
Citation: Su, B.; Xu, C.; Li, J. A Deep

Neural Network Approach to

Solving for Seal’s Type Partial

Integro-Differential Equation.

Mathematics 2022, 10, 1504. https://

doi.org/10.3390/math10091504

Academic Editors: Eric Ulm and

Budhi Surya

Received: 24 February 2022

Accepted: 27 April 2022

Published: 1 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Deep Neural Network Approach to Solving for Seal’s Type
Partial Integro-Differential Equation
Bihao Su 1, Chenglong Xu 1 and Jingchao Li 2,3,*

1 School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China;
subihao@163.sufe.edu.cn (B.S.); xu.chenglong@shufe.edu.cn (C.X.)

2 College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
3 Shenzhen Key Laboratory of Advanced Machine Learning and Applications, Shenzhen University,

Shenzhen 518060, China
* Correspondence: jingchaoli@szu.edu.cn; Tel.: +86-755-26538953

Abstract: In this paper, we study the problem of solving Seal’s type partial integro-differential
equations (PIDEs) for the classical compound Poisson risk model. A data-driven deep neural network
(DNN) method is proposed to calculate finite-time survival probability, and an alternative scheme
is also investigated when claim payments are exponentially distributed. The DNN method is then
extended to the numerical solution of generalized PIDEs. Numerical approximation results under
different claim distributions are given, which show that the proposed scheme can obtain accurate
results under different claim distributions.

Keywords: deep neural network; partial integro-differential equation; survival probability;
Generalized Simpson rule; network function

MSC: 91B30; 62P05

1. Introduction

Classical ruin theory is motivated by quantifying the insolvency of an insurance
company and plays an important role in risk management. It uses a model to simplify
an insurance company’s operation and examines the evolution of its surplus level over
time. In the classical risk model , it is assumed that the insurer starts with some non-
negative amount of capital, and then the surplus level changes by receiving premiums from
policyholders and paying out claim payments to beneficiaries. Ruin theory has attracted
many researchers’ attention, and many scholars have studied the possibility of bankruptcy
that an insurance company faces, which is expressed as ruin probability. It can also be seen
that the ruin probability and the survival probability are important reference benchmarks
for insurance companies that seek to control risks and manage their capital. Hence, it is of
practical significance and value to study the ruin probability and survival probability of
insurance companies.

The PIDEs we discuss in this paper are based on the compound Poisson process. Based
on the characteristics of this process, it can be widely used in the study of ruin-related
variables in the fields of insurance actuarial calculations, financial asset pricing, and other
problems. In addition, given that the fractional evolution equation is an important example
of a PIDE, it contains the integral definition of the fractional Laplacian operator, which is
driven by the α-stable Lévy process. The fractional Laplacian operator appears in many
applications [1–3], including turbulent fluids, contaminant transport in fractured rocks,
chaotic dynamics, and so on.

In ruin theory, many mathematical models are used to describe the surplus process
of an insurance company, such as the classical compound Poisson risk model, the Sparre
Andersen risk model, the Markov-modulated risk model, etc. Using different risk models,

Mathematics 2022, 10, 1504. https://doi.org/10.3390/math10091504 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091504
https://doi.org/10.3390/math10091504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10091504
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091504?type=check_update&version=3


Mathematics 2022, 10, 1504 2 of 21

the research of infinite-time ruin problems has achieved fruitful results. There have been
many works devoted to the probability density function of the ruin time and the joint
probability density, including the ruin time (see, e.g., [4–7] and the references therein).
Constantinescu et al. (2018) obtained three equivalent expressions for ruin probabilities
in a classical risk model with gamma-distributed claims by means of (inverse) Laplace
transforms, where two of these expressions involved Mittag-Leffler functions and the third
involved the moments of the claim distributions [8].

