
Citation: Hosseinzadeh, M.; Ali

Naqvi, R.; Safkhani, M.; Tightiz, L.;

Majid Mehmood, R. Secure

Authentication in the Smart Grid.

Mathematics 2023, 11, 176. https://

doi.org/10.3390/math11010176

Academic Editor: Antanas Cenys

Received: 1 December 2022

Revised: 21 December 2022

Accepted: 23 December 2022

Published: 29 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Secure Authentication in the Smart Grid
Mehdi Hosseinzadeh 1,2,3,†, Rizwan Ali Naqvi 4,† , Masoumeh Safkhani 5,6,† , Lilia Tightiz 7,*
and Raja Majid Mehmood 8,*

1 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
2 School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
3 Computer Science, University of Human Development, Sulaymaniyah 0778-6, Iraq
4 School of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
5 Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran
6 School of Computer Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746,

Tehran 16788-15811, Iran
7 School of Computing, Gachon University, 1342 Seongnamdaero, Seongnam 13120, Republic of Korea
8 Information and Communication Technology Department, School of Computing and Data Science,

Xiamen University Malaysia, Sepang 43900, Malaysia
* Correspondence: liliatightiz@gachon.ac.kr (L.T.); rmeex07@ieee.org (R.M.M.)
† These authors contributed equally to this work.

Abstract: Authenticated key agreement is a process in which protocol participants communicate
over a public channel to share a secret session key, which is then used to encrypt data transferred in
subsequent communications. LLAKEP, an authenticated key agreement protocol for Energy Internet
of Things (EIoT) applications, was recently proposed by Zhang et al. While the proposed protocol has
some interesting features, such as putting less computation on edge devices versus the server side, its
exact security level is unclear. As a result, we shed light on its security in this paper through careful
security analysis against various attacks. Despite the designers’ security claims in the random oracle
model and its verification using GNY logic, this study demonstrates that this protocol has security
weaknesses. We show that LLAKEP is vulnerable to traceability, dictionary, stolen smart glass, known
session-specific temporary information, and key compromise impersonation attacks. Furthermore,
we demonstrate that it does not provide perfect forward secrecy. To the best of our knowledge, it is the
protocol’s first independent security analysis. To overcome the LLAKEP vulnerabilities, we suggested
the LLAKEP+ protocol, based on the same set of cryptographic primitives, namely the one-way
hash function and ECC point multiplication. Our comprehensive security analysis demonstrates
its resistance to different threats, such as impersonation, privileged insider assaults, and stolen
smart glass attacks, along with its resistance to sophisticated assaults, such as key compromised
impersonation (KCI) and known session-specific temporary information (KSTI). The overhead of the
proposed protocol is acceptable compared to the provided security level.

Keywords: authentication; key agreement; energy internet of things; security; key compromised
impersonation attack; known session-specific temporary information attack

MSC: 94A62

1. Introduction

The Internet of Things (IoT) is a new technological concept that aims to provide a
communication channel between objects to advance their functionality and enhance the
traditional mechanism. It also adapted to different applications with dedicated features, for
example, the Internet of Energy or Energy IoT (IoE/EIoT) [1], Internet of Drones (IoD) [2],
Industrial Internet of Things (IIoT) [3], Internet of Vehicles (IoV) [4], and Medical Internet
of Things (MIoT) [5]. While communication between objects in these technologies provides
many advantages, security is a big challenge for all of them, given that different objects

Mathematics 2023, 11, 176. https://doi.org/10.3390/math11010176 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010176
https://doi.org/10.3390/math11010176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7473-8441
https://orcid.org/0000-0002-1897-0828
https://orcid.org/0000-0003-4114-9752
https://orcid.org/0000-0002-2284-0479
https://doi.org/10.3390/math11010176
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010176?type=check_update&version=1

Mathematics 2023, 11, 176 2 of 24

have different properties and constraints, and the data should be transferred over the
public channel using wireless technologies. Hence, that data could always be accessed by
the adversary and used for unauthorized purposes. In addition, the adversary could aim
to impersonate any object to just use its capabilities or do malicious activities, e.g., spy-
ing, encryption of data for a ransom, total wipeout of disk and data, and abuse for coin
mining [6]. Hence, any such application requires an approach to identify friends and
foes. Authentication protocols are traditional solutions for providing authorized access to
infrastructure while blocking unauthorized access.

The Energy Internet of Things enables the development of new complex communi-
cation infrastructures for the modernization and automation of energy infrastructures for
producers and manufacturers, as depicted in Figure 1. It results in greater connectivity
of these safety-critical systems, allowing for more efficient management of operational
processes, service provisioning, and information exchange for various (third-party) actors.
EIoT enables more efficient and environmentally friendly energy production with the least
amount of waste. This technology, however, raises security concerns, as evidenced by
numerous recent cyberattacks on critical infrastructures and utilities [7,8]. The reason
for this is that their reliance on information technology (IT) for operation and control is
increasing, making them more vulnerable to malicious intent.

Database Servers

Monitoring

Communication

Energy

Transmission Grid

Power Plants

Renewable Plants
Consumers

Things

bater

EIoT

Figure 1. The Energy Internet of Things (EIoT) ecosystem.

Zhang et al. [9] recently proposed an authenticated key agreement (AKE) protocol
for EIoT in the metaverse era and named it LLAKEP, which is a protocol for secure au-
thentication and key agreement between an electric bike rider and a battery swap station.
In the proposed protocol, the client has fewer computing overheads compared to the server.
Hence, the expected latency will be reduced. They also formally analyzed the security
of the proposed protocol in the random oracle model and evaluated it using GNY logic.
The provided security analysis confirms its security in those models. However, it will not
guarantee the protocol’s security in a real application because those models do not cover

Mathematics 2023, 11, 176 3 of 24

all security concerns. For example, in reality, the adversary can access the device and read
its memory or gain the low entropy of passphrases that are used by the users. These types
of attacks are not considered in such formal proof because the designers generally consider
the protocol environment ideal. Hence, it could be interesting to evaluate the real-world
security of this protocol, considering the adversary’s advantage in reality, and we aim to
address this point in this study.

1.1. Our Contribution

This paper’s contributions are as follows:

1. We propose the first independent security analysis of LLAKEP in various scenarios
with varying access to the adversary. Our security analysis demonstrates important
security issues in this protocol.

2. In terms of efficiency, we show that this protocol could be designed more efficiently
and propose a promising solution to address this flaw.

3. We propose the LLAKEP+ protocol as an improved protocol that uses the same set of
cryptographic primitives as the LLAKEP protocol.

4. We carefully evaluate the security of the proposed protocol both informally and
formally using a real or random model and confirm its security using the Scyther tool.
We also evaluate the security of the proposed protocol and compare it with the state
of the art, which shows that the proposed protocol has a low communication cost and
a comparable computation cost.

1.2. Paper Organization

The rest of the paper is organized as follows: in Section 2, we represent the required
preliminaries, including notations and some background information. Next, in Section 2.4,
we look at the LLAKEP scheme. We demonstrate the security flaws of this scheme in
Section 3. LLAKEP+, the enhanced protocol, is proposed in Section 4, and its security and
efficiency analysis is provided. Finally, the paper is wrapped up in Section 6.

2. Preliminaries
2.1. Notation

We use the list of notations represented in Table 1 in this paper.

Table 1. List of used notations.

Symbol Description

EBR Electric bike riders
BSS Battery swap station
MC Microprocessor chip
A Adversary
IDEBR Identity of an electric bike rider EBR
PWEBR Password of an electric bike rider EBR
skX Private key of X
pkX Public key of X
sk Session key
E/Fp An elliptic curve E over a prime finite field Fp with p being a large prime
n Order of base point G
Zn 1, 2, . . . , n− 1
k · G Scalar multiplication on elliptic curves and G is a base point in E/Fp
A‖B Concatenation operation between strings A and B
A⊕ B XOR operation between strings A and B
kd f (·) Key derivation function
H(·) A one-way hash function that generates digests

Mathematics 2023, 11, 176 4 of 24

2.2. Elliptic Curve Cryptography

Given a curve y2 = x3 + a · x + b, a distinguished point at infinity O, and a prime
number q, the Elliptic Curve Cryptography (ECC) EFq is defined as an additive group G
over the finite field Fq including the set of all (x, y) ∈ Fq × Fq such that λ2 = µ3 + aµ + b,
where a, b ∈ Fq and 4a3 + 27b2 mod q 6= 0, along with O. The order of G has been defined
by the size of the subgroup, which is defined as the smallest positive number n such that
n · G = O, G is the generator of this subgroup [10].

Regarding the security of ECC, for large values of n, given any natural scalar a ∈ Fq, it
is simple to calculate y = a · G (point multiplication), but given y, EFq , and G, computing
the multiplicand a is computationally impossible. The Elliptic Curve Discrete Logarithm
Problem (ECDLP) is a difficult problem whose difficulty is determined by the size of the
elliptic curve subgroup, i.e., n. The Elliptic Curve Computational Diffie–Hellman Problem
(EC-CDHP) is another difficult problem over ECC that aims to compute a · b · G given a · G,
b · G, EFq , and G where a, b ∈ Fq [11].

2.3. System Model

In this paper, we consider a system that includes a battery swap station (BSS), which
is used to provide service to registered electric bike riders (EBR), such as battery swapping,
using Figure 2. Furthermore, we assume that, with the exception of the registration phase,
the remainder of the messages between EBR and BSS are sent over the public channel.
Communication consists of two phases: in the first phase, EBR and BSS authenticate each
other to share a secret key.

Adversary

Side channel tools

Electric Bike RidersBattery Swap Station

Public Channel

Figure 2. The used system model.

In this paper, depending on the concept, we use the Dolev–Yao (DY) [12] and Canetti
and Krawczyk (CK) [13] adversary models. The main difference between these models
is the adversary capabilities: in the DY paradigm, the attacker has complete control over
messages sent via public channels, or it can take a valid user’s smart card and retrieve the
stored value from it. On the other hand, in the CK adversary model, the adversary can also
compromise the session and access random values generated in each session, for instance.
We consider a Probabilistic Polynomial Time Adversary (PPTA) in any model that can only
perform a polynomial number of operations, including at most a polynomial call to any
cryptographic primitive.

