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Abstract: The global µ-synchronization problem for nonlinear multi-weighted complex dynamical
networks with uncertain parameter perturbation and mixed time-varying delays is investigated in
this paper. Unlike other existing works, all delays, including sampling and internal and coupling
delays, are assumed to be unbounded, making the considered model more general and practical.
Based on the generalized impulsive comparison principles, a time-varying impulsive controller with
sampling delays is designed, and some new sufficient conditions are obtained to make drive–response
multi-weighted networks reach µ-synchronization. In addition, the external coupling matrices do not
need to meet the requirement of zero-row sum, and the limitation of time delay on pulse interval is
weakened. The results obtained in this article can be seen as extensions of previous related research.

Keywords: multi-weighted network; synchronization; sampling instant; perturbation; unbounded
delay
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1. Introduction

Recently, complex networks have been widely investigated because of their realistic
applications in various fields, such as image encryption, filtering, secure communication,
stability analysis, etc. [1–7]. Considerable attention from scholars has been cast on the
dynamic behaviors of complex networks, and numerous remarkable achievements have
been reached [8–10]. Synchronization, as a kind of interesting and significant collective be-
havior of complex dynamical networks, has become a hot object gradually [11,12]. To date,
various synchronization modes have been studied, including pinning synchronization [13],
exponential synchronization [14], finite-time synchronization [15], impulsive synchroniza-
tion [16,17], etc.

Unfortunately, most existing results about synchronization problems only pay atten-
tion to the complex network model with a single weight, which may lead to inaccurate
modeling of real networks. Multi-weighted networks are ubiquitous in our work and life.
For example, in a logistics network, each city is regarded as a separate node, and goods
are transported from one node to another by different means such as highways, railways,
and airways. It is obvious that such a multichannel network cannot be precisely modeled
by a single weighted system. In a social network, taking each person as a single node,
individuals can connect with each other through different tools such as telephone, email,
Facebook, etc. Clearly, it is more suitable to apply multi-weighted systems to describe
the social network since each communication tool has its features forming a different
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subnetwork. Considering the practicality and universality of multi-weighted complex
networks, some researchers have attempted to study such networks and some preliminary
results have been obtained recently. For instance, in [18], Zhang et al. investigated the
asymptotic synchronization of stochastic multi-weighted systems. In [19], the authors
studied the synchronization of multi-weighted complex networks with noise based on
graph theory methods. In [20], Guo et al. derived the finite-time synchronization criteria of
multi-weighted switching dynamical networks by using quantized intermittent control.
It is worth noting that the delay effect was not considered in the multi-weighted models
developed in [18–20].

As a matter of fact, in real multi-weighted networks, various time delays are non-
negligible since different subsystems have different limited transmission speeds. Taking
the logistics network as an instance, it is composed of the highway network, railway
network, and air network (see Figure 1). Each subnetwork has its distinctive transmission
speeds, which may result in different time delays. To describe real multi-weighted networks
better, internal and coupling time delays were introduced in the models of [21], and
several useful synchronization criteria were derived for delayed multi-weighted systems
based on the stability theory. In [22], aperiodically adaptive intermittent synchronization
for stochastic multi-weighted complex networks with hybrid delays was considered using
extended stochastic differential inequalities. Moreover, in [23], Zheng et al. studied the decay
synchronization of multi-weighted neural networks including internal and coupling delays
by constructing a novel Lyapunov–Krasovskii function. Besides internal and coupling delays,
sampling delays also should be considered in the control process because it is difficult to
immediately complete the sampling and transferring of impulse information at several discrete
instants in the practical application environment. Hence, it is particularly important to utilize
the recent information on drive systems to replace the real-time information in the impulsive
control process. In recent years, based on delayed impulsive control schemes, some
research results on synchronization problems of complex networks have been obtained.
For instance, in [24], delayed impulsive control methods were used to deal with the
synchronization of linear complex systems. In [25], delayed impulsive controllers were
applied to the synchronization of nonlinear complex networks. Zhang et al. [26] derived
the asymptotic chaotic synchronization criteria of stochastic complex-valued dynamical
systems via delayed impulsive control. We should note that the delayed complex networks
above always assumed that time delays were bounded or even constants. However, in some
practical applications, there is no prior condition on the bound of time delays, which shows
that it may be unpredictable or unbounded. In ecosystems, the unbounded delay is used to
describe the effect of predator behavior on predator population growth, and ignoring the
boundlessness of time delay will lead to inaccurate or even wrong results. Therefore, when
we model the complex network with time-varying delays, removing the assumption that
the delays are bounded can obtain more reasonable results.