In contrast to the ultimate ruin probability, the finite-time ruin probability plays a more
important role in practice because it can provide insurers with more effective information to
aid in controlling their risk. The authors of [9] presented an explicit formula for the Laplace
transform in time; it defined the finite-time ruin probabilities of a classical Levy model
with phase-type claims. Willmot (2015) demonstrated that, by using the Laplace transform
and the Lagrange implicit function theorem, a solution for a generalized PIDE can be
obtained [10,11]. Furthermore, many scholars have studied approximate methods for finite-
time ruin probability and survival probability under various risk models [12–17]. Cheung
and Zhang (2021) [18] developed an approximation of ruin probability by using Laguerre
series expansion as a function of the initial surplus level, where no specific distributional
assumption regarding the claim amounts is required. Moreover, nonparametric estimation
methods are also used in the study of ruin-related variables (see [19–21]).

In contrast to traditional numerical approximation methods, a neural network offers
great advantages in the approximation of complex functions due to its nonlinear structure.
Therefore, in recent years, many scholars have conducted in-depth research using neural
networks to solve mathematical physical equations. For example, the physical mechanisms
of neural networks are used to solve nonlinear PDEs and nonlinear backward differential
equations [22–26]. In addition, some scholars have applied neural networks to the problem
of option pricing [27–30]. In addition, deep learning methods for non-local models on
bounded regions have been discussed in some recent work (see [31–33]).

In this paper, we first propose a new high-precision method based on DNNs to
determine finite-time survival probability with unspecified claim distribution and then
extend it to solve more general PIDEs. This paper is organized as follows: the classical
risk model and renewal PIDEs are described in Section 2. In Section 3, we describe the
DNN method for calculating finite-time survival probability in the classical risk model. In
Section 4, we extend the approach to solve for a general case of PIDEs and to derive an
alternative method for use when individual claim size is exponentially distributed. Finally,
some numerical examples are given in Section 5 to illustrate the efficiency and accuracy of
the proposed method.

2. Preliminaries

The surplus process under the classical compound Poisson risk model is defined as

U(t) = u + ct−
Nt

∑
i=1

Xi, (1)

where u ≥ 0 is the insurer’s initial capital; c is the rate of premium income per unit
time; {Nt, t ≥ 0} denotes the number of claims up to time t, which is assumed to be
a Poisson process with Poisson rate λ; and {Xi, i = 1, 2, ...} is a sequence of independent and
identically distributed positive random variables that are independent of {Nt, t ≥ 0}. The
random variable {Xi}∞

i=1 represents the amount of the ith claim, which has the distribution
function P(x) = 1− P̄(x) = Pr(X ≤ x), x ≥ 0 and the density function p(x). The positive
loading condition is assumed, whereby c = (1 + θ)λE(X) with θ > 0, which ensures that
the average income is greater than the average claim so that ruin is not guaranteed. The
aggregate claims St = ∑Nt

i=1 Xi have the mass point Pr(St = 0) = e−λt at 0, and the density
f (x, t) for x > 0, given by



Mathematics 2022, 10, 1504 3 of 21

f (x, t) =
∞

∑
n=1

(λt)ne−λt

n!
p∗n(x), (2)

where p∗n denotes the density function of Yn = X1 + X2 + ... + Xn. Then F(x, t) =
Pr(St ≤ x) satisfies

F(x, t) = e−λt +
∫ x

0
f (ξ, t)dξ, x ≥ 0.

In the classical risk model, the time of ruin is defined as Tu = inf{t ≥ 0 : U(t) ≤ 0|U(0) =
u}, with Tu = ∞ if U(t) ≥ 0 for t ≥ 0. The finite-time ruin probability is defined as
ψ(u, t) = Pr(Tu < t|U(0) = u), and the finite-time survival probability can be denoted as
φ(u, t) = 1− ψ(u, t). It is well known that φ(u, t) satisfies the following PIDE,

∂

∂t
φ(u, t) = c

∂

∂u
φ(u, t)− λφ(u, t) + λ

∫ u

0
φ(u− x, t)p(x)dx, (3)

with φ(u, 0) = 1.

