
Citation: Tamura, Y.; Yamada, S.

Prototype of 3D Reliability

Assessment Tool Based on Deep

Learning for Edge OSS Computing.

Mathematics 2022, 10, 1572.

https://doi.org/10.3390/

math10091572

Academic Editor: Tihomir

Dovramadjiev

Received: 25 February 2022

Accepted: 3 May 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Prototype of 3D Reliability Assessment Tool Based on Deep
Learning for Edge OSS Computing
Yoshinobu Tamura 1,*,† and Shigeru Yamada 2,†

1 Graduate School of Sciences and Technology for Innovation, Yamaguchi University,
Yamaguchi 755-8611, Japan

2 Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; yamada@tottori-u.ac.jp
* Correspondence: tamuray@yamaguchi-u.ac.jp; Tel.: +81-836-85-9408
† These authors contributed equally to this work.

Abstract: We focus on an estimation method based on deep learning in terms of fault correction time
for the operation reliability assessment of open-source software (OSS) under the environment of an
edge computing service. Then, we discuss fault severity levels in order to consider the difficulty of
fault correction. We use a deep feedforward neural network in order to estimate fault correction
times. In particular, we consider the characteristics of fault trends by using three-dimensional graphs.
Therefore, we can increase the recognizability of the proposed method based on deep learning for
large-scale fault data from the standpoint of fault severity levels under edge OSS operation.

Keywords: fault big data; software tool; visualization; fault severity level; fault correction time; deep
learning

MSC: 68T20

1. Introduction

Several researchers have discussed open-source software (OSS) reliability assessment
methods [1]. Many of them are based on software reliability growth models [2–5]. Various
software reliability growth models have been proposed for the reliability assessment of the
system testing phase in software development. Recently, software development style has
caused a paradigm shift, such as in OSS development. In particular, the development style
of OSS is one of the successful examples. On the other hand, there is a quality problem
in OSS development because there is no specific testing phase. In the development and
operation phases of OSS, the bug-tracking system is used in most cases.

Moreover, cloud computing as a software service is supported by many users. At
present, the cloud service is changing to a service based on edge computing. Edge comput-
ing will grow exponentially in the future. In addition, OSS is used in edge computing. For
example, there is OpenStack as a major example of OSS in cloud computing. Recently, the
edge OSS component was embedded in cloud OSS. In this situation, it is very important to
assess operation reliability under edge OSS computing.

Considering software reliability assessment, there are many research papers based on
stochastic models. On the other hand, there are several papers in terms of AHP, fuzzy logic,
and neural networks [6–12].

This paper discusses software fault correction time in the OSS component under the
edge computing service. In particular, this paper analyzes fault correction time based on
the fault severity levels for actual data sets. Then, we make a visualization based on a
three-dimensional graph by using an estimation method based on deep learning. Moreover,
we discuss the estimation results obtained from the three-dimensional graph based on
two kinds of fault severity levels. Furthermore, we develop a prototype of a 3D reliability
assessment tool based on deep learning for the edge OSS computing service. Finally, we

Mathematics 2022, 10, 1572. https://doi.org/10.3390/math10091572 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091572
https://doi.org/10.3390/math10091572
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7665-5765
https://doi.org/10.3390/math10091572
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091572?type=check_update&version=2

Mathematics 2022, 10, 1572 2 of 20

show several numerical illustrations based on the developed prototype of the 3D reliability
assessment tool by using actual fault big data.

The organization of this paper is as follows:
Section 2 proposes an estimation method based on deep learning. Then, two fault

severity levels are assumed in the proposed method considering the operation of edge
OSS computing. Section 3 shows the estimation method based on deep learning. Section 4
shows several numerical illustrations based on the proposed model by using actual data
sets. Section 5 discusses the proposed method.

2. Data Preprocessing for Large-Scale OSS Fault Data
2.1. Related Work

Generally, the number of data is used as the degree of freedom in the statistics. In
the case of big data, it is very difficult to estimate the number of faults by using stochastic
models because the number of data has a huge volume. In past research, the conventional
methods of reliability assessment used the number of software faults only. For example,
there are many software reliability growth models, hazard rate models, stochastic differen-
tial equation models, etc. Then, we focus on all the data sets recorded on the bug-tracking
system. Therefore, we can analyze OSS reliability from the following various standpoints.

1. The software fault is caused as the result of a cause-and-effect relationship. Vari-
ous data sets in terms of the cause-and-effect relationship are recorded on the bug-
tracking system.

2. We can comprehend the cause-and-effect relationship by using the big data on the
bug-tracking system.

3. The typical stochastic models are difficult to use, and the fault big data include many
explanatory variables because of the problem of local minimum in terms of model
parameters.

4. The state of the art beyond the existing work in our method is to be able to use the
fault big data. Moreover, our method is able to make an automatic feature extraction
from the fault big data.

We make a critical discussion for the typical OSS reliability assessment. Many software
reliability assessment models have been proposed by several researchers [2–5]. Most of
them have used fault data only. There is no reliability assessment method based on the
stochastic model by using the large-scale data recorded on the bug-tracking system of OSS.
As a comparison of the proposed model with the other approaches, there are differences in
data types. Therefore, the proposed method can comprehensively judge reliability from the
standpoint of a multifaceted perspective.

Furthermore, considering cloud computing, several research papers have been pub-
lished [13,14]. These research papers have contents in terms of the scalability of hardware
such as cloud storage services and cloud scalability. On the other hand, we focus on edge
computing, software, and reliability. For the background of edge computing, we show the
structure of edge computing in Figure 1. There are several research papers in terms of the
debugging method, system architecture, and stochastic models for edge computing [15–17].
However, there is no method of reliability assessment in the environment of edge OSS
computing.

Mathematics 2022, 10, 1572 3 of 20

Cloud

Edge Computing Layer

Edge Devices

Centralized

Delay Reduction・Continuity

Figure 1. The structure of edge OSS computing.

2.2. OSS Data Set

There are several approaches for software reliability based on neural networks. Tradi-
tionally, comparison research based on software reliability growth models and the method
of neural networks has been proposed in the past [18,19]. Past research papers based on the
neural networks method especially have used fault data only. In most cases, the methods
by machine learning are based on time-series analysis. On the other hand, we use many
types of different data depending on software reliability analysis in the proposed method.
The unique future of our research is to use two kinds of fault levels as the output data sets.

Several researchers have proposed deep learning algorithms. For example, the applica-
tion research based on deep learning for the min-cut theorem is shown in [20]. In addition,
deep learning is used for automatic recognition in the area of sound recognition [21,22].
Moreover, many deep learning algorithms have been proposed in the areas of image recog-
nition [23–25]. In particular, optimized algorithms based on deep learning for each research
area have been developed by many researchers. Many methods based on deep learning
have been applied to many research areas, such as the various above-mentioned research
papers based on deep learning. Then, we focus on the deep learning approach for edge
OSS reliability area. We will be able to apply deep learning as the discrete time model to
the reliability of the edge OSS operation by using the fault correction time.

In this paper, we apply the deep feedforward neural network to learn the large-scale
fault data on bug-tracking systems of OSS projects. Then, we apply the following amount
of information to estimate the weight parameters for fault correction time. All data on each
explanatory variable are converted from the character data to numerical values by using
the count encoding and frequency encoding.