To cope with the synchronization issues of single-weighted systems including unbounded
delays, Chen and Wang [27] considered the µ-stability scheme. As an extension of Lyapunov
stability, it always is applied to analyze the stability issue of dynamical systems including
unknown delays by correlating the historical and current information of network nodes
through µ-function [28]. For instance, Xu et al. [29] considered the µ-synchronization of dy-
namical networks including unknown delays. The authors in [30] studied the µ-stability
issue for impulsive networks with time-varying delays of unknown bound. Global µ-
synchronization criteria of impulsive complex-valued networks with leakage delay and
distributed delay were gained in [31] based on µ-stability. In addition, unknown parameter
perturbations caused by modeling errors, measurement inaccuracies, and changes in ambi-
ent temperature and humidity widely exist in complex networks, which brings challenges
to synchronization control. Specifically, each node in a complex network has its own dynamic
behavior, which can be described by various differential dynamical systems, and the standard
parameters of these systems may be difficult to determine in certain cases. To construct
a more generalized network, parameter uncertainties should be considered. For instance,
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Wang et al. [32] studied the synchronous motion of networked robotic systems, which have
uncertain kinematic and dynamic information in the task space. In [33], Rakkiyappan et al.
discussed the robust synchronization of neural networks with Markovian jumping and
stochastic uncertainties by constructing a new Lyapunov–Krasovskii function. In [34],
Huang et al. considered the synchronization of uncertain Cohen–Grossberg neural net-
works with delayed couplings under fixed time. Lately, the bipartite synchronization issues
of neural networks with uncertain parameters were studied [35]. However, the theoretical
results obtained in [27–35] are based on the assumption that the model is a single weight.
Compared with single-weighted networks, multi-weighted networks have more complex
and unpredictable dynamic behavior, which is more valuable to consider and research.
To the best of our knowledge, very few works focus on the µ-synchronization issues of
multi-weighted complex networks with unbounded mixed time delays and uncertain-
ties via impulsive control including sampling delays, which is the primary motivation of
this article.

· ·

·

· ·

·

· ·

·

· ·

·

· ·

·

· ·

·

· ·

·

· ·

·

Figure 1. The schematic diagram of the logistic network: (A) complete logistic network; (A1) highway
network; (A2) railway network; (A3) air network.

Taking the facts above into consideration, this paper studies the µ-synchronization for
multi-weighted dynamical networks including three kinds of time delays and uncertain
perturbation by using delayed impulsive control. To be more practical, nonlinear couplings
are considered in this paper. The main highlights of this article include three aspects: (1) To
prefer the more practical significance of our results, in this article, a more generalized
uncertain multi-weighted model including unbounded internal delay, sampling delay,
and coupling delay is discussed. (2) Different from the impulsive control schemes in [24–26],
a delayed impulsive controller with unbounded sampling delay is devised, and new
synchronization criteria are gained for the concerned multi-weighted networks. (3) The
topological matrices of the multi-weighted systems in this paper do not need to meet the
condition of zero-row sum, and the constriction of time delay on pulse interval is weakened.

Besides the first section, the network model description and preliminaries are given
in Section 2. In Section 3, some new µ-synchronization criteria for a complicated multi-
weighted model are obtained. In Section 4, numerical examples are provided to show the
correctness of our theorem and corollaries. Section 5 is the conclusion of this article.

Notation 1. I represents an identity matrix. A ≤ 0 means that A represents a semi-negative
definite matrix. Let Ω1 ⊆ R, Ω2 ⊆ Rm, 1 ≤ m ≤ n, C1(Ω1, Ω2) = {ω : Ω1 → Ω2, ω is
continuously differentible}. PC(Ω1, Ω2) = {ω : Ω1 → Ω2, ω is piecewise continuous apart



Mathematics 2023, 11, 250 4 of 17

from some limited moments t with ω(t+) = ω(t), and ω(t−) exists}. Let PCBτ = {ω̄ ∈
PC([−τ, 0],Rn), ω̄ is bounded}, and the norm of ω̄ is expressed as |ω̄| = sup−τ≤s≤0‖ω̄(s)‖.
[−τ, 0] converts into (−∞, 0] if τ = ∞. Let χ = {µ(t) ∈ C1(R+, [1, ∞)) : µ(t) is nonde-
creasing on [0,+∞) and µ(t)→ ∞ as t→ ∞}. λmin(B) and λmax(B) denote the minimum and
maximum eigenvalues of B, respectively.

2. Mathematical Model and Preknowledge

Consider a nonlinear multi-weighted dynamical network including unbounded delays
and parametric uncertainties, which can be expressed as

ẋi(t) =− (D + ∆D(t))xi(t) + (A + ∆A(t)) f (xi(t)) + (B + ∆B(t))g(xi(t− τ0(t)))

+ c0

N

∑
j=1

C(0)
ij ψ(xj(t)) + c1

N

∑
j=1

C(1)
ij ψ(xj(t− τ1(t)))

+ c2

N

∑
j=1

C(2)
ij ψ(xj(t− τ2(t))) + · · ·+ cm−1

N

∑
j=1

C(m−1)
ij ψ(xj(t− τm−1(t)))

=− D̃xi(t) + Ã f (xi(t)) + B̃g(xi(t− τ0(t)))

+ c0

N

∑
j=1

C(0)
ij ψ(xj(t)) +

m−1

∑
q=1

N

∑
j=1

cqC(q)
ij ψ(xj(t− τq(t))), i = 1, 2, ..., N, (1)

where xi(t) = (xi1(t), xi2(t), ..., xin(t))T ∈ Rn is the state vector of node i, D̃ = D + ∆D(t),
Ã = A + ∆A(t) and B̃ = B + ∆B(t). D = diag{d1, d2 , ..., dn} > 0. A ∈ Rn×n and B ∈ Rn×n

are connection weight matrices. ∆D(t) ∈ Rn×n, ∆A(t) ∈ Rn×n and ∆B(t) ∈ Rn×n represent
uncertain parameter perturbation. f (·) ∈ Rn and g(·) ∈ Rn stand for nonlinear vector-
valued functions characterizing the nonlinear dynamic behavior of nodes, and ψ(·) ∈ Rn