3. Deep Neural Network (DNN) Approach

In this section, DNN methodology is introduced and then used to solve Equation (3).
The idea of this method is to construct a function φθ using neural networks that satisfies
the original PIDE. More intuitively, φθ is an approximation of the analytic solution of
Equation (3), and it represents a function that is realized by a neural network with parame-
ters θ. The parameters θ include weight matrices Wi and bias vectors bi (i = 1, 2, . . . , M),
where M represents the depth of the neural network structure, that is, the number of hidden
layers. DNNs give the best approximation of the original function by minimizing the loss
function. Thus, for any u and t, the goal is to make the following equation true:

∂

∂t
φθ(u, t) = c

∂

∂u
φθ(u, t)− λφθ(u, t) + λ

∫ u

0
φθ(u− x, t)p(x)dx. (4)

For an initialized neural network with initial parameters θ, since the parameters θ are
randomly given, Equation (4) may not hold for every u and t; if that is the case, it results in
a data error Eθ(u, t),

Eθ(u, t) :=
∂

∂t
φθ(u, t) +N [u, t, φθ ], (5)

where N [·] is a nonlinear time-dependent differential operator that represents the network
function,

N [u, t, φθ ] = −c
∂

∂u
φθ(u, t) + λφθ(u, t)− λ

∫ u

0
φθ(u− x, t)p(x)dx.

The aim is to train the neural network to find an optimal parameter θ∗; hence, the error
of all training data points should be minimized under the corresponding φθ∗ of a given
parameter. Therefore, we introduce the loss function Lθ(X); according to the optimization
theory, we know that in the DNN method, the optimal parameter θ = θ∗ can be obtained
by minimizing the loss function Lθ(X),

Lθ(X) := LE
θ (XE) + LI

θ(X I),

θ∗ = arg min Lθ(X),
(6)

where X denotes the collection of the training data. The loss function Lθ consists of two
parts: the mean square error of the data points within the region and the mean square error
of the data points satisfying the initial condition.



Mathematics 2022, 10, 1504 4 of 21

• The mean square error of the data points within the region

LE
θ (XE) :=

1
DE

DE

∑
i=1

∣∣∣Eθ(uE
i , tE

i )
∣∣∣2, (7)

in a training data set XE := {(uE
i , tE

i )}
NE
i=1 ⊂ [0, ∞)× (0, ∞).

• The mean squared error with respect to the initial condition

LI
θ(X I) :=

1
DI

DI

∑
i=1

∣∣∣φθ(uI
i , tI

i )− φI(uI
i )
∣∣∣2, (8)

in a number of points X I := {(uI
i , tI

i )}
NI
i=1 ⊂ [0, ∞) × {0}, where φθ is the neural

network approximation of the solution φ : [0, ∞)× [0, ∞)→ R. φI denotes the initial
value function.

Note that the training data X consists of all data points extracted in time direction t and
space direction u. In order to minimize the loss function Lθ(X) to obtain an approximate
solution for Equation (3), DNNs require a further differentiation to evaluate the differential
operators ∂tφθ and N [φθ ]. Thus, Lθ(X) shares the same parameters as the original network
φθ . Both types of derivatives can be easily determined through automatic differentiation
with machine learning libraries, such as TensorFlow or PyTorch.

It is worth noting that the convolution term in neural network training makes the
calculation extremely complicated. Therefore, in order to solve this problem, we use
the general Simpson’s rule (GSR) to discretize the convolution term on the right side of
Equation (4). Letting gθ(x, t) = φθ(u− x, t)p(x), we have the following discrete form,

∫ u

0
φθ(u− x, t)p(x)dx ≈ u

6Nu
[gθ(0, t) + 4

Nu

∑
k=1

gθ((2k− 1)δu, t)

+ 2
Nu−1

∑
k=1

gθ(2kδu, t) + gθ(u, t)],

(9)

where Nu = u/2δu and δu > 0 is a given value. Then, the network function N [u, t, φθ ] can
be written as

N [u, t, φθ ] ≈ −c
∂

∂u
φθ(u, t) + λφθ(u, t)− λ

u
6Nu

[gθ(0, t) + 4
Nu

∑
k=1

gθ((2k− 1)δu, t)

+ 2
Nu−1

∑
k=1

gθ(2kδu, t) + gθ(u, t)].