Opened: To is converted to the difference from the previous day, and this unit is day;
Changed: Tc is converted to the difference from the previous day, and this unit is day;
Product: Fp is converted to the values of the occurrence ratio for the product name by

using the frequency encoding;
Component: Fc is converted to the values of the occurrence ratio for the component name

by using the frequency encoding;
Version: Fv is converted to the frequency values of appearance for the same version

number by using the frequency encoding;

Mathematics 2022, 10, 1572 4 of 20

Reporter: Fr is converted to the frequency values of appearance for the same nickname
of reporter by using the frequency encoding;

Assignee: Fa is converted to the frequency values of appearance for the same nickname
of assignee by using the frequency encoding;

Severity: Fl is converted to the values based on the same numbers of count for fault
level by the frequency encoding;

Status: Fs is converted to the occurrence ratio of the status name by using the fre-
quency encoding;

Resolution: Fw, as with what happened to the bugs, is converted to the occurrence ratio
of the status name by using the frequency encoding;

Hardware: Fh is converted to numerical values in terms of hardware by the frequency
encoding;

OS: Fo is also converted to numerical values in terms of the operating system by
the frequency encoding;

Summary: Cs is converted to the number of words by using the count encoding;

where T∗ is the unit of time, F∗ is the values converted by using the frequency encoding,
and C∗ is the values converted by using the count encoding.

2.3. Data Preprocessing

We convert all the above items from the character data to numerical values by using
the frequency and count encodings. In particular, we use the correction time of the detected
faults as the output data for the learning data. The correction time of software faults will be
useful to the measure of software stability. Then, we define the instantaneous correction
time of software faults as follows:

Ok = Tc
k − To

k . (1)

where Ok is the k-th instantaneous correction time of software faults. In addition, Tc
k is the

k-th changed date of the OSS fault. Similarly, To
k is the k-th opened date of the OSS fault.

We define Ok as the explanatory variable of deep learning, i.e., the output value for the
learning data. Ok means the output values as the instantaneous correction times of the
detected faults.

As shown in Figure 2, the characteristics of edge OSS computing are the fault levels.
“High” and “Medium” class faults are the remarkable numbers. Therefore, we focus on the
fault detection phenomenon in terms of severity levels. Then, the “Medium” class means
the fault of medium level, i.e., this is categorized as the low level. The fault classified as
“High” is difficult to remove from the source code. Moreover, the “High” class faults have
a large impact on the OSS system. Therefore, the high-level fault greatly depends on the
software reliability. Considering the “High” fault, we define the following:

Oh
k ⇐ Fhl

k , (2)

subject to Fhl
k ⊆ Fl

k.

where Fhl
k means the k-th high-level fault. Similarly, focusing on the “Medium”fault, we

consider that Om
k is the k-th instantaneous correction time of the detected faults in the case

of the medium level. Then, we define the following:

Om
k ⇐ Fml

k , (3)

subject to Fml
k ⊆ Fl

k.

Similarly, Fml
k means the k-th “Medium” fault.

Mathematics 2022, 10, 1572 5 of 20

High Low Medium Unspecified urgent
Severity Levels

0

1000

2000

3000

4000

5000

6000

Nu
m
be
r o

f F
au
lts

Figure 2. The fault severity levels for edge OSS.

3. Development of Prototype Tool

Our research group has proposed several reliability assessment tools. In particular, we
have developed a three-dimensional tool for OSS reliability assessment. It is useful to easily
understand the trend of reliability from various points of view by using three-dimensional
modeling. We show the cumulative number of detected faults M∗(t) at time t of our
three-dimensional model proposed in the past as follows [26]:

M1(t) = R1(t)

[
1− 1 + c

1 + c · exp(−bt)
· exp

{
− bt− σ1ω1(t)

}]
, (4)

M2(t) = R2(t)

[
1− 1 + c

1 + c · exp(−bt)
· exp

{
− bt− σ2ω2(t)

}]
, (5)

M3(t) = R3(t)

[
1− 1 + c

1 + c · exp(−bt)
· exp

{
− bt− σ3ω3(t)

}]
, (6)

where Ri(t) (i = 1, 2, 3) is the amount of changes in terms of specification according to each
version of OSS. In addition, Ri(t) (i = 1, 2, 3) is defined as αie−βit, where αi (i = 1, 2, 3)
is the number of latent faults in the OSS used in cloud computing and βi (i = 1, 2, 3) is
the changing rate in terms of specification according to each version of OSS. Then, we
assume that the fault-prone specification for each version of OSS grows exponentially
according to time t. On the other hand, the OSS will show a regression trend of reliability if
βi (i = 1, 2, 3) is a negative value. Conversely, the OSS will show a reliability growth trend
if βi (i = 1, 2, 3) is a positive value. Moreover, σ1, σ2, and σ3 are noisy factors in terms of
the magnitude of noisy fluctuation. ωi(t) is the i-th Wiener process. Furthermore, b is the
detection rate per fault and c is defined as the parameter of fault factor.

In addition, the integrated equation is as follows:

M(t) = R(t)

[
1− 1 + c

1 + c · exp(−bt)
· exp

{
− bt− σ1ω1(t)− σ2ω2(t)− σ3ω3(t)

}]
. (7)

In the proposed model, by considering the independence of each noise, we can assume
that the parameter σ1 means the failure-occurrence phenomenon due to inherent faults.
The parameter σ2 means the network changing rate per unit time resulting from OSS cloud
computing. The parameter σ3 means the renewal rate per unit time resulting from big data.

Considering our model in Equation (7), the effort and fault data sets are only used
as reliability data. On the other hand, various data sets are recorded in the bug-tracking

Mathematics 2022, 10, 1572 6 of 20

system. Moreover, the amount of data in the bug-tracking system is huge. By using all the
data recorded on the bug-tracking system, we take advantage of the amount of information
in terms of many fault factors.

In this paper, we will be able to understand edge OSS reliability by using three-
dimensional modeling from the standpoint of fault levels. The procedure of deep learning
in this paper is shown in Figure 3. Moreover, we show the steps of the proposed prototype
as follows:

1. The user of the prototype starts from the main menu by running our application. In
addition, the user completes data preprocessing.

2. The user selects the calculation button. Then, the application window calls the Python
program. In addition, the Python program imports the tensorflow package. Moreover,
the proposed deep learning algorithm is executed by using Figure 3.

3. After the completion of the learning phase, several reliability assessment measures are
illustrated by selecting the graph button.

We use the data preprocessing method proposed in Section 5. For example, all data
sets have been converted from Table 1 to Table 2. As reference information, Tables 1 and 2
will be helpful for the readers to understand the proposed method. However, the factor
of “Summary” is eliminated from Table 1 because the words are very long. By using the
data sets such as those in Tables 1 and 2, we apply the data in the above-mentioned step 1
to deep learning. From Tables 1 and 2, the conventional methods of reliability assessment
make use of all data sets because the conventional reliability assessment methods use only
the number of fault data.

Considering the structure of the software tool, there are several visualization tools,
such as the class diagram, object diagram, component diagram, activity diagram, use case
diagram, and sequence diagram, in terms of UML. Generally, in many cases, UML has been
used in the case where software is developed from scratch by a software manufacturer.
However, our tool is implemented by using the package-based development style. This
is the characteristic of our research. In the case of package-based development, we can
show the structure of our prototype by using the package diagram in UML. The reasons
are as follows:

$ Different programming languages (HTML, CSS, JavaScript, and Python).
$ Dynamic links based on Node.js and the file system of OS, such as macOS, Windows,

Linux, etc.
$ There is a difference in the scale and language of the packages.

From the above-mentioned characteristics, we show the structure of our tool by
using the package diagram. Then, Figure 4 shows the package diagram of the prototype
developed by using UML. Furthermore, we show the structure of data preprocessing in
Figure 5.