denotes the nonlinear coupling function. The internal delay τ0(t) and the coupling delays
τq(t) have no bound, which means 0 ≤ τ0(t) ≤ ∞, 0 ≤ τq(t) ≤ ∞ , (q = 1, 2, ..., m− 1).
The constant cr(r = 0, 1, ..., m− 1) represents the coupling strength for the rth coupling
form. In addition, C(r) = (C(r)

ij ) ∈ RN×N(r = 0, 1, ..., m− 1) is the outer coupling matrix

of the rth subnetwork, where (C(r)
ij ) is defined as follows: if there exists a connection link

from node i to node j, then (C(r)
ij ) 6= 0; otherwise, (C(r)

ij ) = 0(i 6= j). The initial value of
model (1) is given by xi(s) = φi(s), s ∈ (−∞, 0], and φi ∈ PCBτ .

Take model (1) as the drive system, then the concerned response system can be de-
scribed as follows:


ẏi(t) = −D̃yi(t) + Ã f (yi(t)) + B̃g(yi(t− τ0(t)))

+c0
N
∑

j=1
C(0)

ij ψ(yj(t)) +
m−1
∑

q=1

N
∑

j=1
cqC(q)

ij ψ(yj(t− τq(t))), t 6= tk, k ∈ Z+,

ei(t) = Mei(t− − ιk), t = tk, k ∈ Z+,

(2)

where i = 1, 2, ..., N, and yi(t) = (yi1(t), yi2(t), ..., yin(t))T ∈ Rn is the ith state variable for
response system (2). The initial value of model (2) is given by yi(s) = ϕi(s), s ∈ (−∞, 0],
and ϕi ∈ PCBτ . The equation

ei(t) = Mei(t− − ιk), t = tk, k ∈ Z+, (3)

represents the impulsive controller with unbounded sampling delay, where ei(·) = yi(·)−
xi(·) indicates the system error of node i. M ∈ Rn×n represents the impulsive gain matrix.
ιk denotes the sampling delay at impulsive points, which satisfies 0 ≤ ιk ≤ +∞, k ∈ Z+.
The impulsive instants {tk, k ∈ Z+} meet 0 = t0 < t1 < · · · < tk < · · · and tk → ∞ as
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k → ∞. The set of impulsive instants is expressed as δ0. For any T > 0, let δ(T) = {tk ∈
δ0|tk − tk−1 ≤ T, k ∈ Z+}.

Remark 1. In addition to nonlinear coupling and uncertainty perturbations, three types of un-
bounded time-varying delays, including impulse sampling delays and internal and coupling delays,
are introduced into our complex system. At the same time, the topologies of the whole network are
not restricted by the condition of zero-row sum, which shows our results are more generalized than
other related results.

Combining model (1) and model (2), and ei(·) = yi(·) − xi(·), we can obtain the
following error system

ėi(t) = −D̃ei(t) + Ã f (ei(t)) + B̃g(ei(t− τ0(t)))

+c0
N
∑

j=1
C(0)

ij ψ(ej(t)) +
m−1
∑

q=1

N
∑

j=1
cqC(q)

ij ψ(ej(t− τq(t))), t 6= tk, k ∈ Z+,

ei(t) = Mei(t− − ιk), t = tk, k ∈ Z+,
ei(s) = ϕi(s)− φi(s), s ∈ (−∞, 0],

(4)

for i = 1, 2, ..., N, where f (ei(t)) = f (yi(t))− f (xi(t)), g(ei(t− τ0(t))) = g(yi(t− τ0(t)))−
g(xi(t− τ0(t))), ψ(ej(t)) = ψ(yj(t))− ψ(xj(t)) and ψ(ej(t− τq(t))) = ψ(yj(t− τq(t)))−
ψ(xj(t− τq(t))) . It is assumed that the solution of system (4) is right continuous, namely,
ei(tk) = ei(t+k ), k ∈ Z+. Then, the synchronization issue of drive–response systems (1) and
(2) is equivalent to constructing a suitable control gain matrix M such that error system (4)
is µ-stable.

Definition 1. Response network (2) and drive network (1) are said to be global µ-synchronization,
namely, error system (4) is globally µ-stable, if there is a function µ(t) ∈ χ and a scalar K > 0
such that

‖ei(t)‖ ≤
K

µ(t)
, t ≥ 0, i = 1, 2, ..., N.

Remark 2. Most synchronization modes are closely related to µ-synchronization. When µ(t) =
(1 + p1t)ς, p1 > 0, ς > 0, the µ-synchronization becomes power synchronization; when µ(t) =
exp(ρt), ρ > 0, the µ-synchronization changes into exponential synchronization; when µ(t) =
ln(e + θt), θ > 0, the µ-synchronization is log synchronization;

Assumption 1. There exist three nonnegative constants l f , lg, and lψ such that

‖ f (x)− f (y)‖ ≤ l f ‖x− y‖, ‖g(x)− g(y)‖ ≤ lg‖x− y‖, ‖ψ(x)− ψ(y)‖ ≤ lψ‖x− y‖

hold for any vectors x ∈ Rn and y ∈ Rn.

Assumption 2. For each outer coupling matrix C(r)(r = 0, 1, ..., m− 1), there exist a correspond-
ing nonnegative constant Lr(r = 0, 1, ..., m− 1) such that

N

∑
j=1

(C(r)
ij )2 ≤ Lr, i = 1, 2, ..., N.