In this paper, following Figure 2, we examine a system that includes a Battery Swap
Station (BSS), which is used to provide services such as battery switching to registered
Electric Bike Riders (EBRs). Furthermore, with the exception of the registration step, we
assume that the remaining communications between EBR and BSS are sent via the public
channel. The communication process is divided into two stages. In the first stage, EBR
and BSS authenticate each other to exchange a secret key. The shared key is then used to
encrypt the remainder of the sent data.

Mathematics 2023, 11, 176 5 of 24

As with the designer model, we assume that each entity has a private and public
pair of ECC-based public keys. The public key is known to all protocol entities, including
the attacker. The owner is the only one who has access to the private key. In addition
to this authentication element, each registered EBR has a username and password as a
secondary authentication factor. Because the user is expected to remember the username
and password, they are picked from a low-entropy feasible space, and the adversary may
execute a dictionary search on each of them independently. However, simultaneously
scanning the space of their concatenation is not conceivable.

Although the authentication factors should be kept private, they can be compromised
at any time. In this situation, the leak of information should not affect the security of
earlier sessions.

To account for all possibilities, we assume the adversary has access to the ephemeral
keys, which are the random values created at the end of each session. In actuality, side-
channel attacks such as power analysis may do this. The opponent should not gain any
more knowledge regarding long-term secrets or the shared session key in this situation.

2.4. LLAKEP Description

LLAKEP’s four phases are initialization, user registration, authenticated key agree-
ment, and password update.

2.5. Initialization

The system parameters are chosen by the battery swap station (BSS) during the
initialization phase, i.e., {E/Fp, G, n, pkBSS, H1(·), H2(·)}, where pkBSS = skBSS · G.

2.6. User Registration

User registration is required to register an electric bike rider (EBR) in BSS. EBR in-
puts IDEBR and PWEBR on the smart glass, which includes a microchip MC, during this
protocol step. The MC generates random numbers aMC and bMC and computes HIP =
H2(IDEBR‖PWEBR), v = HIP⊕ aMC, d = HIP⊕ bMC and C = H2(IDEBR‖PWEBR‖aMC).
Next, using a secure channel, EBR submits {pkEBR, IDEBR, d} to BSS.

BSS checks the uniqueness of IDEBR and H2(IDEBR) after receiving the message then
it computes l = H1(skBSS)⊕ d⊕ H2(skBSS‖IDEBR), stores {H2(skBSS‖IDEBR), IDEBR} and
sends l to EBR.

On the other hand, EBR calculates l′ = l⊕ bMC = H1(skBSS)⊕HIP⊕H2(skBSS‖IDEBR)
and stores it along v and C in MC.

2.7. Authenticated Key Agreement

To swap batteries, a registered EBR communicates with BSS to share a session key SK
as shown in Figure 3:

1. The EBR user enters its IDEBR and PWEBR on the smart glass. MC computes HIP =

H2(IDEBR‖PWEBR), aMC = HIP⊕ v, and verifies whether C ?
= H2(IDEBR‖PWEBR‖aMC).

Assuming that verification was successful, MC generates a random number rMC and
computes UEBR = rMC + skEBR, R = rMC · pkBSS, CIDEBR = l′ ⊕ HIP = H1(skBSS)⊕
H2(skBSS‖IDEBR) and AuthEBR = H2(IDEBR‖R‖CIDEBR‖TMC), where TMC is the cur-
rent timestamp. Next, using a public channel, EBR sends {AuthEBR, CIDEBR, UEBR, TMC}
to BSS.

2. Once received the message, BSS verifies TMC, calculates H2(skBSS‖IDEBR) = CIDEBR⊕
H1(skBSS) and REBR = UEBR · G − pkEBR = rMC · G and R∗ = skBSS · REBR and

verifies whether AuthEBR
?
= H2(IDEBR‖R∗‖CIDEBR‖TMC). Next, it generates a

random number rBSS and computes RBSS = rBSS · G, SKBSS = rBSS · REBR and
AuthBSS = H2(IDEBR‖R∗‖SKBSS‖TBSS), where TBSS is the current timestamp. Next,
using a public channel, BSS sends {AuthBSS, RBSS, TBSS} to EBR.

Mathematics 2023, 11, 176 6 of 24

3. EBR verifies TBSS, calculates SKEBR = rMC · RBSS and verifies whether Auth∗BSS
?
=

H2(IDEBR‖R‖SKEBR‖TBSS) to authenticate BSS. After successful authentication, EBR
calculates sk = kd f (IDEBR‖SKEBR‖TMC‖TBSS) and AuthEB = H2(IDEBR‖R‖sk‖T′MC),
where T′MC is the current timestamp. Next, using a public channel, EBR sends
{AuthEB, T′MC} to BSS.

4. BSS verifies T′MC and computes sk′ = kd f (IDEBR‖SKBSS‖TMC‖TBSS) and checks

whether AuthEB
?
= H2(IDEBR‖R∗‖sk′‖T′MC) to authenticate EBR and store the session

key sk′, which is used for secure communication between EBR and BSS.

EBR BSS
({skEBR, l′, v, C}) ({skBSS, H2(skBSS‖IDEBR), IDEBR})

User enters IDEBR and PWEBR on the
smart glass. MC computes HIP =
H2(IDEBR‖PWEBR), aMC = HIP ⊕ v,

and verifies C ?
= H2(IDEBR‖PWEBR‖aMC),

generates rMC and computes UEBR =
rMC + skEBR, R = rMC · pkBSS, CIDEBR =
l′ ⊕ HIP = H1(skBSS) ⊕ H2(skBSS‖IDEBR) and
AuthEBR = H2(IDEBR‖R‖CIDEBR‖TMC)

AuthEBR ,CIDEBR ,UEBR ,TMC−−−−−−−−−−−−−−−→
Verifies TMC, calculates H2(skBSS‖IDEBR) =
CIDEBR ⊕ H1(skBSS) and REBR = UEBR · G −
pkEBR = rMC · G and R∗ = skBSS · REBR and

verifies AuthEBR
?
= H2(IDEBR‖R∗‖CIDEBR‖TMC),

generates rBSS and computes RBSS = rBSS ·
G, SKBSS = rBSS · REBR and AuthBSS =
H2(IDEBR‖R∗‖SKBSS‖TBSS)

AuthBSS ,RBSS ,TBSS←−−−−−−−−−−
Verifies TBSS, calculates SKEBR = rMC · RBSS and

verifies Auth∗BSS
?
= H2(IDEBR‖R‖SKEBR‖TBSS),

calculates sk = kd f (IDEBR‖SKEBR‖TMC‖TBSS)
and AuthEB = H2(IDEBR‖R‖sk‖T′MC)

AuthEB ,T′MC−−−−−−→
Verifies T′MC, calculates sk′ =
kd f (IDEBR‖SKBSS‖TMC‖TBSS) and verifies

AuthEB
?
= H2(IDEBR‖R∗‖sk′‖T′MC) to authenti-

cate EBR

Sets sk = kd f (IDEBR‖SKEBR‖TMC‖TBSS) as the
session key

Sets sk′ = kd f (IDEBR‖SKBSS‖TMC‖TBSS) as the
session key

Figure 3. Mutual authentication phase of LLAKEP scheme to share a session key between EBR and
BSS [9].

2.8. Password Change

To change the current password, EBR enters its current IDEBR and PWEBR on the smart

glass. MC computes HIP = H2(IDEBR‖PWEBR), aMC = HIP⊕ v, and verifies whether C ?
=

H2(IDEBR‖PWEBR‖aMC) to authenticate EBR. If authentication was successful; MC requests
EBR to provide a new password PWnew. Then it computes HIPnew = H2(IDEBR‖PWnew),
vnew = HIPnew ⊕ aMC, new = HIPnew ⊕ bMC, Cnew = H2(IDEBR‖PWnew‖aMC) and lnew =
l′⊕HIP⊕HIPnew = H1(skBSS)⊕HIPnew⊕H2(skBSS‖IDEBR). At the end, EBR stores l′new
along vnew and Cnew in MC.

Mathematics 2023, 11, 176 7 of 24

3. On the Security of LLAKEP

LLAKEP has some interesting features, such as putting less computation on edge
devices versus the server side. As a result of the authentication process, this protocol
achieves low latency. Furthermore, the designers provided a formal security analysis in the
random oracle model and validated its security with GNY logic. The disadvantage of such
analysis may be its reliance on security analysis assumptions. Furthermore, in such attacks,
primitives are regarded as ideal. For example, a hash function is considered one-way in
those models, but if the hash function’s input is chosen from a small domain, a dictionary
attack on such low entropy input space may be possible. Such an attack is used in password-
guessing attacks, such as [14,15]. As a result, it is worthwhile to conduct a third-party
analysis of the protocol’s exact security, focusing on more detailed attacks. These types of
attacks are significant because of Zhang et al. considered the majority of these attacks to be
disadvantages of the related protocols, see ([9], Table 1). As a result, it will be interesting to
explicitly evaluate its security against such an attack, which we do in this section.

3.1. Insider Adversary

An insider adversary refers to a cyber-security risk that originates from within an
organization. Consider a current or former employee, contractor, vendor, or partner with
legitimate user credentials that misuse their access to the detriment of the organization’s
networks, systems, and data as an example of insider. A common privilege of an insider
over an ordinary adversary is its access to the private channel. If such an adversary achieves
a significant advantage to attack a protocol due to such access, that protocol suffers from
insider adversaries.

We assume the adversary’s target is to retrieve the user’s credentials, i.e., IDEBR
and PWEBR. Let us consider an adversary with access to the transferred messages over
the public channel and also the stored values in the smart glass, i.e., l′ = H1(skBSS ⊕
HIP ⊕ H2(skBSS‖IDEBR)), v = HIP ⊕ aMC, and C = H2(IDEBR‖PWEBR‖aMC), where
HIP = H2(IDEBR‖PWEBR).