Our tool is developed as a prototype. We believe that the task of researchers only
provides to the point of a prototype. In addition, researchers should propose the application
framework of the proposed method. Therefore, we show the framework based on the
proposed method in this paper. The completed tool will be able to be easily developed
by software developers and business people. Our prototype will be helpful for users and
developers to assess reliability in the operation of the edge OSS service. In particular, several
activation functions and dropout values are set always the same in this paper. The reason
for this is that there are many OSS projects, i.e., many hyper-parameters and functions will
be changed according to various situations under OSS computing. Therefore, we have
set the activation function and dropout value always as the same value, considering the
standardization for OSS projects.

Mathematics 2022, 10, 1572 7 of 20

Dense: 100,
Activation=‘relu’
Input Shape: 13

Output: 200

Dense: 200,
Activation=‘relu’
Input Shape: 200

Output: 300

Dense: 300,
Activation=‘relu’
Input Shape: 300

Output: 200

Dense: 200,
Activation=‘relu’
Input Shape: 200

Output: 100

Dropout: 0.3

Dropout: 0.3

Dropout: 0.3

Dense: 200,
Activation=‘relu’
Input Shape: 200

Output: 1

Dropout: 0.3

Dense: 100,
Activation=‘relu’
Input Shape: 13

Output: 200

Dense: 200,
Activation=‘relu’
Input Shape: 200

Output: 300

Dense: 300,
Activation=‘relu’
Input Shape: 300

Output: 200

Dense: 200,
Activation=‘relu’
Input Shape: 200

Output: 100

Dropout: 0.3

Dropout: 0.3

Dropout: 0.3

Dense: 200,
Activation=‘relu’
Input Shape: 200

Output: 1

Dropout: 0.3

In case of “High” fault Level In case of “Medium” fault Level

Figure 3. The workflow of estimation for each fault severity level by using the procedures of our
deep learning method.

Mathematics 2022, 10, 1572 8 of 20

Python Program Layer

pandas sklearn numpy matplotlib seaborn tensorflow

original
source

<<use>> <<use>> <<use>> <<use>> <<use>> <<use>>

<<import>>

Application Window

Readme Calculation

Main Menu Layer

Error Scatter Plot Cumulative Fault
Correction Time

Graph Menu Layer

<<access>>

<<merge>> <<merge>>

Graph Package Layer

matplotlib plotly

Data Layer

data access csv file
<<access>>

<<use>>

<<use>>

<<access>>

Figure 4. The package diagram of the prototype developed by using UML.

Large Scale Fault Data

——- Factors ——-
Opened
Changed
Product

Component
Version
Reporter
Assignee
Severity
Status

Resolution
Hardware

OS
Summary

Explanatory Variable

——- Input Factors ——-
Opened
Changed
Product

Component
Version
Reporter
Assignee

Status
Resolution
Hardware

OS
Summary

Method of Encoding

——- Frequency Encoding ——-
Opened
Changed
Product

Component
Version
Reporter
Assignee

Status
Resolution
Hardware

OS
——- Count Encoding ——-

Summary

Objective Variable

——- Fault Type Division ——-
Fault Level

Objective Variable

——- High Level ——-
Fault Correction Time

——- Medium Level ——-
Fault Correction Time

I/O deep Learning

Figure 5. The structure of data preprocessing.

Mathematics 2022, 10, 1572 9 of 20

Table 1. A part of raw data logged on the bug-tracking system.

Bug ID Opened Changed Reporter Product Component Status Resolution Hardware OS Severity Version

