 101) (8.95 × 10) (4.61 × 101) (2.54 × 101) (2.63 × 101) (2.56 × 101)

50 1.361 × 103 1.376 × 103 + 1.370 × 103 1.392 × 103 + 1.243 × 103 1.025 × 103 − 1.265 × 103 1.327 × 103 +
(3.16 × 101) (2.99 × 101) (2.92 × 101) (2.38 × 101) (3.10 × 101) (4.35 × 102) (3.68 × 101) (4.59 × 101)

100 1.353 × 103 1.476 × 103 + 2.440 × 103 2.449 × 103 ≈ 2.304 × 103 1.992 × 103 − 2.211 × 103 2.449 × 103 +
(3.88 × 101) (5.42 × 101) (5.142 × 101) (7.37 × 101) (5.92 × 101) (9.18 × 102) (9.12 × 101) (3.69 × 101)

Epigenomics

24 5.656 × 105 5.678 × 105 + 5.627 × 105 5.690 × 105 + 5.201 × 105 5.173 × 105 − 5.586 × 105 5.648 × 105 +
(2.50 × 103) (2.64 × 103) (2.84 × 103) (2.17 × 103) (1.13 × 103) (1.48 × 103) (3.68 × 103) (2.24 × 103)

46 1.899 × 106 1.915 × 106 + 1.893 × 106 1.909 × 106 + 1.815 × 106 1.784 × 106 − 1.882 × 106 1.894 × 106 +
(5.96 × 103) (2.04 × 103) (7.10 × 103) (1.03 × 104) (2.68 × 104) (3.91 × 104) (9.60 × 103) (1.21 × 104)

100 5.056 × 107 5.066 × 107 ≈ 5.006 × 107 5.014 × 107 ≈ 4.843 × 107 4.674 × 107 − 5.022 × 107 4.962 × 107 −
(3.56 × 105) (2.13 × 105) (3.23 × 105) (3.32 × 105) (5.65 × 105) (1.06 × 106) (2.78 × 105) (4.26 × 105)

Inspiral

30 4.078 × 104 4.093 × 104 ≈ 4.066 × 104 4.080 × 104 ≈ 3.748 × 104 3.577 × 104 − 4.016 × 104 4.025 × 104 ≈
(6.49 × 102) (2.57 × 102) (4.93 × 102) (1.64 × 102) (5.04 × 102) (1.70 × 103) (4.21 × 102) (3.40 × 102)

50 9.466 × 104 9.329 × 104 − 9.366 × 104 9.354 × 104 ≈ 8.945 × 104 8.360 × 104 − 9.338 × 104 9.256 × 104 −
(4.98 × 102) (8.17 × 102) (1.10 × 103) (6.47 × 102) (1.33 × 103) (1.88 × 103) (9.01 × 102) (1.02 × 103)

100 1.453 × 105 1.444 × 105 − 1.426 × 105 1.457 × 105 + 1.375 × 105 1.325 × 105 − 1.436 × 105 1.420 × 105 −
(1.27 × 103) (2.01 × 103) (2.17 × 103) (1.45 × 103) (4.34 × 103) (3.39 × 103) (1.80 × 103) (2.35 × 103)

CyberShake

30 2.240 × 105 2.301 × 105 + 2.235 × 105 2.485 × 105 + 2.161 × 105 2.4110 × 105 + 2.1770 × 105 2.486 × 105 +
(8.96 × 103) (4.07 × 103) (8.31 × 103) (4.84 × 103) (1.14 × 103) (5.98 × 103) (1.97 × 103) (4.66 × 103)

50 3.011 × 105 3.081 × 105 + 3.038 × 105 3.065 × 105 + 2.966 × 105 3.051 × 105 + 3.024 × 105 3.014 × 105 ≈
(2.43 × 103) (5.98 × 103) (1.77 × 103) (5.87 × 103) (1.52 × 103) (4.78 × 103) (2.34 × 103) (4.23 × 103)

100 1.971 × 106 1.930 × 106 − 1.985 × 106 1.938 × 106 − 1.961 × 106 1.951 × 106 ≈ 1.968 × 106 1.944 × 106 −
(7.59 × 104) (3.65 × 104) (1.12 × 104) (2.12 × 104) (7.81 × 104) (1.45 × 104) (1.26 × 104) (2.33 × 104)

Sipht

30 8.278 × 104 8.344 × 104 + 8.302 × 104 8.342 × 104 + 7.944 × 104 8.031 × 104 + 8.149 × 104 8.260 × 104 +
(3.79 × 102) (7.04 × 101) (2.74 × 102) (1.20 × 102) (9.73 × 102) (2.65 × 102) (4.93 × 102) (1.15 × 102)