The transferred messages over the public channel are as follows, besides timestamps:

AuthEBR =H2(IDEBR‖R‖CIDEBR‖TMC)

CIDEBR =l′ ⊕ HIP = H1(skBSS)⊕ H2(skBSS‖IDEBR)

UEBR =rMC + skEBR

AuthBSS =H2(IDEBR‖R‖SKBSS‖TBSS)

RBSS =rBSS · G

AuthEB =H2(IDEBR‖R‖sk‖T′MC)

where R = skBSS · rMC · G and SKBSS = rBSS · rMC · G. Since aMC is a random number,
the adversary cannot receive low-entropy information from v and C. On the other hand,
skBSS is the private key of BSS, and, due to that, l′ does not help the adversary achieve
the desired information to extract secret parameters using dictionary attacks. However,
combining that information with the transfused messages provides the adversary with
some gains. Let’s consider the case where the adversary has l′ from reading the smart
glass’s memory and also eavesdrops on CIDEBR = l′ ⊕ HIP from the public channel.
Hence, the adversary achieves HIP = CIDEBR ⊕ l′. Assuming that the entropy of IDEBR
and PWEBR is, respectively, HID and HPW , then the expected complexity to drive IDEBR
and PWEBR using dictionary attack is 2HID+HPW .

Now, let us consider an insider adversary with access to the transferred messages
over the public channel during the user registration phase, i.e., {pkEBR, IDEBR, d} to BSS,
where d = HIP ⊕ bMC. Let’s assume the adversary also eavesdrops on a session and
steals the smart glass. Given the transferred messages over the public channel, HIP =
H2(IDEBR‖PWEBR) is achieved, and the expected complexity of extracting PWEBR using a
dictionary attack is 2HPW . Given IDEBR and PWEBR, the adversary can use the stolen smart

Mathematics 2023, 11, 176 8 of 24

glass at any time to impersonate the target EBR. Compared with a generic adversary whose
cost was 2HID+HPW , an insider adversary has a significant advantage.

3.1.1. Traceability and Anonymity

Assume a protocol party participated in two different protocol sessions, say at times
T and T’. In such a protocol, the target party is traceable whenever the adversary can
link the transferred messages over those sessions with a high probability. If a party is
transferred over the public channel, its constant identifier is a common way to track it
down. Hiding such information, however, does not ensure the protocol’s security against
this attack. In more detail, during the authentication phase of LLAKEP, the EBR sends
{AuthEBR, CIDEBR, UEBR, TMC} to BSS, where CIDEBR = H1(skBSS)⊕ H2(skBSS‖IDEBR).
This information is consistent for any EBR user and, with a high probability, unique.
Assuming that the adversary eavesdropped on a session between the ith user, EBRi, and BSS
and saved CIDEBRi , assuming that it monitors another session between the ith user, EBRi,
and BSS, if CIDEBRi 6= CIDEBRj then EBRi 6= EBRj and if CIDEBRi = CIDEBRj then
EBRi = EBRj. This means that any EBR can be traced across multiple sessions in LLAKEP.

3.1.2. Known Session-Specific Temporary Information Attack

Assume the adversary is aware of the session-specific temporary values of LLAKEP,
i.e., rMC and rBSS, as well as the messages transferred over the public channel. The message
transferred from EBR to BSS includes UEBR = rMC + skEBR, and given rMC, the adversary
achieves skEBR = UEBR − rMC, which is EBR’s secret key. Given rMC, the adversary also
computes R = rMC · G. AuthEBR = H2(IDEBR‖R‖CIDEBR‖TMC), on the other hand, is
also available from the public channel, and IDEBR has low entropy, e.g.,HID. As a result,
the adversary can extract IDEBR with a complexity of 2HID . The session key is computed as
sk = kd f (IDEBR‖SKEBR‖TMC‖TBSS) and SKEBR = rMC · RBSS and RBSS is transferred over
the public channel. As a result, the first known session-specific temporary information
(KSTI) attack on LLAKEP has a complexity of 2HID , while the latter KSTI attacks have
negligible complexities.

3.1.3. Impersonation Attack after a Successful KSTI Attack

Assume the opponent successfully launched a KSTI attack on LLAKEP. Following the
attack, the adversary has IDEBR, skEBR and CIDEBR = H1(skBSS)⊕ H2(skBSS‖IDEBR). It
is obvious that the adversary can do the following:

1. The adversary generates a random number radv and computes UEBR = radv + skEBR,
Radv = radv · pkBSS and AuthEBR = H2(IDEBR‖R‖CIDEBR‖Tadv), where Tadv is the
current timestamp. Next, using a public channel, the adversary sends
{AuthEBR, CIDEBR, UEBR, TMC} to BSS.

2. Obviously TMC and AuthEBR are accepted by BSS and Radv = radv · pkBSS is ex-
tracted by BSS from the received UEBR = radv + skEBR. Next, it generates a random
number rBSS and computes RBSS = rBSS · G, SKBSS = rBSS · Ravd and AuthBSS =
H2(IDEBR‖Radv‖SKBSS‖TBSS) and sends {AuthBSS, RBSS, TBSS} to EBR (imperson-
ated by the adversary).

3. The adversary calculates SKadv = radv · RBSS, sk = kd f (IDEBR‖SKadv‖Tadv‖TBSS) and
Authad = H2(IDEBR‖Radv‖SKadv‖T′adv), where T′adv is the current timestamp. Next,
using a public channel, the adversary sends {Authad, T′adv} to BSS.

4. BSS verifies T′adv, calculates sk′ = kd f (IDEBR‖SKBSS‖TMC‖TBSS) and verifies whether

Authad
?
= H2(IDEBR‖Radv‖sk′‖T′MC) to authenticate EBR/adversary and store the

session key sk′, which is used for the secure communication between EBR/adversary
and BSS.

Since SKBSS = rBSS · Radv = rBSS · radv · G = radv · RBSS = SKadv, the authentication is
completed successfully which confirms the impersonation attack on LLAKEP.

Mathematics 2023, 11, 176 9 of 24

3.2. Key Compromised Impersonation Attack

Assume a client C is in contact with a server S . Assuming that all the secret parameters
of C (resp. S) are given to the adversary, the adversary should not be able to impersonate
S (resp. C) toward C (resp. S); otherwise, the protocol is vulnerable to key compromise
impersonation (KCI) attacks [16–18]. This attack is a variant of the Man in the Middle
(MitM) attack and has been successfully applied to TLS. For instance, in the KCI-based
MitM attack against TLS [19], an attacker with a client certificate’s private key installed
on a victim can impersonate any server. Hence, in this section, we investigate LLAKEP’s
security against this type of attack.

Assume the adversary is given all of the user’s information, i.e., the stored information
in the smart glass: l′ = H1(skBSS) ⊕ HIP ⊕ H2(skBSS‖IDEBR), v = HIP ⊕ aMC, C =
H2(IDEBR‖PWEBR‖aMC), where HIP = H2(IDEBR‖PWEBR), the user’s credentials which
are IDEBR and PWEBR and the stored information in the MC’s memory which is skEBR.
The adversary does the following to impersonate BSS:

1. The EBR user enters its IDEBR and PWEBR on the smart glass. MC verifies them,
generates a random number rMC and computes UEBR = rMC + skEBR, R = rMC ·
pkBSS, CIDEBR = l′ ⊕ HIP = H1(skBSS) ⊕ H2(skBSS‖IDEBR) and AuthEBR =
H2(IDEBR‖R‖CIDEBR‖TMC) and sends {AuthEBR, CIDEBR, UEBR, TMC} to BSS.

2. The adversary extracts rMC = UEBR − skEBR, computes REBR = rMC · G and R∗ =
rMC · pkBSS, generates a random number radv, computes Radv = radv · G, SKadv =
radv · REBR and Authadv = H2(IDEBR‖R‖SKadv‖Tadv) and sends {Authadv, Radv, Tadv}
to EBR.

3. EBR verifies Tadv, calculates SKEBR = rMC · Radv and verifies whether Auth∗adv
?
=

H2(IDEBR‖R‖SKEBR‖Tadv) to authenticate BSS/adversary which authenticates.

Following the aforementioned attack, the adversary could impersonate BSS toward
EBR, assuming it has access to EBR’s secret parameters but no knowledge of BSS secrets.

3.3. The Lack of Perfect Forward Secrecy

A security protocol provides perfect forward secrecy if compromising a protocol
participant’s long-term secrets at time T j does not affect the security of the shared session
keys at any time Ti < T j [10]. It is worth noting that Zhang et al. considered this attack
when comparing related protocols ([9], Table 1). As a result, it will be interesting to explicitly
evaluate LLAKEP’s security against such an attack, which we do in this section. We assume
the adversary intercepted the following messages over the public channel at time Ti, along
with the timestamps Ti

MC, Ti
BSS and T′iMC:

AuthEBR =H2(IDEBR‖R‖CIDEBR‖Ti
MC)

CIDEBR =H1(skBSS)⊕ H2(skBSS‖IDEBR)

Ui
EBR =ri

MC + skEBR

AuthBSS =H2(IDEBR‖Ri‖SKBSS‖Ti
BSS)

Ri
BSS =ri

BSS · G

AuthEB =H2(IDEBR‖R‖ski‖T′iMC)

where ski = kd f (IDEBR‖SKBSS‖Ti
MC‖Ti

BSS) and SKBSS = ri
MC · Ri

BSS. Obviously, given
Ui

EBR = ri
MC + skEBR, Ri

BSS and skEBR, the adversary is able to compute ri
MC = Ui

EBR −
skEBR and SKBSS = ri

MC · Ri
BSS. Next, given the revealed IDEBR, the eavesdropped Ti

MC
and Ti

BSS and the computed SKBSS the adversary can extract the session key of the ith
session, i.e., sk = kd f (IDEBR‖SKBSS‖Ti

MC‖Ti
BSS). Hence, LLAKEP does not provide perfect

forward secrecy.