985361 2013/7/17 10:56 2014/1/9 19:40 Jaroslav Henner Red Hat OpenStack openstack-packstack CLOSED ERRATA x86_64 Linux medium 3
1146938 2014/9/26 11:50 2016/4/26 13:26 Sunil Thaha Red Hat OpenStack openstack-glance CLOSED CURRENTRELEASE Unspecified All unspecified 5.0 (RHEL 7)
1155592 2014/10/22 12:52 2016/4/26 13:50 Marian Krcmarik Red Hat OpenStack openstack-cinder CLOSED ERRATA Unspecified Unspecified unspecified 5.0 (RHEL 7)
1157619 2014/10/27 11:31 2016/4/26 13:35 Marko Myllynen Red Hat OpenStack openstack-cinder CLOSED CURRENTRELEASE Unspecified Unspecified unspecified 5.0 (RHEL 7)
1163421 2014/11/12 16:42 2015/9/10 11:45 Lon Hohberger Red Hat OpenStack openstack-trove CLOSED ERRATA Unspecified Unspecified unspecified 5.0 (RHEL 7)
1169145 2014/11/30 17:56 2016/4/27 2:17 bkopilov Red Hat OpenStack openstack-glance CLOSED CURRENTRELEASE x86_64 Linux high 6.0 (Juno)
1170343 2014/12/3 21:01 2016/4/26 22:06 Lon Hohberger Red Hat OpenStack openstack-glance CLOSED ERRATA Unspecified Unspecified unspecified 6.0 (Juno)
1174760 2014/12/16 12:37 2016/4/26 22:58 Dafna Ron Red Hat OpenStack openstack-cinder CLOSED DUPLICATE x86_64 Linux urgent 6.0 (Juno)
1184349 2015/1/21 7:35 2016/4/26 18:02 bkopilov Red Hat OpenStack openstack-cinder CLOSED NOTABUG x86_64 Linux high 6.0 (Juno)
1186395 2015/1/27 15:36 2016/4/26 15:16 Red Hat OpenStack openstack-cinder CLOSED WONTFIX Unspecified Unspecified unspecified 5.0 (RHEL 7)
1209584 2015/4/7 17:13 2015/5/12 4:04 Luigi Toscano Red Hat OpenStack openstack-trove CLOSED ERRATA Unspecified Unspecified unspecified 6.0 (Juno)
1254711 2015/8/18 17:29 2016/4/26 17:48 Lon Hohberger Red Hat OpenStack openstack-glance CLOSED ERRATA Unspecified Unspecified unspecified 5.0 (RHEL 7)
1254718 2015/8/18 17:31 2016/4/26 14:59 Lon Hohberger Red Hat OpenStack openstack-glance CLOSED ERRATA Unspecified Unspecified unspecified 5.0 (RHEL 6)
1304111 2016/2/2 22:17 2016/12/14 15:22 Dustin Schoenbrun Red Hat OpenStack openstack-manila-ui CLOSED ERRATA Unspecified Unspecified high 8.0 (Liberty)
1314821 2016/3/4 15:45 2016/4/26 15:10 Flavio Percoco Red Hat OpenStack openstack-glance CLOSED ERRATA Unspecified Unspecified unspecified 8.0 (Liberty)
1333884 2016/5/6 14:37 2016/8/11 12:19 Harry Rybacki Red Hat OpenStack openstack-tempest CLOSED ERRATA Unspecified Unspecified unspecified 9.0 (Mitaka)
1346749 2016/6/15 9:54 2016/8/11 12:25 Anshul Behl Red Hat OpenStack openstack-ironic CLOSED ERRATA Unspecified Unspecified unspecified 9.0 (Mitaka)
1441796 2017/4/12 18:12 2017/4/12 18:13 Red Hat OpenStack openstack-ironic-inspector CLOSED NOTABUG Unspecified Unspecified unspecified 7.0 (Kilo)
1455490 2017/5/25 10:24 2020/7/16 9:39 Eduard Barrera Red Hat OpenStack openstack-tripleo CLOSED DUPLICATE Unspecified Unspecified unspecified 10.0 (Newton)
1544713 2018/2/13 11:14 2019/9/9 16:48 Punit Kundal Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified medium 10.0 (Newton)
1545722 2018/2/15 14:26 2021/3/11 17:11 David Vallee Delisle Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified unspecified 10.0 (Newton)
1545809 2018/2/15 15:38 2021/3/11 17:12 KOSAL RAJ I Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified high 10.0 (Newton)
1547969 2018/2/22 12:38 2019/9/9 13:10 Madhur Gupta Red Hat OpenStack openstack-nova CLOSED DUPLICATE x86_64 Linux medium 10.0 (Newton)
1551911 2018/3/6 7:09 2019/9/9 15:56 Petersingh Anburaj Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified high 11.0 (Ocata)
1552761 2018/3/7 16:47 2019/9/9 13:22 Stephen Gordon Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 10.0 (Newton)
1554341 2018/3/12 13:42 2019/9/9 14:42 Carlos Camacho Red Hat OpenStack openstack-nova CLOSED WONTFIX All All high 10.0 (Newton)
1557383 2018/3/16 14:02 2019/9/9 15:05 David Vallee Delisle Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified low 12.0 (Pike)
1561008 2018/3/27 12:37 2019/9/9 17:08 Maxim Babushkin Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified urgent 13.0 (Queens)
1561636 2018/3/28 15:52 2019/9/9 16:19 Alexander Chuzhoy Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 13.0 (Queens)
1562154 2018/3/29 16:06 2019/9/9 16:17 Dariusz Wojewdzki Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified high 10.0 (Newton)
1563646 2018/4/4 11:45 2019/9/9 14:37 Gurenko Alex Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified medium 13.0 (Queens)
1565532 2018/4/10 8:56 2019/9/9 15:43 Arie Bregman Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified high 12.0 (Pike)
1565533 2018/4/10 8:58 2019/9/9 15:30 Arie Bregman Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified high 11.0 (Ocata)
1567601 2018/4/15 9:54 2019/9/9 13:31 Noam Manos Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified unspecified 13.0 (Queens)
1568262 2018/4/17 4:51 2019/10/16 0:49 Pradipta Kumar Sahoo Red Hat OpenStack openstack-nova CLOSED WONTFIX x86_64 Linux medium 12.0 (Pike)
1569107 2018/4/18 15:43 2020/12/21 19:40 David Hill Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 10.0 (Newton)
1569238 2018/4/18 20:53 2020/12/21 19:33 Siggy Sigwald Red Hat OpenStack openstack-nova CLOSED NOTABUG x86_64 Linux high 10.0 (Newton)
1571499 2018/4/25 2:20 2019/9/9 13:50 Sai Sindhur Malleni Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified unspecified 13.0 (Queens)
1572547 2018/4/27 9:58 2020/12/21 19:38 Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Linux high 10.0 (Newton)
1572833 2018/4/28 2:16 2019/9/9 15:57 Lars Kellogg-Stedman Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 12.0 (Pike)
1573269 2018/4/30 17:20 2019/9/9 13:54 Lars Kellogg-Stedman Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified unspecified 12.0 (Pike)
1574465 2018/5/3 11:30 2020/12/21 19:36 Red Hat OpenStack openstack-nova CLOSED NOTABUG x86_64 Linux urgent 13.0 (Queens)
1575753 2018/5/7 19:47 2020/12/21 19:36 bigswitch Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 10.0 (Newton)
1579136 2018/5/17 4:06 2020/12/21 19:36 Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified high 13.0 (Queens)
1582845 2018/5/27 11:33 2019/9/9 13:22 Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 13.0 (Queens)
1584118 2018/5/30 10:33 2020/12/21 19:36 Andre Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified unspecified unspecified
1584268 2018/5/30 15:21 2019/9/9 16:21 Dan Smith Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified unspecified 15.0 (Stein)
1586267 2018/6/5 20:19 2019/9/9 15:29 Tim Quinlan Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA x86_64 Linux low 10.0 (Newton)
1591091 2018/6/14 4:18 2019/9/9 14:17 Anil Dhingra Red Hat OpenStack openstack-nova CLOSED WONTFIX All Linux medium 10.0 (Newton)
1592123 2018/6/17 13:43 2019/9/9 14:00 Arkady Shtempler Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified unspecified 13.0 (Queens)

Mathematics 2022, 10, 1572 10 of 20

Table 1. Cont.

Bug ID Opened Changed Reporter Product Component Status Resolution Hardware OS Severity Version