Assumption 3. The uncertain system matrices ∆D(t), ∆A(t) and ∆B(t) are norm bounded and
have the following form

∆D(t) = EDΦ(t)FD, ∆A(t) = EAΦ(t)FA, ∆B(t) = EBΦ(t)FB,

where Φ(t) stands for the unknown time-varying matrix satisfying ΦT(t)Φ(t) ≤ I and ED, EA, EB,
FD, FA, FB are constant matrices.
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Assumption 4. There exist some constants µa ≥ 1, µi ≥ 1, (i = 0, 1, ..., n), and µb ≥ 1 such that
µ(t) ∈ χ satisfies

µ(tk)

µ(tk−1)
≤ µa,

µ(t)
µ∗(t− τ0(t))

≤ µ0, · · · ,
µ(t)

µ∗(t− τn(t))
≤ µn,

µ(tk)

µ∗(tk − ιk)
≤ µb, k ∈ Z+,

where µ∗(t) = µ(t) when t ≥ 0 and µ∗(t) = 1 when t < 0.

Lemma 1 ([35]). For any n× n real matrix W > 0 and vectors u, v ∈ Rn, one can obtain

2uTv ≤ uTWu + vTW−1v.

Lemma 2 ([11]). The following matrix inequality[
B11 B12
BT

12 B22

]
< 0

equals to one of the conditions as follows:

(a)B11 < 0, B22 − BT
12B−1

11 B12 < 0;

(b)B22 < 0, B11 − B12B−1
22 BT

12 < 0,

where BT
11 = B11 and BT

22 = B22.

Lemma 3 ([28]). Under Assumption 4, v(t) ∈ PC(R,R+) satisfies the following condition{
D+v(t) ≤ αv(t) + β0v(t− τ0(t)) + β1v(t− τ1(t)) + · · ·+ βnv(t− τn(t)), t 6= tk,
v(t) ≤ γkv(t− − ιk), t = tk, k ∈ Z+,

(5)

where α ∈ R, βi ∈ R+, γk ∈ R+, 0 ≤ τi(t) ≤ ∞ for i = 0, 1, 2, ..., n, 0 ≤ ιk ≤ ∞, and 0 = t0 <
t1 < · · · < tk < · · · , k ∈ Z+. If one can find suitable parameters σ > 1 and T > 0 such that

ln µa + [|α|+ σ(β0µ0 + β1µ1 + · · ·+ βnµn)]T < ln σ, (6)

and

σµbγk ≤ 1. (7)

Then any solution of (5) meets

v(t) ≤ σµ(0)v̄(0)
µ(t)

, t ≥ 0, (8)

where v̄(0) = sup−∞<s≤0v(s).

3. Main Results

This section gives the global µ-synchronization criteria between the response system
(2) and the drive system (1) by using impulsive control with unbounded sampling delays.
The main theorem and corollaries are gained below.
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Theorem 1. Under Assumptions 1–4, if there exists a function µ(t) ∈ χ, n× n matrices G, P > 0,
a constant σ > 1 and several nonnegative constants T, ξ0, ξ1, ξ2, ζ1, ζ2, α, σ0, β0, σq, βq, such that

(i)
(

α + σβ0µ0 + σ
m−1

∑
q=1

βqµq

)
T < ln(σ/µa),

(ii)− 2PD + P
(

ξ0EDET
D + ξ1 AAT + ξ2EAET

A + ζ1BBT + ζ2EBET
B + I

m−1

∑
r=0

σrcrLr

)
P

+ ξ−1
0 λmax(FT

DFD)I + c0σ−1
0 l2

ψNI + l2
f

(
ξ−1

1 + ξ−1
2 λmax(FT

A FA)
)

I ≤ αP,

(iii) l2
g

(
ζ−1

1 + ζ−1
2 λmax(FT

B FB)
)

I ≤ β0P,

(iv) cqσ−1
q l2

ψNI ≤ βqP, q = 1, 2, ..., m− 1,

(v)

[
− 1

σµb
P Ξ

ΞT −P

]
≤ 0.

Then, drive–response systems (1) and (2) can realize the global µ-synchronization through the
impulsive controller (3) with matrix M = P−1ΞT .

Proof. Choose the following Lyapunov function:

V(t) =
N

∑
i=1

eT
i (t)Pei(t). (9)

When t 6= tk, k ∈ Z+, calculating the Dini derivative of V(t) along the solution of (4) yields

D+V(t)

=2
N

∑
i=1

eT
i (t)Pėi(t)

=2
N

∑
i=1

eT
i (t)P

[
− D̃ei(t) + Ã f (ei(t)) + B̃g(ei(t− τ0(t)))

+ c0

N

∑
j=1

C(0)
ij ψ(ej(t)) +

m−1

∑
q=1

N

∑
j=1

cqC(q)
ij ψ(ej(t− τq(t)))

]
. (10)

By Assumption 1, Assumption 3 and Lemma 1, we have

2
N

∑
i=1

eT
i (t)P[−(D + ∆D(t))]ei(t)

=− 2
N

∑
i=1

eT
i (t)P[(D + EDΦ(t)FD)]ei(t)

≤− 2
N

∑
i=1

eT
i (t)PDei(t) +

N

∑
i=1

[ξ0eT
i (t)PEDET

DPei(t) + ξ−1
0 eT

i (t)λmax(FT
DFD)ei(t)], (11)
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2
N