Mathematics 2023, 11, 176 10 of 24

3.4. A Note on the LLAKEP Efficiency

The efficiency of the protocol should be considered when designing the messages. BSS
stores {H2(skBSS‖IDEBR), IDEBR} during the LLAKEP registration phase, and during the
authentication phase, EBR sends CIDEBR = l′ ⊕ HIP = H1(skBSS)⊕ H2(skBSS‖IDEBR) as
a part of the message, which is used to identify the target EBR’s records. In this regard,
BSS first computes H1(skBSS)⊕ CIDEBR = H2(skBSS‖IDEBR) and searches its database for
related records. This means that BSS should compute this value for all authentications.
However, if it stores H1(skBSS)⊕ H2(skBSS‖IDEBR) in the registration phase rather than
{H2(skBSS‖IDEBR)}, that computation is not required, and the resulted protocol could be
more efficient.

4. LLAKEP+ Description

LLAKEP+, the proposed protocol, includes initialization, user registration, authenti-
cated key agreement, and password change. While designing the proposed protocol, we
avoided the weaknesses in LLAKEP. To avoid insider attacks, we never send IDEBR to
BSS in plain text. Furthermore, we avoid using UEBR = rMC + skEBR because it could be a
source for a KSTI attack. We will include both long-term and ephemeral keys to provide
security against KSTI and KCI.

4.1. Initialization

During the startup phase, the battery swap station (BSS) selects the system parameters,
which are {E/Fp, G, n, pkBSS, H(·)}, where pkBSS = skBSS · G. The only difference in this
phase is that a single hash function H(·) is used instead of two, which might be any
one-way cryptographic hash function. We suppose n is the order of the group G’s basis
point G, and the output of H(·) may be transformed to an integer in 0, . . . , n− 1. In other
circumstances, though, we may want lengthier output from the hash function to mask a
pattern, in which case we use He(·).

4.2. User Registration

During the registration phase, we use the Elliptic Curve Digital Signature Algorithm
(ECDSA) [20], which is a version of the Digital Signature Algorithm (DSA). During this
phase, EBR chooses its IDEBR and PWEBR as randomly as possible and enters them into the
smart glass containing a microchip MC. The embedded MC generates a random number
aMC and computes HID = H(IDEBR‖aMC). Next, using a secure channel, EBR submits
{pkEBR, HID} to BSS. It selects a random integer k ∈ [1, n− 1] and calculates k · G = (x, y)
and sets r = x mod n. If r = 0, BSS selects another random number. Next it computes
s = k−1(HID + r× skBSS) mod n and sends (r, s) to EBR. (HID, pkEBR) is stored in a secure
Non Volatile Memory (NVM) of BSS also.

Once received (r, s), EBR computes u1 = HID× s−1 and u2 = r× s−1 and (x′1, y′1) = u1 · G+

u2 · pkBSS. Next, it verifies whether r ?
= x′ mod n to confirm the registration. After that,

MC computes d = He(IDEBR‖PWEBR)⊕ (aMC‖s‖r) and v = H(s‖r‖H(IDEBR‖PWEBR‖aMC) and
stores (d, v) in the smart glass’s NVM.

4.3. Authenticated Key Agreement

A registered EBR connects with BSS to share a session key sk to switch batteries,
as shown in Figure 4:

1. The EBR user enters its IDEBR and PWEBR on the smart glass. MC computes (aMC‖s‖r) =
He(IDEBR‖PWEBR) ⊕ d, and HID = H(IDEBR‖aMC) and verifies whether v ?

=
H(s‖r‖H(IDEBR‖PWEBR)‖aMC) to accept the login. If the verification was successful,
MC obtains the current time TMC, generates a random number kMC ∈ [1, n− 1] and
calculates REBR = kMC · G and AuthEBR = HID ⊕ H(kMC · pkBSS‖TMC). Then, it
sends (REBR, TMC, AuthEBR) to BSS over a public channel.

Mathematics 2023, 11, 176 11 of 24

2. BSS validates TMC after receiving the message and calculates HID = AuthEBR ⊕
H(skBSS · REBR‖TMC). If it detects the extracted HID in its database, BSS gener-
ates a random number kBSS ∈ [1, n − 1] and calculates RBSS = kBSS · G, the tem-
porary session key sk = H(kBSS · REBR‖kBSS · pkEBR‖skBSS · REBR) and AuthBSS =
H(RBSS‖TMC‖sk). Then, it sends (RBSS, AuthBSS) to EBR over a public channel.

3. EBR computes the session key, after receiving the message, sk = H(kMC · RBSS‖skEBR ·
REBR‖kMC · pkBSS) and verifies whether AuthBSS

?
= H(RBSS‖TMC‖sk) to authenticate

BSS. If BSS has been authenticated, EBR returns VEBR = H(sk‖TMC‖HID) to BSS.
4. BSS verifies the received VEBR to authenticate EBR and also confirm the shared session

key.

EBR BSS
({skEBR, l′, v, C}) ({skBSS, H2(skBSS‖IDEBR), IDEBR})

The EBR user enters its IDEBR
and PWEBR on the smart glass.
MC computes (aMC‖s‖r) =
He(IDEBR‖PWEBR) ⊕ d, and HID =
H(IDEBR‖aMC) and verifies

v ?
= H(s‖r‖H(IDEBR‖PWEBR)‖aMC)

to accept the login and get TMC,
generates a random number
kMC ∈ [1, n − 1] to calculate
REBR = kMC · G and AuthEBR =
HID⊕ H(kMC · pkBSS‖TMC)

REBR ,TMC ,AuthEBR−−−−−−−−−−→
Verifies TMC, calculates HID =
AuthEBR ⊕ H(skBSS · REBR‖TMC).
If HID is valid, generates a random
number kBSS ∈ [1, n− 1], computes
RBSS = kBSS · G and sk = H(kBSS ·
REBR‖kBSS · pkEBR‖skBSS · REBR)
and AuthBSS = H(RBSS‖TMC‖sk)

RBSS ,AuthBSS←−−−−−−−
Calculates sk = H(kMC · RBSS‖skEBR ·
REBR‖kMC · pkBSS), verifies

AuthBSS
?
= H(RBSS‖TMC‖sk)

to authenticate BSS and return
VEBR = H(sk‖TMC‖HID)

VEBR−−→
Verifies VEBR to authenticate EBR
and also confirm sk

Figure 4. Mutual authentication phase of LLAKEP+ scheme to share a session key between EBR
and BSS.

4.4. Password Change

To change the current password, EBR enters its current IDEBR and PWEBR on the
smart glass and requests a run of the password change phase. MC computes (aMC‖s‖r) =
He(IDEBR‖PWEBR)⊕ d, and HID = H(IDEBR‖aMC) and verifies whether v ?

= H(s‖r‖HID
‖aMC) to accept the login. Next, the user inputs the new password PWnew

EBR. After that, MC
computes dnew = He(IDEBR‖PWnew

EBR)⊕ (aMC‖s‖r) and vnew = H(s‖r‖H(IDEBR‖PWnew
EBR)

‖aMC) and stores (dnew, vnew) in the smart glass’s NVM and sends the password success-
fully updated message.

Mathematics 2023, 11, 176 12 of 24

5. Security and Cost Analysis of LLAKEP+

We argue the security and cost analysis of LLAKEP+ against various attacks and form
different aspects in this section.

5.1. Informal Security Analysis

Through the analysis, we consider two types of adversaries: the first is a common
adversary with access to the transferred messages over the public channels, i.e., REBR, TMC,
AuthEBR, RBSS, AuthBSS, VEBR, where:

REBR =kMC · G

AuthEBR =HID⊕ H(kMC · pkBSS‖TMC)

RBSS =kBSS · G

sk =H(kBSS · REBR‖kBSS · pkEBR‖skBSS · REBR)

AuthBSS =H(RBSS‖TMC‖sk)

VEBR =H(sk‖TMC‖HID)

and kMC ∈ [1, n− 1] and kBSS ∈ [1, n− 1]. This adversary’s primary goal is to conduct any
type of attack, such as tracking an EBR, impersonating it, gaining access to shared secrets,
and so on. The second type of adversary, on the other hand, is a privileged adversary, which
is more applicable in the CK model. This adversary has access to the secure channel during
the registration phase, the ephemeral secrets, the long-term secrets, and so on, depending
on the attack type. This adversary’s goal, for example, is to gain access to the secret keys.

5.1.1. Replay Attack

To conduct a replay attack, the adversary must be able to reuse the eavesdropped
messages transferred in session i in a subsequent session. The use of a timestamp in
the calculation of AuthEBR = HID⊕ H(kMC · pkBSS‖TMC), AuthBSS = H(RBSS‖TMC‖sk)
and VEBR = H(sk‖TMC‖HID) ensures the time-freshness of the transferred messages in
LLAKEP+. As a result, this protocol is resistant to replay attacks.

5.1.2. Impersonation Attack

A passive adversary can perform an impersonation attack, assuming it can perform
a replay attack, and Section 5.1.1 demonstrates that LLAKEP+ is secure against replay
attacks. As a result, a passive adversary cannot impersonate either EBR or BSS. An active
adversary, on the other hand, should forge a valid tuple REBR, TMC, AuthEBR, VEBR or
RBSS, AuthBSS such that related AuthBSS = H(RBSS‖TMC‖sk) or VEBR = H(sk‖TMC‖HID)
is also verified by the receiver. Assume the adversary is attempting to impersonate EBR at
time TMC. The adversary could do this if it can compute a valid AuthEBR = HID⊕H(kMC ·
pkBSS‖TMC) and return the expected VEBR = H(sk‖TMC‖HID). Assuming the adversary
does not have access to HID or skEBR, it cannot forge those values. As a result, it cannot
compute a valid tuple REBR, TMC, VEBR to impersonate EBR. Similarly, to impersonate
BSS, the adversary must be able to return a valid RBSS, AuthBSS given the EBR’s challenge
tuple (REBR, TMC, AuthEBR). To do so, however, the adversary must either have skBSS or
compromise ECDLP or EC-CDHP, which is not possible. As a result, LLAKEP+ protects
against impersonation attacks.