1593751 2018/6/21 14:07 2020/12/21 19:45 Artom Lifshitz Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 13.0 (Queens)
1594454 2018/6/23 5:25 2019/9/9 14:26 Cody Swanson Red Hat OpenStack openstack-nova CLOSED NOTABUG x86_64 Linux medium 10.0 (Newton)
1596706 2018/6/29 13:52 2019/9/9 13:26 Mikel Olasagasti Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified unspecified 10.0 (Newton)
1598624 2018/7/6 2:56 2019/9/9 17:05 Meiyan Zheng Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified unspecified 10.0 (Newton)
1600641 2018/7/12 16:37 2019/9/9 16:16 Rajini Karthik Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified urgent 13.0 (Queens)
1601123 2018/7/14 0:18 2019/9/9 14:09 Stan Toporek Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified urgent 7.0 (Kilo)
1607467 2018/7/23 15:31 2019/9/9 16:50 Masaki Furuta (RH) Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified unspecified 12.0 (Pike)
1608487 2018/7/25 15:48 2019/9/9 13:41 David Gurtner Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified unspecified 13.0 (Queens)
1608531 2018/7/25 17:57 2019/9/9 15:52 Jeya ganesh babu J Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Linux high 13.0 (Queens)
1615736 2018/8/14 7:03 2019/9/9 15:28 Gyanendra Kumar Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified All high 13.0 (Queens)
1616398 2018/8/15 19:30 2019/9/9 15:28 Andreas Karis Red Hat OpenStack openstack-nova CLOSED CANTFIX Unspecified Unspecified unspecified 10.0 (Newton)
1620195 2018/8/22 16:15 2019/9/9 15:33 Federico Iezzi Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified unspecified 13.0 (Queens)
1622950 2018/8/28 8:48 2019/11/20 14:19 Anil Dhingra Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified high 10.0 (Newton)
1624262 2018/8/31 6:50 2019/9/9 13:09 Yurii Prokulevych Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 8.0 (Liberty)
1624266 2018/8/31 7:02 2020/12/21 19:33 Yurii Prokulevych Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified unspecified 8.0 (Liberty)
1624521 2018/8/31 21:51 2019/9/9 13:06 Archit Modi Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified unspecified 13.0 (Queens)
1625319 2018/9/4 16:06 2019/9/9 14:00 Andreas Karis Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified unspecified 12.0 (Pike)
1632028 2018/9/23 13:17 2019/9/9 16:17 David Hill Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA x86_64 All low 10.0 (Newton)
1633804 2018/9/27 19:04 2019/9/9 15:38 Danylo Kholodov Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified medium 14.0 (Rocky)
1635568 2018/10/3 9:29 2019/9/9 14:10 Vadim Khitrin Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified urgent 13.0 (Queens)
1635666 2018/10/3 13:03 2019/9/9 14:33 Archit Modi Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified unspecified 11.0 (Ocata)
1638095 2018/10/10 16:26 2019/9/9 13:18 Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 14.0 (Rocky)
1638368 2018/10/11 12:03 2019/9/9 16:08 Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified urgent 10.0 (Newton)
1638923 2018/10/12 20:15 2020/12/21 19:33 Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified high 13.0 (Queens)
1639334 2018/10/15 13:43 2019/9/9 13:30 Sasha Smolyak Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 14.0 (Rocky)
1639423 2018/10/15 17:02 2019/9/9 13:17 Sai Sindhur Malleni Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 13.0 (Queens)
1641597 2018/10/22 10:00 2019/9/9 14:25 Mike Abrams Red Hat OpenStack openstack-nova CLOSED NOTABUG x86_64 Linux unspecified 14.0 (Rocky)
1641610 2018/10/22 10:50 2019/9/9 15:53 Mike Abrams Red Hat OpenStack openstack-nova CLOSED DUPLICATE x86_64 Linux unspecified 14.0 (Rocky)
1642047 2018/10/23 13:17 2020/6/5 4:13 Eduard Barrera Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 12.0 (Pike)
1642070 2018/10/23 14:11 2020/12/21 19:38 Noam Manos Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified high 13.0 (Queens)
1643147 2018/10/25 15:17 2019/9/9 15:21 Raoul Scarazzini Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified unspecified 14.0 (Rocky)
1643419 2018/10/26 8:20 2019/12/3 20:16 Alex Stupnikov Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified high 13.0 (Queens)
1643420 2018/10/26 8:22 2019/9/9 14:54 Alex Stupnikov Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified high 12.0 (Pike)
1643784 2018/10/28 17:26 2019/9/9 15:07 Alex Stupnikov Red Hat OpenStack openstack-nova CLOSED NOTABUG x86_64 Linux medium 10.0 (Newton)
1644549 2018/10/31 6:25 2020/12/21 19:36 Prasad Mukhedkar Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA x86_64 Linux high 12.0 (Pike)
1646447 2018/11/5 14:58 2019/9/9 13:10 Archit Modi Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 14.0 (Rocky)
1646457 2018/11/5 15:08 2019/9/9 13:11 Archit Modi Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 14.0 (Rocky)
1649937 2018/11/14 20:58 2020/12/21 19:35 Alexander Chuzhoy Red Hat OpenStack openstack-nova CLOSED WORKSFORME Unspecified Unspecified unspecified 14.0 (Rocky)
1650192 2018/11/15 14:56 2019/9/9 15:49 Lars Kellogg-Stedman Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 13.0 (Queens)
1652197 2018/11/21 16:33 2019/9/9 13:44 Vadim Khitrin Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 14.0 (Rocky)
1654288 2018/11/28 12:06 2018/12/13 12:38 Red Hat OpenStack openstack-tripleo-common CLOSED NOTABUG Unspecified Unspecified high 14.0 (Rocky)
1655476 2018/12/3 9:19 2019/9/9 15:48 Eduard Barrera Red Hat OpenStack openstack-nova CLOSED WONTFIX Unspecified Unspecified unspecified 15.0 (Stein)
1655480 2018/12/3 9:32 2019/9/9 13:18 Yurii Prokulevych Red Hat OpenStack openstack-nova CLOSED DUPLICATE Unspecified Unspecified unspecified 14.0 (Rocky)
1655510 2018/12/3 10:40 2019/9/9 16:54 Eduard Barrera Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA Unspecified Unspecified unspecified 13.0 (Queens)
1655989 2018/12/4 11:39 2019/9/9 13:51 Red Hat OpenStack openstack-nova CLOSED INSUFFICIENT_DATA x86_64 Linux medium 10.0 (Newton)
1657391 2018/12/7 21:18 2019/9/9 17:07 Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified unspecified 14.0 (Rocky)
1658105 2018/12/11 9:28 2019/9/9 13:22 Arkady Shtempler Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Linux medium 14.0 (Rocky)
1658151 2018/12/11 11:55 2020/12/21 19:38 Noam Manos Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified urgent 14.0 (Rocky)
1659539 2018/12/14 16:02 2019/9/9 13:11 Krish Raghuram Red Hat OpenStack openstack-nova CLOSED DEFERRED x86_64 Linux high 16.0 (Train)
1661190 2018/12/20 10:50 2019/9/9 13:59 Noam Manos Red Hat OpenStack openstack-nova CLOSED NOTABUG Unspecified Unspecified medium 14.0 (Rocky)

Mathematics 2022, 10, 1572 11 of 20

Table 2. A part of the numeric values converted from the raw data.

Bug ID Opened Changed Reporter Product Component Status Resolution Hardware OS Severity Version Summary