∑
i=1

eT
i (t)P(A + ∆A(t)) f (ei(t))

=2
N

∑
i=1

eT
i (t)PA f (ei(t)) + 2

N

∑
i=1

eT
i (t)PEAΦ(t)FA f (ei(t))

≤
N

∑
i=1

[ξ1eT
i (t)PAAT Pei(t) + ξ−1

1 ‖ f (ei(t))‖2]

+
N

∑
i=1

[ξ2eT
i (t)PEAET

APei(t) + ξ−1
2 f T(ei(t))FT

A FA f (ei(t))

≤
N

∑
i=1

[ξ1eT
i (t)PAAT Pei(t) + ξ2eT

i (t)PEAET
APei(t)] +

N

∑
i=1

[ξ−1
1 + ξ−1

2 λmax(FT
A FA)]l2

f eT
i (t)ei(t). (12)

Similarly, we can obtain

2
N

∑
i=1

eT
i (t)P(B + ∆B(t))g(ei(t− τ0(t)))

=2
N

∑
i=1

eT
i (t)PBg(ei(t− τ0(t))) + 2

N

∑
i=1

eT
i (t)PEBΦ(t)FBg(ei(t− τ0(t)))

≤
N

∑
i=1

[ζ1eT
i (t)PBBT Pei(t) + ζ−1

1 ‖g(ei(t− τ0(t)))‖2]

+
N

∑
i=1

[ζ2eT
i (t)PEBET

B Pei(t) + ζ−1
2 gT(ei(t− τ0(t)))FT

B FBg(ei(t− τ0(t)))]

≤
N

∑
i=1

[ζ1eT
i (t)PBBT Pei(t) + ζ2eT

i (t)PEBET
B Pei(t)]

+
N

∑
i=1

[ζ−1
1 + ζ−1

2 λmax(FT
B FB)]l2

geT
i (t− τ0(t))ei(t− τ0(t)). (13)

By Assumptions 1–2 and Lemma 1, we have

2
N

∑
i=1

eT
i (t)Pc0

N

∑
j=1

C(0)
ij ψ(ej(t))

≤
N

∑
i=1

N

∑
j=1

c0σ0eT
i (t)P(C(0)

ij )2Pei(t) +
N

∑
i=1

N

∑
j=1

c0σ−1
0 ‖ψ(ej(t))‖2

≤
N

∑
i=1

c0σ0L0eT
i (t)PPei(t) + l2

ψN
N

∑
i=1

c0σ−1
0 eT

i (t)ei(t). (14)

Similarly, one can obtain

2
N

∑
i=1

eT
i (t)P

m−1

∑
q=1

N

∑
j=1

cqC(q)
ij ψ(ej(t− τq(t)))

≤
N

∑
i=1

N

∑
j=1

m−1

∑
q=1

cqσqeT
i (t)P(C(q)

ij )2Pei(t) +
N

∑
i=1

N

∑
j=1

m−1

∑
q=1

cqσ−1
q ‖ψ(ej(t− τq(t)))‖2

≤
N

∑
i=1

m−1

∑
q=1

cqσqLqeT
i (t)PPei(t) + l2

ψN
N

∑
i=1

m−1

∑
q=1

cqσ−1
q eT

i (t− τq(t))ei(t− τq(t)). (15)
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Substituting inequalities (11)–(15) into (10), we can derive that

D+V(t)

≤
N

∑
i=1

eT
i (t)

[
− 2PD + P(ξ0EDET

D + ξ1 AAT + ξ2EAET
A + ζ1BBT + ζ2EBET

B

+ I
m−1

∑
r=0

σrcrLr)P + ξ−1
0 λmax(FT

DFD)I + c0σ−1
0 l2

ψNI + l2
f (ξ
−1
1 + ξ−1

2 λmax(FT
A FA))I

]
ei(t)

+
N

∑
i=1

eT
i (t− τ0(t))

[
l2
g(ζ
−1
1 + ζ−1

2 λmax(FT
B FB))I

]
ei(t− τ0(t))

+
N

∑
i=1

m−1

∑
q=1

eT
i (t− τq(t))

(
cqσ−1

q l2
ψNI

)
ei(t− τq(t))

≤αV(t) + β0V(t− τ0(t)) +
m−1

∑
q=1

βqV(t− τq(t)). (16)

Denote ei(t) = [eT
1 (t), eT

2 (t), ..., eT
N(t)]

T . When t = tk, k ∈ Z+, we obtain

V(tk) =
N

∑
i=1

eT
i (tk)Pei(tk) =

N

∑
i=1

[Mei(t−k − ιk)]
T P[Mei(t−k − ιk)]

=
N

∑
i=1

eT
i (t
−
k − ιk)MT PMei(t−k − ιk). (17)

Based on Lemma 2 and condition (v) in Theorem 1, we have

MT PM− 1
σµb

P ≤ 0, (18)

which implies

V(tk) ≤
1

σµb

N

∑
i=1

eT
i (t
−
k − ιk)Pei(t−k − ιk)

=
1

σµb
V(t−k − ιk). (19)

By Lemma 3, combining (16) and (19), we have

V(t) ≤
σµ(0)sup−∞<s≤0V(s)

µ(t)
, t ≥ 0, (20)

which further implies

‖e(t)‖ ≤

√
σµ(0)λmax(P)|e(0)|2

λmin(P)µ(t)
. (21)

Since σ > 1 and P > 0, the µ-synchronization between the drive system (1) and the
response system (2) can be realized, and the proof is finished.