5.1.3. Traceability and Anonymity

To trace an object that is participating in an authentication protocol, it should be feasi-
ble to relate the transmitted messages over the public channel with a non-zero probability
to the object’s identity/unique-parameters. Except for the timestamp, which cannot be used
directly to track any object, all parameters in the proposed protocol are either fresh values
or distinguished by a one-way hash function or ECC point multiplication. REBR = kMC · G
and RBSS = kBSS · G are fresh values, AuthEBR = HID⊕ H(kMC · pkBSS‖TMC) is masked

Mathematics 2023, 11, 176 13 of 24

by H(kMC · pkBSS‖TMC) and AuthBSS = H(RBSS‖TMC‖sk) and a one-way hash function
is used to compute VEBR = H(sk‖TMC‖HID). If the adversary can extract HID from
AuthEBR; it will be able to trace the EBR or BSS. To do so, however, the adversary must
either have access to skBSS or compute kMC · pkBSS, as REBR = kMC ·G necessitates compro-
mising ECDLP, which is not feasible for sufficiently large n. As a result, LLAKEP+ protects
against traceability attacks.

5.1.4. Secret Disclosure Attack

The EBR secret parameters are IDEBR, PWEBR, HID and skEBR, whereas the BSS secret
parameter is skBSS and the shared session key is sk = H(kBSS · kMC ·G‖kBSS · pkEBR‖skBSS ·
REBR). The attacker clearly cannot get PWEBR from the parameters transmitted over the
public channel. The only parameter that contains IDEBR, on the other hand, is HID =
H2(IDEBR‖aMC), which is distinguished by a random value aMC. Furthermore, HID is
masked by H(kMC · pkBSS‖TMC) and cannot be calculated without knowledge of skBSS
or solving the ECDLP issue. skEBR and skBSS are also secret keys that only the owner
knows about. To compute sk, the adversary must first compute kBSS · kMC ·G given kMC ·G
and kBSS · G, which requires overcoming the ECDLP problem once more. As a result, we
conclude that LAKEP+ protects against secret disclosure attacks.

5.1.5. Permanent De-Synchronization Attack

In the suggested protocol, successfully updating the password is the only way to
desynchronize a valid EBR from its MC. However, it necessitates a login, the complexity
of which is 2HID+HPW for an adversary without access to IDEBR and PWEBR. Assuming
HID = HPW = 20, the total complexity is 240, which is impractical.

5.1.6. Man-in-the-Middle Attack

To imitate EBR and BSS as a man-in-the-middle adversary, the adversary needs to
either perform a replay attack or actively alter the transmitted messages. A PPTA adversary
has no possibility of carrying out such assaults if the arguments in Sections 5.1.1 and 5.1.2
are followed. As a result, it ensures the proposed protocol’s security against man-in-the-
middle attacks.

5.1.7. Stolen Smart Glass Attack

Consider the loss or adversarial access to the smart glass. In this case, the ad-
versary can read the smart glass memory and access the stored values, namely d =
He(IDEBR‖PWEBR)⊕ (aMC‖s‖r) and v = H(s‖r‖H(IDEBR‖PWEBR‖aMC). To obtain any
information, it must guess IDEBR and PWEBR at the same time, which costs 2HID+HPW .

5.1.8. Insider Adversary

The primary advantage of a privileged insider opponent over a naive attacker is access
to data exchanged across a secure channel. The single secret channel in the proposed
protocol is utilized during the registration phase, and according to Section 4.2, the data
exchanged over this channel are (HID, pkEBR) sent by the EBR and (r, s) sent by the BSS.
Although HID is valuable information, the adversary cannot use it to extract IDEBR or
PWEBR or impersonate EBR since it also requires the secret skEBR. As a result, the suggested
protocol is safe against insider threats.

5.1.9. Perfect Forward Secrecy

If access to the long-term secrets, such as skEBR and skBSS, does not compromise
the security of the prior session keys, a protocol is assumed to guarantee complete for-
ward secrecy. The session key in LLAKEP+ is computed as sk = H(kBSS · kMC · G‖kBSS ·
pkEBR‖skBSS · REBR), where kBSS and kMC are ephemeral session dependent fresh values.
Although the adversary has access to kMC · G and kBSS · G, to compute sk, the adversary

Mathematics 2023, 11, 176 14 of 24

must first compute kBSS · kMC · G, which requires overcoming the ECDLP issue. As a result,
we conclude that LLAKEP+ offers complete forward secrecy.

5.1.10. Known Session-Specific Temporary Information Attack

In LLAKEP+, the session-specific temporary information is the timestamps and kBSS
and kMC. However, to compute the session key, the adversary must first compute skBSS ·
REBR and skEBR · RBSS given REBR = kMC · G, RBSS = kBSS · G, pkEBR and pkBSS which
again needs to overcome ECDLP problem. Hence we conclude that LLAKEP+ provides
security against Known session-specific temporary information attacks.

5.1.11. Key Compromised Impersonation Attack

To mimic BSS in a KCI attack, the adversary must be able to return a valid AuthBSS =
H(RBSS‖TMC‖sk). However, the adversary must compute valid sk, which is a factor
of skBSS · REBR. Given REBR = kMC · G and pkBSS, solve the ECDLP issue is required
to compute skBSS · REBR. As a result, we conclude that LLAKEP+ protects against key
compromised impersonation attacks.

5.2. Formal Security Evaluation
5.2.1. Scyther

Scyther is a tool for formal analysis of security protocols under the assumption of perfect
cryptography, where it is assumed that all functions and cryptographic primitives used are
perfect in terms of cryptographic properties. In the sense that the defined symmetric and
asymmetric encryption functions are secure enough, that is, an adversary cannot gain anything
from a ciphertext unless s/he knows the decryption key. Both hash and one-way functions
have all the features of a secure hash function. This means that the adversary cannot reach the
input of the one-way functions, such as the hash function and PRNG, from their output.

It should be noted that most of the time, protocol designers use the Scyther tool
to find and fix problems caused by the way the protocol is made. In practice, many
protocol problems can be found using the Scyther tool and either prove their authenticity
or find attacks.

Standard Version and Compromise Version Comparison:
The difference between these two versions is that in the standard model, the adversary

model is the Dolo–Yao model, and in the Compromise version, in addition to the Dolo–
Yao model is also possible to check forward secrecy scenarios. The meaning of forward
secrecy is that if the main and long-term keys of the parties participating in the protocol
are revealed to the adversary, s/he cannot obtain the values of the temporary session keys
that were used in the previous meetings. There is a concept of backward secrecy in security
discussions, which means that if the main and long-term keys of the parties participating
in the protocol are revealed to the attacker, s/he will not be able to obtain the values of the
temporary session keys used in future meetings. A protocol that has both backward and
forward secrecy properties is called a perfect secure protocol.

By using the Compromise version of the Scyther, the security of the discussed protocol
can be seen in the following attacks:

1. Suppose that the long-term key is revealed to the adversary, what attack scenarios are
the protocol vulnerable to?

2. Assume the session key is exposed, what attack scenarios are the protocol vulnera-
ble to?

3. Suppose that the protocol state is exposed, what attack scenarios are the protocol
vulnerable to?

Security Claims of Scyther Tool:
Security goals in each application are defined as three important principles of confi-

dentiality, integrity, and availability. In the Scyther tool, the designers have used these three
important principles in the form of two properties, Secrecy and Authentication, with the
following definitions:

Mathematics 2023, 11, 176 15 of 24

Secrecy: states that certain confidential and secret information will not be revealed to
the adversary. Different forms of secrecy can be defined by subtle differences. In the Scyther
tool, a secrecy claim event is written as an example claim(R, Secret, S), which is executed in
the role of R, which includes the expression S as a secret parameter. This assertion states
whether, for all implementations of the protocol role, the S statement remains secret, i.e., it
remains unknown to the adversary or not. There is another security claim related to secrecy
which is SKR. If we assume that we want to verify the confidentiality of the S in the role
of I with this claim, we should write Claim(I, SKR, S). The purpose of this assertion is to
consider the desired parameter as a session key. The result of this issue is that by using the
Reveal session-key rule that exists in the Compromise version of the Scyther tool, the secret
parameter phrase written in the SKR claim, i.e., S, is considered as the session key. It should
be noted that if the Reveal session-key rule is not active in the Compromise version of the
Scyther tool, the SKR claim works the same as the Secret claim.

Authentication: The most studied security feature in the field of security protocol
analysis is authentication. However, contrary to the claim of confidentiality, there is no
general consensus on the meaning of authentication. In fact, as Lowe showed in [21],
there is a hierarchy of authentication features. Authentication focuses on the fact that the
implementation of a protocol role actually guarantees that there is at least one communi-
cation partner in the network. In most cases, we want to establish a stronger objective,
i.e., that the intended partner is aware of our communication and that a protocol is being
implemented, and that messages have been exchanged as expected and according to the
protocol. These hierarchies are expressed as Aliveness, Synchronization, and Agreement
properties in the Scyther tool. The interested reader can refer to [21,22] to learn more about
these security claims.

To verify the security of LLAKEP+ formally, we used Scyther tool [23]. For this pur-
pose, the protocol is first modeled in SPDL, and then its security is evaluated. The SPDL
code and the security verification results are depicted in Appendix A and Figure 5, respec-
tively, which confirms the security of the proposed protocol.

Figure 5. Security verification results of LLAKEP+ on Scyther.