985361 0.005716067 1 0.0463 1 0.4148 0.1595 0.2304 0.1164 0.0204 60
1146938 436.0377315 837.7402662 0.000103928 1 0.0249 1 0.0892 0.7671 0.0292 0.2721 0.0567 53
1155592 26.04289352 0.016435185 0.001974641 1 0.0806 1 0.4148 0.7671 0.7401 0.2721 0.0567 65
1157619 4.943796296 0 0.001870713 1 0.0806 1 0.0892 0.7671 0.7401 0.2721 0.0567 47
1163421 16.21612269 0 0.014446061 1 0.0024 1 0.4148 0.7671 0.7401 0.2721 0.0567 50
1169145 18.05128472 229.605544 0.006027853 1 0.0249 1 0.0892 0.1595 0.2304 0.3469 0.0469 55
1170343 3.128715278 0 0.014446061 1 0.0249 1 0.4148 0.7671 0.7401 0.2721 0.0469 35
1174760 12.64994213 0.03587963 0.010600707 1 0.0806 1 0.134 0.1595 0.2304 0.2311 0.0469 130
1184349 35.78974537 0 0.006027853 1 0.0806 1 0.1728 0.1595 0.2304 0.3469 0.0469 68
1186395 6.334305556 0 0 1 0.0806 1 0.0752 0.7671 0.7401 0.2721 0.0567 96
1209584 70.06747685 0 0.003325712 1 0.0024 1 0.4148 0.7671 0.7401 0.2721 0.0469 78
1254711 133.0113194 350.5725579 0.014446061 1 0.0249 1 0.4148 0.7671 0.7401 0.2721 0.0567 35
1254718 0.001238426 0 0.014446061 1 0.0249 1 0.4148 0.7671 0.7401 0.2721 0.0174 35
1304111 168.1981829 232.0158218 0.001662856 1 0.0009 1 0.4148 0.7671 0.7401 0.3469 0.0685 63
1314821 30.72837963 0 0.001870713 1 0.0249 1 0.4148 0.7671 0.7401 0.2721 0.0685 32
1333884 62.9521412 106.8807755 0.002702141 1 0.0097 1 0.4148 0.7671 0.7401 0.2721 0.0399 107
1346749 39.80396991 0.00443287 0.000831428 1 0.0263 1 0.4148 0.7671 0.7401 0.2721 0.0399 68
1441796 301.3458333 244.2415972 0 1 0.0062 1 0.1728 0.7671 0.7401 0.2721 0.0824 8
1455490 42.67511574 1190.643229 0.012783205 1 0.0397 1 0.134 0.7671 0.7401 0.2721 0.1183 101
1544713 264.0345718 0 0.001870713 1 0.1365 1 0.0409 0.7671 0.7401 0.1164 0.1183 75
1545722 2.132893519 549.0164583 0.003741426 1 0.1365 1 0.0752 0.7671 0.7401 0.2721 0.1183 110
1545809 0.05056713 6.94444E-05 0.002286427 1 0.1365 1 0.0409 0.7671 0.7401 0.3469 0.1183 41
1547969 6.874780093 0 0.000727499 1 0.1365 1 0.134 0.1595 0.2304 0.1164 0.1183 59
1551911 11.77181713 0.114930556 0.000207857 1 0.1365 1 0.0752 0.7671 0.7401 0.3469 0.0419 37
1552761 1.401342593 0 0.007482852 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1183 38
1554341 4.870891204 0.055185185 0.001039285 1 0.1365 1 0.0752 0.0724 0.0292 0.3469 0.1183 31
1557383 4.014224537 0.016006944 0.003741426 1 0.1365 1 0.0409 0.7671 0.7401 0.0335 0.0611 50
1561008 10.94109954 0.085821759 0.00207857 1 0.1365 1 0.1728 0.7671 0.7401 0.2311 0.1391 59
1561636 1.135023148 0 0.019746414 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1391 126
1562154 1.010023148 0 0.000727499 1 0.1365 1 0.1728 0.7671 0.7401 0.3469 0.1183 28
1563646 5.818923611 0 0.003013926 1 0.1365 1 0.134 0.7671 0.7401 0.1164 0.1391 55
1565532 5.882407407 0.045810185 0.008626065 1 0.1365 1 0.134 0.7671 0.7401 0.3469 0.0611 189
1565533 0.001759259 0 0.008626065 1 0.1365 1 0.134 0.7671 0.7401 0.3469 0.0419 189
1567601 5.038449074 0 0.001558927 1 0.1365 1 0.0409 0.7671 0.7401 0.2721 0.1391 56
1568262 1.789571759 36.47054398 0.002390355 1 0.1365 1 0.0752 0.1595 0.2304 0.1164 0.0611 39
1569107 1.453032407 432.7852546 0.014030347 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1183 126
1569238 0.214930556 0 0.004261068 1 0.1365 1 0.1728 0.1595 0.2304 0.3469 0.1183 70
1571499 6.22755787 0 0.003845354 1 0.1365 1 0.0409 0.7671 0.7401 0.2721 0.1391 42
1572547 2.317615741 469.2414699 0 1 0.1365 1 0.0752 0.7671 0.2304 0.3469 0.1183 54
1572833 0.679189815 0 0.004884639 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.0611 65
1573269 2.62775463 0 0.004884639 1 0.1365 1 0.134 0.7671 0.7401 0.2721 0.0611 77
1574465 2.757268519 469.2371875 0 1 0.1365 1 0.1728 0.1595 0.2304 0.2311 0.1391 35
1575753 4.344849537 0.000428241 0.003221783 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1183 80
1579136 9.346736111 0 0 1 0.1365 1 0.1728 0.7671 0.7401 0.3469 0.1391 55
1582845 10.31016204 0 0 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1391 28
1584118 2.958611111 469.2595023 0.001662856 1 0.1365 1 0.0752 0.7671 0.7401 0.2721 0.0471 44
1584268 0.200104167 0 0.000727499 1 0.1365 1 0.134 0.7671 0.7401 0.2721 0.0417 64
1586267 6.206446759 0 0.000519642 1 0.1365 1 0.0409 0.1595 0.2304 0.0335 0.1183 52
1591091 8.333009259 0 0.00135107 1 0.1365 1 0.0752 0.0724 0.2304 0.1164 0.1183 81
1592123 3.392222222 0 0.000935356 1 0.1365 1 0.0752 0.7671 0.7401 0.2721 0.1391 73

Mathematics 2022, 10, 1572 12 of 20

Table 2. Cont.

Bug ID Opened Changed Reporter Product Component Status Resolution Hardware OS Severity Version Summary

1593751 4.016793981 469.2395602 0.001974641 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1391 23
1594454 1.637523148 0 0.000415714 1 0.1365 1 0.1728 0.1595 0.2304 0.1164 0.1183 56
1596706 6.351828704 0 0.000623571 1 0.1365 1 0.0752 0.7671 0.7401 0.2721 0.1183 81
1598624 6.544340278 0.151666667 0.001662856 1 0.1365 1 0.0752 0.7671 0.7401 0.2721 0.1183 124
1600641 6.570659722 0 0.003741426 1 0.1365 1 0.1728 0.7671 0.7401 0.2311 0.1391 60
1601123 1.320127315 0 0.000935356 1 0.1365 1 0.1728 0.7671 0.7401 0.2311 0.0824 40
1607467 9.633449074 0.111770833 0.001039285 1 0.1365 1 0.0409 0.7671 0.7401 0.2721 0.0611 47
1608487 2.012071759 0 0.000519642 1 0.1365 1 0.0409 0.7671 0.7401 0.2721 0.1391 94
1608531 0.089618056 0.091030093 0.000103928 1 0.1365 1 0.134 0.7671 0.2304 0.3469 0.1391 64
1615736 19.54592593 0 0.001143213 1 0.1365 1 0.0752 0.7671 0.0292 0.3469 0.1391 82
1616398 1.518356481 0 0.012991062 1 0.1365 1 0.0048 0.7671 0.7401 0.2721 0.1183 87
1620195 6.865219907 0.003831019 0.000831428 1 0.1365 1 0.134 0.7671 0.7401 0.2721 0.1391 59
1622950 5.689363426 71.94840278 0.00135107 1 0.1365 1 0.1728 0.7671 0.7401 0.3469 0.1183 41
1624262 2.917986111 0 0.016420703 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.0685 79
1624266 0.008032407 469.266331 0.016420703 1 0.1365 1 0.134 0.7671 0.7401 0.2721 0.0685 72
1624521 0.617905093 0 0.005404282 1 0.1365 1 0.134 0.7671 0.7401 0.2721 0.1391 67
1625319 3.759837963 0.037256944 0.012991062 1 0.1365 1 0.0409 0.7671 0.7401 0.2721 0.0611 113
1632028 18.88309028 0.095555556 0.014030347 1 0.1365 1 0.0409 0.1595 0.0292 0.0335 0.1183 63
1633804 4.240555556 0 0.000103928 1 0.1365 1 0.1728 0.7671 0.7401 0.1164 0.051 57
1635568 5.600960648 0 0.001870713 1 0.1365 1 0.134 0.7671 0.7401 0.2311 0.1391 71
1635666 0.148738426 0.016469907 0.005404282 1 0.1365 1 0.0752 0.7671 0.7401 0.2721 0.0419 63
1638095 7.140706019 0 0 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.051 55
1638368 0.817847222 0.118148148 0 1 0.1365 1 0.0752 0.7671 0.7401 0.2311 0.1183 175
1638923 1.341018519 469.1426389 0 1 0.1365 1 0.1728 0.7671 0.7401 0.3469 0.1391 56
1639334 2.728402778 0 0.003637497 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.051 92
1639423 0.137685185 0 0.003845354 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1391 40
1641597 6.706840278 0.047384259 0.003325712 1 0.1365 1 0.1728 0.1595 0.2304 0.2721 0.051 106
1641610 0.034861111 0.060983796 0.003325712 1 0.1365 1 0.134 0.1595 0.2304 0.2721 0.051 64
1642047 1.102013889 269.5134144 0.012783205 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.0611 61
1642070 0.037928241 199.6425694 0.001558927 1 0.1365 1 0.1728 0.7671 0.7401 0.3469 0.1391 67
1643147 2.045821759 0 0.000831428 1 0.1365 1 0.134 0.7671 0.7401 0.2721 0.051 71
1643419 0.710335648 85.20469907 0.003949283 1 0.1365 1 0.0752 0.7671 0.7401 0.3469 0.1391 100
1643420 0.001585648 0 0.003949283 1 0.1365 1 0.0752 0.7671 0.7401 0.3469 0.0611 100
1643784 2.377222222 0.009259259 0.003949283 1 0.1365 1 0.1728 0.1595 0.2304 0.1164 0.1183 90
1644549 2.541446759 469.1866088 0.000207857 1 0.1365 1 0.0409 0.1595 0.2304 0.3469 0.0611 45
1646447 5.355775463 0 0.005404282 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.051 73
1646457 0.007094907 0.001331019 0.005404282 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.051 68
1649937 9.242893519 469.266412 0.019746414 1 0.1365 1 0.0267 0.7671 0.7401 0.2721 0.051 144
1650192 0.748969907 0 0.004884639 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.1391 53
1652197 6.067291667 0 0.001870713 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.051 61
1654288 6.814525463 0 0 1 0.0333 1 0.1728 0.7671 0.7401 0.3469 0.051 131
1655476 4.884351852 270.1323611 0.012783205 1 0.1365 1 0.0752 0.7671 0.7401 0.2721 0.0417 63
1655480 0.009027778 0 0.016420703 1 0.1365 1 0.134 0.7671 0.7401 0.2721 0.051 75
1655510 0.047222222 0.15 0.012783205 1 0.1365 1 0.0409 0.7671 0.7401 0.2721 0.1391 50
1655989 1.040590278 0 0 1 0.1365 1 0.0409 0.1595 0.2304 0.1164 0.1183 64
1657391 3.401863426 0.136076389 0 1 0.1365 1 0.1728 0.7671 0.7401 0.2721 0.051 80
1658105 3.5071875 0 0.000935356 1 0.1365 1 0.1728 0.7671 0.2304 0.1164 0.051 110
1658151 0.10193287 469.260787 0.001558927 1 0.1365 1 0.1728 0.7671 0.7401 0.2311 0.051 73
1659539 3.172071759 0 0.000831428 1 0.1365 1 0.005 0.1595 0.2304 0.3469 0.0346 67
1661190 5.782743056 0.03318287 0.001558927 1 0.1365 1 0.1728 0.7671 0.7401 0.1164 0.051 67