Remark 3. Compared with the existing impulse synchronization results [12,16,17], which require
the parameter T to be restricted by the bound of time delay, that is, as the time delay increases,
the impulsive interval needs to be gradually reduced. In this article, the impulsive interval T is no
longer limited by the delay size, which can be seen in condition (i).

Remark 4. The synchronization problem of complex networks with time delay is studied [21–26].
However, these results are all based on the assumption that there exist positive scalars τ or τ̄ such
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that 0 ≤ τi(t) ≤ τ or 0 ≤ τ̇i(t) ≤ τ̄ < 1. On the contrary, in this paper, the three kinds of time
delays are all unbounded, i.e., 0 ≤ τ0(t) ≤ ∞, 0 ≤ τq(t) ≤ ∞, and 0 ≤ ιk ≤ ∞.

Remark 5. The existing results about µ-stability or µ-synchronization in [27–31] mainly focused
on single-weighted networks rather than multi-weighted networks. Furthermore, the network
topologies must meet dissipative coupling conditions and system uncertain perturbation was ignored
in these works. In this paper, the µ-synchronization criteria for multi-weighted networks including
unbounded mixed delays and uncertainties are derived via a delayed impulsive control scheme.

Particularly, if the mixed time-varying delays in drive–response systems (1) and (2)
have more limitations, then we can gain two important corollaries as follows:

Corollary 1. Under Assumptions 1–3 and inequalities (ii)–(iv), suppose µ(t) = (1 + p1t)ς,
τ0(t) = π0t, τq(t) = πqt,(q = 1, 2, ..., m− 1), and ιk = πtk, k ∈ Z+, where p1 > 0, ς > 0, 0 ≤
π0 < 1, 0 ≤ π < 1, and 0 ≤ πq < 1, (q = 1, 2, ..., m− 1). If there are two scalars σ > 1, T > 0
to make the following conditions:

αT + σ[
β0

(1− π0)ς
+

m−1

∑
q=1

βq

(1− πq)ς
]T < ln[σ(1 + p1T)−ς],

and [
− (1−π)ς

σ P Ξ
ΞT −P

]
≤ 0.

hold, then complex systems (1) and (2) can achieve global power synchronization via the control
matrix M = P−1ΞT .

Proof. In fact, only Assumption 4 needs to be verified. For any t ≥ 0, we can obtain

µ(tk)

µ(tk−1)
=

[
1 + p1tk

1 + p1tk−1

]ς

=

[
1 + p1tk−1 + p1(tk − tk−1)

1 + p1tk−1

]ς

≤ (1 + p1T)ς,

µ(t)
µ∗(t− τ0(t))

=

[
1 + p1t

1 + p1(1− π0)t

]ς

=
1[

1 + p1(1−π0)t
1 + p1t

]ς ≤
1

(1− π0)ς
,

µ(t)
µ∗(t− τq(t))

=

[
1 + p1t

1 + p1(1− πq)t

]ς

=
1[

1 + p1(1−πq)t
1 + p1t

]ς ≤
1

(1− πq)ς
,

µ(tk)

µ∗(tk − ιk)
=

[
1 + p1tk

1 + p1(1− π)tk

]ς

=
1[

1 + p1(1−π)tk
1 + p1tk

]ς ≤
1

(1− π)ς
.

Set µa = (1 + p1T)ς, µ0 = 1
(1 − π0)ς , µq = 1

(1 − πq)ς , (q = 1, 2, ..., m− 1), and µb = 1
(1 − π)ς .

Utilizing the similar proof method of Theorem 1, we can conclude that drive system (1)
and response system (2) can achieve global power synchronization.

Corollary 2. Under Assumptions 1–3 and inequalities (ii)–(iv), suppose µ(t) = ln(e + θt),
τ0(t) = t + [e− (t + e)λ0 ]/θ, τq(t) = t + [e− (t + e)λq ]/θ, (q = 1, 2, ..., m− 1), and ιk = πtk,
k ∈ Z+, where 0 < θ < 1, 0 < λ0 < 1, 0 < λq < 1, (q = 1, 2, ..., m− 1), and 0 ≤ π < 1. If
there are two scalars σ > 1, T > 0 to make the following conditions

(
α +

σβ0

λ0
+ σ

m−1

∑
q=1

βq

λq

)
T < ln

[ σ

1 + ln(1 + θT/e)

]
,

and
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[
− 1

σ[1−ln(1−π)]
P Ξ

ΞT −P

]
≤ 0.

hold, then complex systems (1) and (2) can achieve the global log synchronization via the control
matrix M = P−1ΞT .

Proof. Similarly, we just verify Assumption 4. For any t ≥ 0, one has

µ(tk)

µ(tk−1)
=

ln(e + θtk)

ln(e + θtk−1)
≤ 1 +

ln[1 + θ(tk − tk−1)
e + θtk−1

]

ln(e + θtk−1)
≤ 1 + ln(1 + θT/e),

µ(t)
µ∗(t− τ0(t))

=
ln(e + θt)

µ∗[((t + e)λ0 − e)/θ]
=

ln(e + θt)
λ0 ln(e + t)

≤ 1
λ0

,

µ(t)
µ∗(t− τq(t))

=
ln(e + θt)

µ∗[((t + e)λq − e)/θ]
=

ln(e + θt)
λq ln(e + t)

≤ 1
λq

,

µ(tk)

µ∗(tk − ιk)
=

ln(e + θtk)

ln(e + θ(tk − πtk))
= 1 +

ln[ e + θtk
[e + θ(1−π)tk ]

]

ln[e + θ(1− π)tk]
≤ 1− ln(1− π).