Mathematics 2023, 11, 176 16 of 24

5.2.2. Formal Security Analysis in RoR Model

Assume that two parties want to share a session key sk using an authenticated key
agreement protocol, as proposed by Abdola et al. [24]. In such a protocol, those parties use
long-term secrets along with ephemeral values to genera Sk. In our case, we consider the
parties to be EBR and BSS. The adversary A seeks to distinguish between a real protocol
(RP) and a random protocol or world (RW). To determine its ability, on distinguishing
a real protocol from a random one, a bit (b) is chosen randomly at the beginning of the
experiment, where b = 0 defines the random world (RW) and b = 1 represents the real
protocol or world. Following the proposed adversary’s model in Section 2.3, A can do
several query types, also see [24,25], to distinguish the real world from the random world.
The first query type, Exe, represents a passive adversary A. The second query is Send,
which represents an active opponentA. The last query is Reveal, which outputs the session
key held by a party. Finally, if b = 1, Test returns the session key; otherwise, it returns a
random key of the same size. The adversary returns its decision as b0 at the end of the game
and wins if b0 = b, where b is the hidden bit used in Test. AdvRoR

D,P (t, R), which defines the
semantic security in the real-or-random (RoR) model, is defined as follows:

AdvRoR
RW→RP =

(
(Pr(A → b0 = 1 : b = 1)− (Pr(A → b0 = 1 : b = 0))

)
If the adversary’s advantage to win this game is negligible, the target protocol provides

RoR semantic security, i.e.:
AdvRoR

RW→RP < ε(.)

and ε(.) is some negligible function of the protocol’s parameters [25].
To bound the security level of LLAKEP+, we use the above-mentioned Real or Random

(RoR) model. This model bounds the adversary’s advantage to distinguish between two
worlds, the random world (RW) in which all protocol messages are randomly generated but
respecting the message structure of the target protocol and the real world in which those
messages are generated by entities in the real protocol (RP), i.e., LLAKEP+ in this case. Fol-
lowing the given model in Figure 6, two worlds are considered. The left world is LLAKEP+

in which the messages are generated using secure cryptographic primitives, i.e., one-way
hash function and ECC, and the right world in which a simulator is negotiating with a
random oracle (RO) to adapt the response to the LLAKEP+’s structure. Besides that, the ad-
versary can query directly to a one-way hash function or ECC independently in each world.
However, in the real world, the responses are computed by the queried cryptographic
primitive, while in the random world, RO returns a random value of proper length.

Theorem 1. Let qEST , qH , and qECC, respectively, represent the number of queries to RP/RW
of the form Exe, Send and Test, H(·) and ECC, then considering a polynomial-time adversary’s
advantage (Adv) to distinguish these worlds is bounded as follows:

AdvRoR
RW→RP ≤ Adv(qH+6×qEST)

H + Adv(qECC+4×qEST)
ECC

where Advq
H and Advq

ECC, respectively, denote the adversary’s maximum advantage to distinguish
the employed one-way hash function from a random oracle and solve ECDLP or EC-CDHP.

Mathematics 2023, 11, 176 17 of 24

RP H(.)

ECC

RO Sim

Real World

Random World

Distinguisher

Figure 6. Real or Random (RoR) model; RP: Real Protocol, Sim: Simulator; RO: Random Oracle.

Proof. We consider an EBR that is communicating with BSS to be sharing a session key,
sk, and an adversary, A, aims to compromise the semantic security of RP in the real-or-
random model. Flowing [25,26], we follow a game-based approach to prove the theorem,
and A wins the game if it can distinguish RW from RP with a non-negligible probability.
Through the proof, a series of games are considered, starting with RW and ending with
RP. The adversary’s advantage while transient from the ith game (Gi) to the i + 1th game
(Gi+1) is computed as the event AdvRoR

Gi→Gi+1
on the term of the number of queries. Since

the simulator keeps the structure of the messages identical, it is not possible to trivially
distinguish RW from RP, for example, due to timestamps.

Game G0. It defines the “random world” (RW). Assuming |H(x)| = n1 and |x ·G| = n2,
in this game, the simulator returns the following values on a run of the protocol: TMC

which is selected properly, REBR
$← {0, 1}n2 , AuthEBR

$← {0, 1}n1 , RBSS
$← {0, 1}n2

and AuthBSS
$← {0, 1}n1 and VEBR

$← {0, 1}n1 . On query x to H(·) the simulator re-

turns H(x) $← {0, 1}n1 and on query x to ECC(·) it returns x · G $← {0, 1}n2 . Then
(REBR, TMC, AuthEBR, RBSS, AuthBSS, VEBR) are returned.

Game G1. In this game, we assume that when querying x to H(·) or ECC(·), the be-
havior remains identical to G0. However, on a run of the protocol, the TMC is selected

properly, x1
$← {0, 1}n2 and REBR ← ECC(x1), y1

$← {0, 1}∗ and AuthEBR ← H(y1),

x2
$← {0, 1}n2 and RBSS ← ECC(x1), y2

$← {0, 1}∗ and AuthBSS ← H(y2) and y3
$← {0, 1}∗

and VEBR ← H(y3). Then (REBR, TMC, AuthEBR, RBSS, AuthBSS, VEBR) are returned. Given
that the inputs of H(·) and ECC(·) are selected randomly and they also return random
values on the given input, AdvRoR

G0→G1
= 0.

Game G2. In this game, H(·) is instantiated by the real one-way hash function. How-
ever, the rest of the game remains identical. Therefore, G2 is identical to G1 as long as H(·)
behaves similarly to a random oracle. However, in reality, most of the hash functions are
distinguishable from a random function if there is a collision at their output, for instance.
On the other hand, each call to the protocol includes three calls to H(·). If the adversary’s
advantage to distinguish the instantiated hash function from random oracle after q queries
is denoted by Advq

H , then

AdvRoR
G1→G2

= Advq
H = Adv(qH+3×qEST)

H

where qH and qEST , respectively, denote the total calls to H(·) and a call to the protocol.

Mathematics 2023, 11, 176 18 of 24

Game G3. In this game, ECC(·) is instantiated by the ECC point multiplication. For ex-

ample, x1
$← {0, 1}n2 and REBR ← ECC(x1). However, the rest of the game remains

identical. Therefore, G3 is identical to G2 as long as ECDLP or EC-CDHP remains unsolved.
In addition, each call to the protocol includes two calls to ECC(·). So, if the adversary’s
advantage is to solve ECDLP or EC-CDHP, which is used to distinguish the instantiated
ECC from a random oracle, after q queries, as denoted by Advq

ECC, then

AdvRoR
G2→G3

= Advq
ECC = Adv(qECC+2×qEST)

ECC

where qECC denotes the total calls to ECC(·).
Game G4. In this game, a constant value is selected as HID. Then, on each query,

y1
$← {0, 1}∗ and AuthEBR

$← HID⊕ H(y1). The rest of the game remains identical to G3.
Since the XOR of a constant value to a random value returns a random value, G4 behaves
identically to G3, assuming the hash function behaves randomly. Therefore

AdvRoR
G3→G4

= Adv(qEST)
H

Game G5. In this game KMC
$← {0, 1}n2 and REBR ← KMC · G, y1

$← {0, 1}∗ and
AuthEBR ← H(y1). Clearly, G5 is indistinguishable from G4 if kMC · pkBSS‖TMC is indistin-

guishable from y1
$← {0, 1}∗, which happens as long as ECC remains unaffected due to the

expected random behavior of kMC · pkBSS and KMC · G. Hence

AdvRoR
G4→G5

= Adv(qEST)
ECC

Game G6. In this game, we change the computation on the BSS side compatible

with the real world. More precisely, kBSS
$← {0, 1}n2 and RBSS = kBSS · G and sk =

H(kBSS · REBR‖kBSS · pkEBR‖skBSS · REBR) and AuthBSS = H(RBSS‖TMC‖sk). Following

this modification, G6 is indistinguishable from G5 if y2
$← {0, 1}∗ and RBSS‖TMC‖H(kBSS ·

REBR‖kBSS · pkEBR‖skBSS · REBR) are indistinguishable. Hence

AdvRoR
G5→G6

= Adv(qEST)ECC+Adv(qEST)
H

Game G7. In this game, we make the final computation on the EBR’s side compat-
ible with the real world. More precisely, sk = H(kMC · RBSS‖skEBR · REBR‖kMC · pkBSS),
and VEBR = H(sk‖TMC‖HID). Following this modification, G7 is indistinguishable from

G6 if y3
$← {0, 1}∗ and sk‖TMC‖HID are indistinguishable. Hence

AdvRoR
G6→G7

= Adv(qEST)
H

Game G8. This game is identical to the real world, which is identical to G7 actually,
and consequently:

AdvRoR
G7→G8

= 0

Finally, it is obvious:

AdvRoR
RW→RP ≤ AdvRoR

G0→G1
+ AdvRoR

G1→G2
+ AdvRoR

G2→G3
+ AdvRoR

G3→G4
+

AdvRoR
G4→G5

+ AdvRoR
G5→G6

+ AdvRoR
G6→G7

+ AdvRoR
G7→G8

Mathematics 2023, 11, 176 19 of 24

which gives

AdvRoR
RW→RP ≤ 0 + Adv(qH+3×qEST)

H + Adv(qECC+2×qEST)
ECC + Adv(qEST)

H +

Adv(qEST)
ECC + Adv(qEST)

ECC + Adv(qEST)
H + Adv(qEST)

H + 0

≤ Adv(qH+6×qEST)
H + Adv(qECC+4×qEST)

ECC

which completes the proof.

For example, the adversary’s advantage to find a collision in a hash function after

q-queries is bounded by q2

2n1 and its advantage to ECDLP or EC-CDHP is q2

2n2 . For n1 =

n2 = 256, the adversary’s advantage after qEST queries is at most 36×q2
EST+16×q2

EST
2256 =

52×q2
EST

2256 .
Hence, for these parameters, the provable security bound is almost 122 bits.

5.3. Cost Analysis

Through computational comparison, we designate the cost of ECC point multiplication
and the one-way hash function by Tem and TH , respectively. Following [27], on a system
with 2.20 GHz processor, Pentium dual core E2200, and 2 GB RAM, Tem ∼= 2.226 ms and
TH ∼= 0.0023 ms.