60 1.991 × 105 2.032 × 105 + 1.992 × 105 2.028 × 105 + 1.860 × 105 1.963 × 105 + 1.938 × 105 2.009 × 105 +
(1.17 × 103) (2.63 × 102) (1.30 × 103) (4.14 × 103) (4.64 × 103) (1.12 × 103) (1.64 × 103) (4.24 × 102)

100 3.427 × 105 3.615 × 105 + 3.461 × 105 3.598 × 105 + 2.996 × 105 3.502 × 105 + 3.292 × 105 3.536 × 105 +
(6.29 × 103) (8.31 × 102) (4.31 × 103) (1.98 × 103) (1.19 × 104) (3.718 × 103) (5.914 × 103) (1.430 × 103)

MOEA/D and RVEA are representative algorithms of two branches of multi-objective
evolutionary algorithms based on decomposition. One branch transforms the multi-
objective optimization problem into a set of single-objective subproblems using a set
of weight vectors, while the other branch divides the multidimensional objective space
into a series of multi-objective subspaces using a set of weight vectors. Compared with
NSGA-II or HypEA, these two algorithms and their variants pose poor performance in
solving multi-objective optimization problems. The key reason is that the value ranges of
the two objectives of the focused problems are far from each other, typically badly-scaled
problems. Then, the intersection points between the Pareto-optimal fronts of the focused
problems and the weight vectors are unevenly distributed, which weakens the performance
of these multi-objective evolutionary algorithms based on decomposition. It can be seen
from Table 5 that for more than half of the workflow instances, variant KEOO-RVEA has
higher hypervolume values than algorithm RVEA. KEOO-MOEA/D and MOEA/D have
similar comparison results. These comparison results demonstrate that the proposed task
consolidation and critical task adjustment mechanisms can effectively improve the per-
formance of multi-objective evolutionary algorithms based on decomposition in solving
multi-objective cloud workflow scheduling problems.

From Table 5, the difference in hypervolume values obtained by the eight algorithms
is not apparent on the same workflow instances. This is because the reference point for
calculating the hypervolume value is set based on the nadir point of the initial population,
which is often far from the output populations of these algorithms. Thus, each algorithm
can obtain a very large hypervolume value, resulting in slight differences.
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It can be seen from Figure 5 that among the five types of workflows, the Montage
workflow has the most complex structure. From Table 5, we also observe that on the four
workflow instances derived from this application, the proposed task consolidation and
critical task adjustment mechanisms can greatly improve the hypervolume values of the
four classical multi-objective evolutionary algorithms. These improvements demonstrate
the effectiveness of the proposed mechanisms in dealing with complex workflow structures.

To intuitively compare the convergence and diversity of the eight multi-objective
workflow scheduling algorithms, Figure 6 illustrates the distribution of their output pop-
ulations on workflow instances Inspiral, Epigenomics, Montage, CyberShake, and Sipht
with around 30 tasks as well as Sipht with around 100 tasks.

In Figure 6, the populations obtained by the algorithms using the proposed KEOO
are shown in red, and different algorithms are distinguished by different icons. The first
impression of the six sub-figures is that the red icons are distributed at the forefront. This
indicates that the proposed KEOO improves the existing multi-objective evolutionary
algorithms on both makespan and economic cost. These comparison results are consistent
with those in Table 5. The population distribution of the variant with the proposed KEOO
is basically consistent with that of the original algorithm. This is because they all use the
same environmental selection operator. The advantage of the four variants is that they
employ the task consolidation mechanism to reduce economic cost, and the critical task
adjustment mechanism to reduce makespan and economic cost simultaneously.

On workflow instances Inspiral 30 and Epigenomics 24, although the solutions of
the algorithms embedded with the proposed mechanisms distribute at the forefront, they
are similar to the solutions of their corresponding original algorithms. The reason can be
attributed to the fact that these two workflow instances can be divided into multiple inde-
pendent simple pipelines, and the corresponding optimization problems are relatively easy.
The traditional multi-objective evolutionary algorithms can solve these simple problems
well, leaving limited room for improvement.

On workflow instances Montage 25 and Cybershake 30, solutions obtained by KEOO-
NSGA-II and KEOO-HypE are obviously separated from the solutions of their original
algorithms. The reason is that these two workflow instances are relatively complex. When
scheduling such workflow instances, the start and completion time of different resources
vary greatly, leaving room for the task consolidation mechanism to play the advantage of
reducing economic cost. A distinctive feature of workflow instance Cybershake 30 is that
one of its tasks has a large number of predecessors, and these predecessors no longer have
predecessors. Besides, the tasks in Cybershake 30 need to transfer a large amount of data,
resulting in many large idle time gaps between tasks. The proposed critical task adjustment
mechanism can adjust some critical tasks to idle time gaps to simultaneously reduce the
makespan and economic cost.