Set µa = 1 + ln(1 + θT/e), µ0 = 1
λ0

, µq = 1
λq

, (q = 1, 2, ..., m− 1), and µb = 1− ln(1− π).
We can easily derive Corollary 2.

Corollary 3. Under Assumptions 1–3 and inequalities (ii)–(iv), suppose µ(t) = exp(ρt), 0 ≤
τ0(t) ≤ τ, 0 ≤ τq(t) ≤ τ, (q = 1, 2, ..., m− 1), 0 ≤ ιk ≤ ι, k ∈ Z+, where ρ > 0, τ < ∞, and
ι < ∞. If there are two scalars σ > 1, T > 0 to make the following conditions:

ρT +
[
α + σ(β0 +

m−1

∑
q=1

βq) exp(ρt)
]

T < ln σ,

and [
− 1

σ exp(ρι)
P Ξ

ΞT −P

]
≤ 0.

hold, then complex systems (1) and (2) can achieve the global exponential synchronization via the
control matrix M = P−1ΞT .

Proof. Similarly, we just verify Assumption 4. For any t ≥ 0, we have

µ(tk)

µ(tk−1)
=

exp(ρtk)

exp(ρtk−1)
= exp[ρ(tk − tk−1)] ≤ exp(ρT),

µ(t)
µ∗(t− τ0(t))

=
exp(ρt)

exp[ρ(t− τ0(t))]
= exp[ρτ0(t)] ≤ exp(ρτ),

µ(t)
µ∗(t− τq(t))

=
exp(ρt)

exp[ρ(t− τq(t))]
= exp[ρτq(t)] ≤ exp(ρτ),

µ(tk)

µ∗(tk − ιk)
=

exp(ρtk)

exp[ρ(tk − ιk)]
= exp[ριk] ≤ exp(ρι).

Set µa = exp(ρT), µ0 = exp(ρτ), µq = exp(ρτ), (q = 1, 2, ..., m− 1), and µb = exp(ρι). We
can easily derive Corollary 3.
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4. Numerical Simulations

Two numerical examples are given to illustrate the validity of the synchronization
criteria obtained above. Consider the following neural network consisting of 6 nodes with
mixed delays and uncertainties, which could be described by

ẋi(t) =− D̃xi(t) + Ã f (xi(t)) + B̃g(xi(t− τ0(t)))

+ c0

6

∑
j=1

C(0)
ij ψ(xj(t)) +

2

∑
q=1

6

∑
j=1

cqC(q)
ij ψ(xj(t− τq(t))), i = 1, 2, ..., 6, (22)

where xi(t) = (xi1(t), xi2(t))T is the state vector of the ith node. The nonlinear functions
are f (xi(t)) = g(xi(t)) = ψ(xi(t)) = 1/5(tanh(xi1(t)), tanh(xi2(t)))T . Take the above
equation as the drive network, and the corresponding response network is described
as follows:

ẏi(t) =− D̃yi(t) + Ã f (yi(t)) + B̃g(yi(t− τ0(t)))

+ c0

6

∑
j=1

C(0)
ij ψ(yj(t)) +

2

∑
q=1

6

∑
j=1

cqC(q)
ij ψ(yj(t− τq(t))), i = 1, 2, ..., 6. (23)

Respectively, the connection matrices D, A, B and parametric uncertainties are selected as

D =

[
1 0
0 1

]
, A =

[
2.0 −0.1
−3.0 1.5

]
, B =

[
−1.5 −0.1
−0.2 −2.0

]
,

∆D(t) = EDΦ(t)FD =

[
0.1 0
0 0.1

][
sin(t) 0

0 cos(t)

][
0.1 0
0 0.1

]
,

∆A(t) = EAΦ(t)FA =

[
0.2 0
0 0.2

][
sin(t) 0

0 cos(t)

][
0.2 0
0 0.2

]
,

∆B(t) = EBΦ(t)FB =

[
0.3 0
0 0.3

][
sin(t) 0

0 cos(t)

][
0.3 0
0 0.3

]
.

By simple calculation, one can easily obtain l f = lg = lψ = 1/5, such that Assumption
1 holds. The outer coupling matrices C(0), C(1), and C(2) are chosen from left to right
as follows:



1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 1 2

,



1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 2 0 1
0 0 0 0 1 1
0 1 0 0 0 1

,



2 1 1 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 1 2 1 0
0 0 0 0 1 1
0 0 0 1 0 1

.

Clearly, Assumption 2 is satisfied with Lr = 6. The other parameters are set as τ0(t) = 0.05t,
τ1(t) = τ2(t) = 0.01t, µ(t) =

√
1 + 3t, ιk = tk/6, k ∈ Z+, ξ0 = ξ1 = 2, ξ2 = 4, ζ1 = ζ2 = 0.1,

T = 0.01, α = 228, β0 = 1.01, β1 = 1.12, β2 = 1.13, c0 = 0.05, c1 = c2 = 0.1, σ = 18.83,
σ0 = 3, σ1 = 1, σ2 = 0.5. By calculation, one can gain that µa = 1.0149, µ0 = 1.0260,
µ1 = µ2 = 1.0050 and µb = 1.0954. To solve the rest of the conditions in Corollary 1, Matlab
LMI Toolbox is used and we can obtain the feasible solutions as follows.