The computational expenditures of LLAKEP+ and some related protocols, such as
LLAKEP, are compared in Table 2 and depicted in Figure 7. The communication overhead
(number of transmitted bits) comparison is also offered in Table 2, where the bit lengths
of a timestamp, an identifier, a random number, a hash value, and an ECC point are,
respectively, 32, 64, 128, 160, and 320 bits. It should be mentioned that we are considering
SHA-256 but limiting its output to 160 bits to avoid the current security issues in SHA-1.

Table 2. Cost comparison of LLAKEP+ and other related protocols.

Protocol Primitives Call Computations (ms) Communication (bit)

[28] 10× TH + 8× Tem 17.831 1440 bits
[29] 5× TH + 9× Tem 20.0455 1632 bits
[30] 11× TH + 9× Tem 20.0593 1600 bits
[31] 8× TH + 9× Tem 20.0524 1344 bits
[9] 12× TH + 6× Tem 13.3836 1187 bits

LLAKEP+ 11× TH + 8× Tem 17.8333 1152 bits

0.00

50.00

100.00

150.00

200.00

250.00

0.00

5.00

10.00

15.00

20.00

25.00

Comparison

time(ms) communication(Byte)

Figure 7. Comparison of LLAKEP+ and related protocols ([AN,2018] [28], [HWK+,2016] [29],
[WXL+,2019] [30], [GKK+,2020] [31], and [ZHY+,2022] [9]) in the term of computation and communi-
cation cost, the cost of kdf considered equal to a call to hash function.

Mathematics 2023, 11, 176 20 of 24

According to the findings of Table 2 and Figure 7, LLAKEP+ has the lowest communi-
cation overhead and is among the fastest in terms of computational cost. Although LLAKEP
is 25% faster than LLAKEP+; however, it does not provide perfect security following the
provided arguments in Section 3. In addition, LLAKEP+ has the lowest communication
cost among those protocols.

6. Conclusions

In this paper, we focused on the security of LLAKEP, an authenticated key agreement
protocol for Energy Internet of Things (EIoT) applications. Our security analysis should
be viewed as a supplement to the designers’ security analysis, with a focus on its prov-
able security. Our findings, however, indicate that this protocol has security weaknesses
such as traceability, a dictionary, stolen smart glasses, known session-specific temporary
information, key compromise impersonation attacks, and a lack of perfect forward secrecy.

Furthermore, we demonstrated that LLAKEP has some efficiency issues. To overcome
the LLAKEP vulnerabilities, we suggested the LLAKEP+ protocol. We employed the same
set of cryptographic primitives in the proposed protocol, namely the one-way hash function
and ECC point multiplication. Our comprehensive security investigation demonstrates its
resistance to different threats such as impersonation, privileged insider assaults, and stolen
smart glass attacks. It also provides forward secrecy and user anonymity and is resistant to
sophisticated attacks such as KCI and KSTI.

Author Contributions: M.H. and R.A.N.: methodology, designing, validation, supervision, review,
and editing; M.S.: conceptualization, methodology, validation, writing—review and editing; L.T. and
R.M.M.: conceptualization, validation, writing—review and editing and funding. All authors have
read and agreed to the published version of the manuscript.

Funding: The Xiamen University Malaysia Research Fund (XMUMRF) (Grant No.: XMUMRF/2022-
C9/IECE/0035).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: For any supplementary material, please contact the corresponding
authors.

Acknowledgments: We appreciate the time and effort that were put forth to review the paper by the
anonymous reviewers. We sincerely thank you for your insightful comments and recommendations,
which allowed us to increase the manuscript’s quality.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
EIoT Energy Internet of Things
IoD Internet of Drones
IIoT Industrial Internet of Things
IoV Internet of Vehicles
MIoT Medical Internet of Things
NVM Non Volatile Memory
IT Information Technology
EBR Electric Bike Riders
BSS Battery Swap Station
MC Microprocessor Chip
ECC Elliptic Curve Cryptography

Mathematics 2023, 11, 176 21 of 24

KSTI Known Session-specific Temporary Information
KCI Key Compromised Impersonation
MitM Man in the Middle Attack

Appendix A. SPDL Description of the Proposed Protocol

Listing A1: SPDL description of the proposed protocol.

1 hashfunction H;
2 hashfunction ECC;
3 const xor : Function;
4 const G;
5 secret HID;
6 usertype Timestamp;
7 protocol @oracle (X){
8 role X {
9 var Y:Agent;

10 const G;
11 recv_!X1(X, X, ECC(X,ECC(Y,G)));
12 send_!X2(X, X, ECC(Y,ECC(X,G)));
13 }
14 }
15

16 protocol @oracleE (X){
17 role X {
18 var Y:Agent;
19 const G;
20 var KMC;
21 fresh KBSS;
22 recv_!X1(X, X, ECC(KMC ,ECC(KBSS ,G)));
23 send_!X2(X, X, ECC(KBSS ,ECC(KMC ,G)));
24 }
25 }
26

27 protocol @oracleZ (X,Y){
28 role X {
29 const G;
30 var KMC;
31 fresh KBSS;
32 send_1(X,Y,ECC(KBSS ,G));
33 recv_2(Y,X,ECC(sk(Y),ECC(KBSS ,G)));
34 send_3(X, Y, ECC(KBSS ,pk(Y)));
35 }
36 role Y{
37 fresh KMC;
38 const G;
39 var KBSS;
40 recv_1(X,Y,ECC(KBSS ,G));
41 send_2(Y,X,ECC(sk(Y),ECC(KBSS ,G)));
42 recv_3(X, Y, ECC(KBSS ,pk(Y)));
43 }
44

45 }
46

47 protocol @oracleP (X){
48 role X {
49 var Y:Agent;
50 const G;
51 var KMC;
52 fresh KBSS;
53 recv_!X1(X, X, ECC(KMC ,pk(X)));
54 send_!X2(X, X, ECC(sk(X),ECC(KMC ,G)));
55 }
56 }
57

58

59 protocol @oracleM (X){
60 role X {

Mathematics 2023, 11, 176 22 of 24

61 var Y:Agent;
62 const G;
63 var KBSS;
64 macro REBR=ECC(KMC ,G);
65 macro RBSS=ECC(KBSS ,G);
66 fresh KMC;
67 recv_!X1(X, X, H(ECC(KBSS ,REBR),ECC(KBSS ,pk(X)),ECC(sk(Y),REBR)));
68 send_!X2(X, X, H(ECC(KMC ,RBSS),ECC(sk(X),RBSS),ECC(KMC ,pk(Y))));
69 }
70 }
71

72 protocol @mad (X){
73 role X {
74 var Y:Agent;
75 const G;
76 recv_!X1(X,X,ECC(sk(Y),pk(X)));
77 send_!X2(X, X, ECC(sk(X), pk(Y)));
78 }
79 }
80

81 protocol proposed (EBR , BSS){
82 role EBR {
83 fresh TMC: Timestamp;
84 fresh KMC;
85 var KBSS;
86 var AuthBSS;
87 secret HID;
88 macro REBR=ECC(KMC ,G);
89 macro AuthEBR=xor(HID ,H(ECC(KMC ,pk(BSS)),TMC));
90 send_1(EBR ,BSS ,REBR ,TMC ,AuthEBR);
91 recv_2(BSS ,EBR ,AuthBSS ,RBSS);
92 macro sk=H(ECC(KMC ,RBSS),ECC(sk(EBR),RBSS),ECC(KMC ,pk(BSS)));
93 match(AuthBSS , H(RBSS ,TMC ,sk));
94 macro VEBR=H(sk,TMC ,HID);
95 send_3(EBR , BSS , VEBR);
96 claim(EBR , Secret , sk);
97 claim(EBR , Secret , HID);
98 claim(EBR , Secret , sk(EBR));
99 claim(EBR , Secret , KMC);

100 claim(EBR , Nisynch);
101 claim(EBR , Alive);
102 claim(EBR , Weakagree);
103 claim(EBR , Niagree);
104 };
105

106 role BSS {
107 var TMC;
108 var KMC;
109 fresh KBSS;
110 secret HID;
111 recv_1(EBR , BSS , REBR ,TMC ,AuthEBR);
112 macro sk2=H(ECC(KBSS ,REBR),ECC(KBSS ,pk(EBR)),ECC(sk(BSS),REBR));
113 macro tt=xor(AuthEBR ,H(ECC(sk(BSS),REBR),TMC));
114 match(HID ,tt);
115 macro RBSS=ECC(KBSS ,G);
116 macro AuthBSS=H(RBSS ,TMC ,sk2);
117 send_2(BSS ,EBR ,AuthBSS ,RBSS);
118 recv_3(EBR ,BSS ,VEBR);
119 match(VEBR ,H(sk2 ,TMC ,HID));
120 claim(BSS , Secret , sk2);
121 claim(BSS , Secret , HID);
122 claim(BSS , Secret , sk(BSS));
123 claim(BSS , Secret , KBSS);
124 claim(BSS , Nisynch);
125 claim(BSS , Alive);
126 claim(BSS , Weakagree);
127 claim(BSS , Niagree);
128 };
129 };

Mathematics 2023, 11, 176 23 of 24

References
1. Bolla, R.; Bruschi, R.; Davoli, F.; Cucchietti, F. Energy Efficiency in the Future Internet: A Survey of Existing Approaches and

Trends in Energy-Aware Fixed Network Infrastructures. IEEE Commun. Surv. Tutor. 2011, 13, 223–244. [CrossRef]
2. Boccadoro, P.; Striccoli, D.; Grieco, L.A. An extensive survey on the Internet of Drones. Ad Hoc Netw. 2021, 122, 102600. [CrossRef]
3. Franco, J.; Aris, A.; Canberk, B.; Uluagac, A.S. A Survey of Honeypots and Honeynets for Internet of Things, Industrial Internet of