Mathematics 2022, 10, 1572 13 of 20

4. Performance Illustrations of the Developed 3D Application
4.1. Data Set for Edge OSS Computing

We focus on the OpenStack Project [27] that included several edge components. In this
paper, we show numerical examples by using data sets on the assumption of the edge OSS
service. The data used in this paper are collected from the bug-tracking system.

The demonstration of our prototype tool is available at the following URL; however,
the function of calculation cannot execute considering the security: http://www.tam.eee.
yamaguchi-u.ac.jp/js/ec/, accessed on 24 February 2022.

Our prototype tool has been released as the OSS based on GNU General Public License
(GPL) in March 2022. The source code of our tool is available from “SOFTWARE” at the
following URL: http://www.tam.eee.yamaguchi-u.ac.jp/, accessed on 24 February 2022.

Tables 1 and 2 are parts of all the data sets. The total number of lines of data is about
20,000 lines. Then, the data consist of about 140,000 data items total. These are the specified
version data. Actually, the users can obtain a greater number of data according to various
OSS projects.

4.2. Estimation Results

We analyze the fault big data in terms of fault correction time in the OSS component of
edge computing included under cloud computing such as OpenStack [27]. We can obtain
the fault correction times from the “Opened” and “Changed” factors in the bug-tracking
system. In this paper, we discuss two kinds of fault severity levels such as “High” and
“Medium”.

First, we show the main screen of our tool in Figure 6. In addition, Figure 7 shows the
menu of our tool. Moreover, Figure 8 is the simplified readme screen of our tool. Our tool
is structured by using the dynamic link based on NW.js and Python. Therefore, we can
program the simple menu by using the HTML and javascript codes shown in Figures 6–8.

Figures 9 and 10 show the overall pictures of the estimated errors between validation and
training in the case of 30% testing data, respectively. From Figures 9 and 10, we find that the
errors of validation and training fit better in the case of 30%. In particular, the error of the
“Medium” class fits better than that of the “High” one. Similarly, Figures 11 and 12 show the
estimated error between validation and training in the cases of the high and medium levels for
30% testing data, respectively. From Figures 11 and 12, we find that there is no possibility of
overfitting.

Moreover, Figures 13 and 14 show the overall pictures of the estimated fault correction
times in the case of 30% testing data, respectively. From Figures 13 and 14, we can confirm
the scattered condition of the estimated fault correction time for each fault level. We
find that there are many faults of the “High” class in the early stage of operation from
Figures 13 and 14. On the other hand, there are many faults of the “Medium” class in the
later stage of operation. Similarly, Figures 15 and 16 show the estimated fault correction
times in the cases of the high and medium levels for 30% testing data, respectively. From
Figures 15 and 16, we find that the variations of the “High” and “Medium” classes are
almost the same value.

Furthermore, the overall pictures of the estimated cumulative fault correction times
in the case of 30% testing data are shown in Figures 17 and 18, respectively. From
Figures 9–18, we find that the condition of learning is stable on the whole. In particu-
lar, the number of faults in the “High” class becomes large in the early stage of operation.

As for the above-mentioned results, we confirm that the developed prototype tool for
reliability assessment based on deep learning is useful for estimating reliability in the near
future. In particular, the advantage of our method is that it can make use of all the data on
the bug-tracking system.

http://www.tam.eee.yamaguchi-u.ac.jp/js/ec/
http://www.tam.eee.yamaguchi-u.ac.jp/js/ec/
http://www.tam.eee.yamaguchi-u.ac.jp/

Mathematics 2022, 10, 1572 14 of 20

Figure 6. The main screen of our tool.

Figure 7. The menu of our tool.

Figure 8. The readme screen of our tool.

Mathematics 2022, 10, 1572 15 of 20

Figure 9. The overall picture of the estimated error between validation and training in case of 30%
testing data.

Figure 10. Another angle of the estimated error between validation and training in case of 30%
testing data.

Figure 11. The estimated error between validation and training in case of high-level 30% testing data.

Mathematics 2022, 10, 1572 16 of 20

Figure 12. The estimated error between validation and training in case of medium-level 30%
testing data.

Figure 13. The overall picture of the estimated fault correction time in case of 30% testing data.

Figure 14. Another angle of the estimated fault correction time in case of 30% testing data.

Mathematics 2022, 10, 1572 17 of 20

Figure 15. The estimated fault correction time in case of high-level 30% testing data.

Figure 16. The estimated fault correction time in case of medium-level 30% testing data.

Figure 17. The overall picture of the estimated cumulative fault correction time in case of 30%
testing data.

Mathematics 2022, 10, 1572 18 of 20

Figure 18. Another angle of the estimated cumulative fault correction time in case of 30% testing data.

4.3. Comparison Results

As shown in Section 2, our method is different from the reliability assessment method
based on many typical stochastic models. However, we can compare our method with the
method based on the typical neural network as machine learning. We show the estimated
error between validation and training as the comparison results in the case of 30% testing
data in Figure 19. From Figure 19, we find that the error becomes a large value in the case
of the “Medium” class.

Figure 19. The estimated error between validation and training as comparison results in case of 30%
testing data.

5. Concluding Remarks

In the operation of the cloud service, several edge OSS components are embedded in
cloud OSS computing. In the bug-tracking system in OSS, there are several severity levels
of software faults in OSS. As the characteristics of edge OSS, the “High” and “Medium”
classes have influential impacts as fault severity levels. The reliability of edge OSS becomes

Mathematics 2022, 10, 1572 19 of 20

large if we can understand the trend of software fault correction times. Then, we discussed
the estimation method of fault correction times.