P =

[
4.3121 0

0 8.0812

]
, Ξ =

[
0.5912 0.8121

0 1.0510

]
.
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Then control gain matrix M could be designed as

M =

[
0.1371 0
0.1005 0.1301

]
.

The initial values of networks are produced stochastically from [−50, 0]. By the
fourth-order Runge–Kutta technology, the simulation results of Corollary 1 can be seen in
Figure 2. Figure 2a displays the time evolution of ‖ei(t)‖ through the effective matrix M,
which demonstrates that the response system (23) can achieve synchronization with (22)
by using delayed impulsive control. In case there exists some change for the gain matrix
M∗ = M + 0.1I, which breaks the corresponding conditions, then Figure 2b shows the
synchronization target between the drive system (22) and the response system (23) cannot
be achieved.
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Figure 2. (a) Time evolution of ‖ei(t)‖ through the effective impulsive matrix M. One can see that
‖ei(t)‖ approach zero over time, which shows complex networks (23) and (22) can achieve synchro-
nization in this case. (b) Time evolution of ‖ei(t)‖ through the impulsive gain matrix M∗ = M + 0.1I.
Since M∗ breaks the conditions of Corollary 1, one can see that ‖ei(t)‖ cannot approach zero over
time and the synchronization fails in this instance.
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Next, to verify the effect of different parameter forms on the synchronization process,
we change the uncertain parameters, coupling parts, and delay expressions. The uncertain
matrix and the coupling matrices C(0), C(1), C(2) are set, respectively, as

∆D(t) = EDΦ(t)FD =

[
0.1 0
0 0.1

][
sin(t) 0

0 sin(t)

][
0.2 0
0 0.2

]
,

∆A(t) = EAΦ(t)FA =

[
0.2 0
0 0.2

][
sin(t) 0

0 sin(t)

][
0.15 0

0 0.15

]
,

∆B(t) = EBΦ(t)FB =

[
0.15 0

0 0.15

][
sin(t) 0

0 sin(t)

][
0.25 0

0 0.25

]
,



1 1 0 0 0 1
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 1 0 0 1 1

,



1 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
0 0 0 0 1 1
1 1 0 0 0 1

,



1 1 1 0 0 1
0 1 1 0 0 0
0 0 1 1 0 0
0 0 1 2 1 0
1 0 0 0 1 1
0 0 0 1 0 1

.

We choose nonlinear variable delays rather than linear delays, such as τ0(t) = τ1(t) =
τ2(t) = t + 5[e− (t + e)0.5]. Set µ(t) = ln(e + t/5), ιk = tk/5, k ∈ Z+, α = 243, ξ0 = 1, ξ1 =
2, ξ2 = 3, β0 = β1 = β2 = 0.45, σ = 20.83, σ0 = 1, σ1 = σ2 = 0.5. By calculation, one can
obtain that µa = 1.0007, µ0 = µ1 = µ2 = 2, and µb = 1.2231. The remaining parameters are
identical to the first example. To solve the rest of the conditions in Corollary 2, by using
LMI Toolbox, we can obtain the feasible solutions as follows:

P =

[
7.3011 0

0 8.0832

]
, Ξ =

[
0.8923 0.8142

0 0.8225

]
.

Then control gain matrix M could be designed as

M =

[
0.1222 0
0.1007 0.1018

]
.

The initial values of networks are produced stochastically as before and the simulation
results of Corollary 2 are gained in Figure 3. Figure 3a displays the time evolution of
‖ei(t)‖ through the useful impulsive matrix M, and it implies that complex networks
(23) and (22) realize synchronization by using the proposed impulsive control methods.
If there exists some change for the impulsive matrix M∗ = M − 0.1I, which makes the
corresponding conditions unsatisfied, then synchronization cannot be achieved between
complex networks (22) and (23), as displayed in Figure 3b.
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Figure 3. (a) Time evolution of ‖ei(t)‖ through the effective impulsive matrix M. One can see that
synchronization errors ‖ei(t)‖ approach zero over time, which implies response network (23) achieves
synchronization with drive network(22) in this case. (b) Time evolution of ‖ei(t)‖ under impulsive
gain matrix M∗ = M− 0.1I. Since matrix M∗ breaks the conditions of Corollary 2, one can see that
‖ei(t)‖ cannot approach zero over time and the synchronization fails in this situation.

5. Conclusions

We investigated the µ-synchronization issues of nonlinearly coupled multi-weighted
drive–response networks with unbounded mixed time-varying delays and uncertain pa-
rameter perturbation in this article. By designing a suitable µ-function and the impul-
sive controller including unbounded sampling delays, several new sufficient conditions
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were gained to ensure the µ-synchronization of the concerned multi-weighted network.
The restrictions between delays and impulsive intervals were weakened, and the coupling
matrices were not confined by zero-row sum requirement, which made our results more
general. Ultimately, numerical simulations were provided to verify the correctness and
effectiveness of our theoretical analysis.
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