Things, and Cyber-Physical Systems. IEEE Commun. Surv. Tutor. 2021, 23, 2351–2383. [CrossRef]
4. Ji, B.; Zhang, X.; Mumtaz, S.; Han, C.; Li, C.; Wen, H.; Wang, D. Survey on the Internet of Vehicles: Network Architectures and

Applications. IEEE Commun. Stand. Mag. 2020, 4, 34–41. [CrossRef]
5. Papaioannou, M.; Karageorgou, M.; Mantas, G.; Sucasas, V.; Essop, I.; Rodriguez, J.; Lymberopoulos, D.K. A Survey on Security

Threats and Countermeasures in Internet of Medical Things (IoMT). Trans. Emerg. Telecommun. Technol. 2022, 33, e4049. [CrossRef]
6. Ma, Z.; Ma, J.; Miao, Y.; Liu, X.; Choo, K.R.; Gao, Y.; Deng, R.H. Verifiable Data Mining Against Malicious Adversaries in Industrial

Internet of Things. IEEE Trans. Ind. Inform. 2022, 18, 953–964. [CrossRef]
7. Gonzalez Granadillo, G.; Zarzosa, S.G.; Diaz, R. Security Information and Event Management (SIEM): Analysis, Trends, and

Usage in Critical Infrastructures. Sensors 2021, 21, 4759. [CrossRef]
8. Zhdanova, M. Security and Trust in Safety Critical Infrastructures. Ph.D. Thesis, Technical University of Darmstadt, Darmstadt,

Germany, 2022.
9. Zhang, X.; Huang, X.; Yin, H.; Huang, J.; Chai, S.; Xing, B.; Wu, X.; Zhao, L. LLAKEP: A Low-Latency Authentication and Key

Exchange Protocol for Energy Internet of Things in the Metaverse Era. Mathematics 2022, 10, 2545. [CrossRef]
10. Lansky, J.; Rahmani, A.M.; Ali, S.; Bagheri, N.; Safkhani, M.; Hassan Ahmed, O.; Hosseinzadeh, M. BCmECC: A Lightweight

Blockchain-Based Authentication and Key Agreement Protocol for Internet of Things. Mathematics 2021, 9, 3241. [CrossRef]
11. Rostampour, S.; Safkhani, M.; Bendavid, Y.; Bagheri, N. ECCbAP: A Secure ECC based Authentication Protocol for IoT edge

devices. Pervasive Mob. Comput. 2020, 67, 101194. [CrossRef]
12. Dolev, D.; i-Chih Yao, A.C. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–207. [CrossRef]
13. Canetti, R.; Krawczyk, H. Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In Advances in

Cryptology—EUROCRYPT 2001, International Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria,
6–10 May 2001; Pfitzmann, B., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2045,
pp. 453–474. [CrossRef]

14. Safkhani, M.; Bagheri, N.; Kumari, S.; Tavakoli, H.; Kumar, S.; Chen, J. RESEAP: An ECC-Based Authentication and Key
Agreement Scheme for IoT Applications. IEEE Access 2020, 8, 200851–200862. [CrossRef]

15. Limbasiya, T.; Das, D. Lightweight Secure Message Broadcasting Protocol for Vehicle-to-Vehicle Communication. IEEE Syst. J.
2020, 14, 520–529. [CrossRef]

16. Hlauschek, C.; Gruber, M.; Fankhauser, F.; Schanes, C. Prying Open Pandora’s Box: KCI Attacks against TLS. In Proceedings of
the 9th USENIX Workshop on Offensive Technologies (WOOT 15), Washington, DC, USA, 10–11 August 2015.

17. Ma, Z.; He, J. Outsider Key Compromise Impersonation Attack on a Multi-factor Authenticated Key Exchange Protocol. In Applied
Cryptography and Network Security Workshops—ACNS 2022 Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI,
SecMT, SiMLA, Rome, Italy, 20–23 June 2022; Zhou, J., Adepu, S., Alcaraz, C., Batina, L., Casalicchio, E., Chattopadhyay, S.,
Jin, C., Lin, J., Losiouk, E., Majumdar, S., et al., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022;
Volume 13285, pp. 320–337. [CrossRef]

18. Hosseinzadeh, M.; Ahmed, O.H.; Ahmed, S.H.; Trinh, C.; Bagheri, N.; Kumari, S.; Lansky, J.; Huynh, B. An Enhanced Authentica-
tion Protocol for RFID Systems. IEEE Access 2020, 8, 126977–126987. [CrossRef]

19. RISE GmbH. KCI Attacks against TLS. Available online: https://kcitls.org/ (accessed on 20 December 2022).
20. Johnson, D.; Menezes, A.; Vanstone, S.A. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Sec. 2001, 1, 36–63.

[CrossRef]
21. Lowe, G. A hierarchy of authentication specifications. In Proceedings of the 10th Computer Security Foundations Workshop,

Rockport, MA, USA, 10–12 June 1997; pp. 31–43.
22. Darbandeh, F.G.; Safkhani, M. SAPWSN: A secure authentication protocol for wireless sensor networks. Comput. Netw. 2022, 220,

109469. [CrossRef]
23. Cremers, C. CISPA. Available online: https://people.cispa.io/cas.cremers/publications/index.html (accessed on 20 December

2022).
24. Abdalla, M.; Fouque, P.; Pointcheval, D. Password-Based Authenticated Key Exchange in the Three-Party Setting. In Public Key

Cryptography—PKC 2005, 8th International Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets, Switzerland,
23–26 January 2005; Vaudenay, S., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3386, pp. 65–84.

25. Bagheri, N.; Kumari, S.; Camara, C.; Peris-Lopez, P. Defending Industry 4.0: An Enhanced Authentication Scheme for IoT Devices.
IEEE Syst. J. 2022, 16, 4501–4512. [CrossRef]

26. Rostampour, S.; Bagheri, N.; Bendavid, Y.; Safkhani, M.; Kumari, S.; Rodrigues, J.J.P.C. An Authentication Protocol for Next
Generation of Constrained IoT Systems. IEEE Internet Things J. 2022, 9, 21493–21504. [CrossRef]

27. Khan, A.A.; Kumar, V.; Ahmad, M.; Rana, S.; Mishra, D. PALK: Password-based anonymous lightweight key agreement
framework for smart grid. Int. J. Electr. Power Energy Syst. 2020, 121, 106121. [CrossRef]

http://doi.org/10.1109/SURV.2011.071410.00073
http://dx.doi.org/10.1016/j.adhoc.2021.102600
http://dx.doi.org/10.1109/COMST.2021.3106669
http://dx.doi.org/10.1109/MCOMSTD.001.1900053
http://dx.doi.org/10.1002/ett.4049
http://dx.doi.org/10.1109/TII.2021.3077005
http://dx.doi.org/10.3390/s21144759
http://dx.doi.org/10.3390/math10142545
http://dx.doi.org/10.3390/math9243241
http://dx.doi.org/10.1016/j.pmcj.2020.101194
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1109/ACCESS.2020.3034447
http://dx.doi.org/10.1109/JSYST.2019.2932807
http://dx.doi.org/10.1007/978-3-031-16815-4_18
http://dx.doi.org/10.1109/ACCESS.2020.3008230
https://kcitls.org/
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1016/j.comnet.2022.109469
https://people.cispa.io/cas.cremers/publications/index.html
http://dx.doi.org/10.1109/JSYST.2021.3131689
http://dx.doi.org/10.1109/JIOT.2022.3184293
http://dx.doi.org/10.1016/j.ijepes.2020.106121

Mathematics 2023, 11, 176 24 of 24

28. Abbasinezhad-Mood, D.; Nikooghadam, M. An Anonymous ECC-Based Self-Certified Key Distribution Scheme for the Smart
Grid. IEEE Trans. Ind. Electron. 2018, 65, 7996–8004. [CrossRef]

29. He, D.; Wang, H.; Khan, M.K.; Wang, L. Lightweight anonymous key distribution scheme for smart grid using elliptic curve
cryptography. IET Commun. 2016, 10, 1795–1802. [CrossRef]

30. Wu, F.; Xu, L.; Li, X.; Kumari, S.; Karuppiah, M.; Obaidat, M.S. A Lightweight and Provably Secure Key Agreement System for a
Smart Grid with Elliptic Curve Cryptography. IEEE Syst. J. 2019, 13, 2830–2838. [CrossRef]

31. Garg, S.; Kaur, K.; Kaddoum, G.; Rodrigues, J.J.P.C.; Guizani, M. Secure and Lightweight Authentication Scheme for Smart
Metering Infrastructure in Smart Grid. IEEE Trans. Ind. Inform. 2020, 16, 3548–3557. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIE.2018.2807383
http://dx.doi.org/10.1049/iet-com.2016.0091
http://dx.doi.org/10.1109/JSYST.2018.2876226
http://dx.doi.org/10.1109/TII.2019.2944880

	Introduction
	Our Contribution
	Paper Organization

	Preliminaries
	Notation
	Elliptic Curve Cryptography
	System Model
	LLAKEP Description
	Initialization
	User Registration
	Authenticated Key Agreement
	Password Change

	On the Security of LLAKEP
	Insider Adversary
	Traceability and Anonymity
	Known Session-Specific Temporary Information Attack
	Impersonation Attack after a Successful KSTI Attack

	Key Compromised Impersonation Attack
	The Lack of Perfect Forward Secrecy
	A Note on the LLAKEP Efficiency

	LLAKEP+ Description
	Initialization
	User Registration
	Authenticated Key Agreement
	Password Change

	Security and Cost Analysis of LLAKEP+
	Informal Security Analysis
	Replay Attack
	Impersonation Attack
	Traceability and Anonymity
	Secret Disclosure Attack
	Permanent De-Synchronization Attack
	Man-in-the-Middle Attack
	Stolen Smart Glass Attack
	Insider Adversary
	Perfect Forward Secrecy
	Known Session-Specific Temporary Information Attack
	Key Compromised Impersonation Attack

	Formal Security Evaluation
	Scyther
	Formal Security Analysis in RoR Model

	Cost Analysis

	Conclusions
	Appendix A
	References