In this paper, we have proposed the estimation method of fault correction times for
two kinds of fault severity levels. It will be useful to assess OSS reliability under the
environment of an edge computing service if the OSS managers can estimate the fault
correction time. In addition, the proposed method based on deep learning considering the
fault severity levels has been discussed in this paper. In particular, the proposed method
can comprehend the reliability trend based on the fault correction times for mainly fault
severity levels.

Finally, this paper has discussed the trend of OSS faults for edge computing. In
addition, we have developed the prototype of a software tool based on the proposed
method by using actual edge OSS data as follows:

$ The comprehension of the trend of large-scale OSS fault levels as data preprocessing.
$ The estimation of fault correction time based on two-stage deep learning.
$ The development of a prototype as a reliability assessment tool based on deep learning

that can be used by users who are not familiar with deep learning.

The proposed method and prototype will be helpful as assessment measures of relia-
bility control for an edge OSS service in the operation phase.

Author Contributions: Conceptualization, Y.T. and S.Y.; methodology, Y.T. and S.Y.; software, Y.T.;
validation, Y.T. and S.Y.; data curation, Y.T.; writing—review and editing, Y.T. and S.Y.; visualization,
Y.T.; project administration, Y.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the JSPS KAKENHI Grant No. 20K11799 in Japan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: OpenStack Project [27].

Acknowledgments: This work was supported in part by the JSPS KAKENHI Grant No. 20K11799
in Japan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yamada, S.; Tamura, Y. OSS Reliability Measurement and Assessment; Springer International Publishing: Cham, Switzerland, 2016.
2. Lyu, M.R. (Ed.) Handbook of Software Reliability Engineering; IEEE Computer Society Press: Los Alamitos, CA, USA, 1996.
3. Yamada, S. Software Reliability Modeling: Fundamentals and Applications; Springer: Tokyo, Japan; Heidelberg, Germany, 2014.
4. Kapur, P.K.; Pham, H.; Gupta, A.; Jha, P.C. Software Reliability Assessment with OR Applications; Springer: London, UK, 2011.
5. Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M. Semi-supervised learning with deep generative models. In Proceedings of

the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.
6. Sahu, K.; Srivastava, R.K. Revisiting software reliability, data management, analytics and innovation. In Advances in Intelligent

Systems and Computing; Springer: Singapore, 2019; Volume 808.
7. Sahu, K.; Srivastava, R.K. Soft computing approach for prediction of software reliability. ICIC Express Lett. 2018, 12, 1213–1222.
8. Ji, C.; Su, X.; Qin, Z.; Nawaz, A. Probability analysis of construction risk based on noisy-or gate bayesian networks. Reliab. Eng.

Syst. Saf. 2022, 217, 107974. [CrossRef]
9. Sahu, K.; Srivastava, R.K. Needs and importance of reliability prediction: An industrial perspective. Inf. Sci. Lett. 2020, 9, 1–5.
10. Sahu, K.; Srivastava, R.K. Predicting software bugs of newly and large datasets through a unified neuro-fuzzy approach:

Reliability perspective. Adv. Math. Sci. J. 2021, 10, 543–555. [CrossRef]
11. Türk, A.; Özkök, M. Shipyard location selection based on fuzzy AHP and TOPSIS. J. Intell. Fuzzy Syst. 2020, 39, 4557–4576.

[CrossRef]
12. Abuhamdah, A.; Boulila, W.; Jaradat, G.M.; Quteishat, A.M.; Alsmadi, M.K.; Almarashdeh, I.A. A novel population-based local

search for nurse rostering problem. Int. J. Electr. Comput. Eng. 2021, 11, 471–480. [CrossRef]
13. Ibrahim, I.M.; Mostafa, M.G.M.; El-Din, S.H.N.; Elgohary, R.; Faheem, H. A robust generic multi-authority attributes management

system for cloud storage services. IEEE Trans. Cloud Comput. 2018, 9, 435–446. [CrossRef]
14. Al-Said, A.A.; Andras, P. Scalability analysis comparisons of cloud-based software services. J. Cloud Comput. Adv. Syst. Appl.

2019, 8, 1–17. [CrossRef]

http://doi.org/10.1016/j.ress.2021.107974
http://dx.doi.org/10.37418/amsj.10.1.54
http://dx.doi.org/10.3233/JIFS-200522
http://dx.doi.org/10.11591/ijece.v11i1.pp471-480
http://dx.doi.org/10.1109/TCC.2018.2867871
http://dx.doi.org/10.1186/s13677-019-0134-y

Mathematics 2022, 10, 1572 20 of 20

15. Ozcan, M.O.; Odaci, F.; Ari, I. Remote debugging for containerized applications in edge computing environments. In Proceedings
of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; pp. 30–32. [CrossRef]

16. Hu, P.; Chen, W. Software-defined edge computing (SDEC): Principles, open system architecture and challenges. In Pro-
ceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 8–16. [CrossRef]

17. Alsenani, Y.; Crosby, G.; Velasco, T. SaRa: A stochastic model to estimate reliability of edge resources in volunteer cloud. In
Proceedings of the 2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018;
pp. 121–124. [CrossRef]

18. Karunanithi, N.; Whitley, D.; Malaiya, Y.K. Using neural networks in reliability prediction. IEEE Softw. 1992, 9, 53–59. [CrossRef]
19. Dohi, T.; Nishio, Y.; Osaki, S. Optimal software release scheduling based on artificial neural networks. Ann. Softw. Eng. 1999, 8,

167–185. [CrossRef]
20. Blum, A.; Lafferty, J.; Rwebangira, M.R.; Reddy, R. Semi-supervised learning using randomized mincuts. In Proceedings of the

International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004.
21. George, E.D.; Dong, Y.; Li, D.; Alex, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech

recognition. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 30–42.
22. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning useful representations

in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
23. Martinez, H.P.; Bengio, Y.; Yannakakis, G.N. Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 2013, 8,

20–33. [CrossRef]
24. Hutchinson, B.; Deng, L.; Yu, D. Tensor deep stacking networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1944–1957.

[CrossRef] [PubMed]
25. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimizations. In Proceedings of the International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
26. Tamura, Y.; Yamada, S. Multi-dimensional software tool for OSS project management considering cloud with big data. Int. J.

Reliab. Qual. Saf. Eng. 2018, 25, 1850014-1–1850014-16. [CrossRef]
27. The OpenStack Project, Build the Future of Open Infrastructure. Available online: https://www.openstack.org/ (accessed on 24

February 2022).

http://dx.doi.org/10.1109/EDGE.2019.00021
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00047
http://dx.doi.org/10.1109/EDGE.2018.00024
http://dx.doi.org/10.1109/52.143107
http://dx.doi.org/10.1023/A:1018962910992
http://dx.doi.org/10.1109/MCI.2013.2247823
http://dx.doi.org/10.1109/TPAMI.2012.268
http://www.ncbi.nlm.nih.gov/pubmed/23267198
http://dx.doi.org/10.1142/S0218539318500146
https://www.openstack.org/

	Introduction
	Data Preprocessing for Large-Scale OSS Fault Data
	Related Work
	OSS Data Set
	Data Preprocessing

	Development of Prototype Tool
	Performance Illustrations of the Developed 3D Application
	Data Set for Edge OSS Computing
	Estimation Results
	Comparison Results

	Concluding Remarks
	References