By comparing Figure 6e,f, we can see that the advantage of algorithms embedded
with the proposed mechanisms on Sipht 100 is much more obvious than on Sipht 30. This
comparison result illustrates that the proposed mechanisms help accelerate population
convergence and effectively deal with the explosively growing search space.

To intuitively demonstrate the advantages of the proposed mechanisms in accelerating
the convergence of multi-objective evolutionary algorithms, Figure 7 illustrates the changes
in the hypervolume values of eight algorithms with the evolution process. We can observe
that the hypervolume values of all eight algorithms rise rapidly in the early stage of the
evolutionary search. The reason is that the cloud resource pool is large enough, meaning
a wide range of decision variable values. The quality of random initial solutions is poor,
and it is relatively easy for evolutionary operators to push them toward the Pareto-optimal
fronts. Concerning the hypervolume metric, the growth rate of the algorithms embedded
with the proposed mechanisms is faster than that of their original algorithms throughout
the search process. These results demonstrate that the proposed mechanisms are capable of
facilitating the convergence rate.
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Figure 6. Distributions of populations obtained by the 8 algorithms on Inspiral, Epigenomics,
Montage, CyberShake, and Sipht with around 30 tasks as well as Sipht with around 100 tasks. (a) on
Inspiral with 30 tasks; (b) on Epigenomics with 24 tasks; (c) on Montage with 25 tasks; (d) on
CyberShake with 30 tasks; (e) on Sipht with 30 tasks; (f) on Sipht with 100 tasks.
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Figure 7. Change of hypervolume values with the advance of evolution. (a) on Inspiral with 30 tasks;
(b) on Epigenomics with 24 tasks; (c) on Montage with 25 tasks; (d) on CyberShake with 30 tasks;
(e) on Sipht with 30 tasks; (f) on Sipht with 100 tasks.

For the execution time, the comparison results of the eight algorithms are shown in
Table 6. Obviously, the execution time of the variants embedded in the proposed mechanism
in this paper is greater than that of the original algorithms. The increased execution cost
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mainly comes from the proposed mechanism. Fortunately, the execution time of the four
variants is about the same order of magnitude as that of the original algorithms, and these
variants can obtain populations with better convergence and diversity.

Table 6. Execution time (second) of the eight algorithms.

Workflows n NSGA-II KEOO-NSGA-II HypE KEOO-HypE MOEA/D KEOO-MOEA/D RVEA KEOO-RVEA

CyberShake

30 1.275 × 101 2.333 × 101 1.568 × 101 2.391 × 101 1.113 × 101 2.381 × 101 1.734 × 101 2.814 × 101

(1.03 × 100) (3.95 × 10−1) (9.12 × 10−1) (5.45 × 10−1) (1.02 × 100) (2.61 × 10−1) (1.04 × 100) (6.76 × 10−1)

50 3.719 × 101 6.274 × 101 3.846 × 101 6.453 × 101 3.810 × 101 6.390 × 101 4.077 × 101 7.199 × 101

(1.33 × 100) (8.70 × 10−1) (1.64 × 100) (7.01 × 10−1) (1.40 × 100) (1.01 × 100) (1.20 × 100) (1.76 × 100)

100 1.433 × 102 2.453 × 102 1.695 × 102 2.505 × 102 1.240 × 102 2.479 × 102 1.464 × 102 2.678 × 102

(6.95 × 100) (3.42 × 100) (9.06 × 100) (4.02 × 100) (2.51 × 100) (2.63 × 100) (7.05 × 100) (5.68 × 100)

5. Conclusions

This paper mathematically formulates the workflow scheduling problem in cloud
computing as a bi-objective optimization problem. Then, it explores the knowledge of cloud
resources and workflow structures to design a task consolidation mechanism to reduce
economic cost by reducing the number of cloud resources; and a critical task-based search
operator to selectively move the critical precursors of some tasks to the same resources to
eliminate the data transmission overhead between them, striving to improve the economic
cost and completion time simultaneously. Based on real-world workflows and cloud
platforms, the proposed mechanisms are embedded into four classical multi-objective
evolutionary algorithms to verify their effectiveness in improving population convergence
and diversity. One disadvantage of the proposed mechanisms is that they bring extra time
overhead to the classical algorithms.

Cloud workflow scheduling is a representative grey-box problem, and it is interesting
to further mine the knowledge of the workflows and cloud resources to derive efficient
scheduling algorithms. Through experimental analysis, we can see that the time overhead
of evolutionary optimization can not be ignored. Therefore, another potential direction
is to design an effective parallel evolutionary framework to shorten the time overhead to
support cloud workflow scheduling in real-time and uncertain situations [40].
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