The neural networks considered in this paper are multilayer feed-forward neural
networks; such networks are compositions of the alternating affine linear function z =
X ·W + b and the nonlinear function σ(·), which are called activation functions. The
training data set is transformed by the weight matrix and bias matrix at each hidden layer,
and then the result is fed back to the next hidden layer through the action of the activation
function. The core of the neural network learning method is to approximate the objective
function by combining multiple linear and nonlinear functions; as a result

φθ(X) = (σL(σL−1(· · · σ1(X ·W1 + b1) · · · )WL−1 + bL−1) ·WL + bL) ·Wout + bout

= σL ◦ · · · ◦ σ1(X) ·Wout + bout,

where Wi and bi (i = 1, 2, ..., L− 1) are weight matrices and bias vectors in the ith hidden
layer, Wout and bout denote the parameters in the output layer, and σi(·) represents the ith
layer activation function, which is an element-wise nonlinear function. Generally speaking,
the most commonly used activation functions are the following:



Mathematics 2022, 10, 1504 5 of 21

1. Sigmoid function

s(x) =
1

1 + e−ax .

The output mapping of the sigmoid function is within the range of [0, 1], the function
is monotone continuous, and the output range is limited, so it is easy to differentiate.
However, it is also easy to saturate, resulting in poor training effectiveness.

2. Tanh function

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x .

The shape of this function is similar to the sigmoid function, except that the tanh
function is in the range of [−1,1]; thus, it has the advantage that it is more easily able
to handle negative numbers. When the two functions are compared, the tanh function
converges faster than the sigmoid function, and the data distribution is more even.
However, its drawback is the disappearance of the gradient due to saturation.

3. ReLU function
relu(x) = max(0, x).

Compared with the previous two activation functions, the ReLU function can converge
quickly in the stochastic gradient descent algorithm, and since its gradient is 0 or
constant, it can alleviate the problem of gradient disappearance. However, as training
goes on, the neurons may die; the weights cannot be renewed, so if this occurs, the
gradient passing through those neurons is always 0 from that point onward.

Normally, the training of networks consists of updating the parameter θ based on
gradient optimization during the back propagation of the neural networks. The goal is
to find the parameter θ∗ that minimizes the loss function. This procedure requires φθ to
differentiate its unknown parameters Wi and bi, that is, to further evaluate the differential
operators ∂tφθ and N [·]. The “gradient” plays a crucial role in this process. It implies the
direction in which the parameters θ vary. More precisely, it tells us how to change the
parameters θ to make the loss function change as quickly as possible.

We know that a single hidden layer network can form a deep neural network by
increasing the number of hidden layers. In order to facilitate the expression, we take a
network with three hidden layers, as shown in Figure 1, as an example. For the training
data set X = {Xi = (ui, ti)}N

i=1, the network output φθ(Xi) can be expressed as

φθ(Xi) = (σ3(σ2(σ1(Xi ·W1 + b1) ·W2 + b2) ·W3 + b3) ·Wout + bout

= σ3 ◦ σ2 ◦ σ1(Xi) ·Wout + bout. (10)

Figure 1. Illustration of a neural network with three hidden layers.



Mathematics 2022, 10, 1504 6 of 21

Here, we assume that the number of neurons in the hidden layers are N1, N2, and N3.
Then, W1, W2, and Wout are weight matrices of the following form

W1 =

 w(1)
11 w(1)

12 · · · w(1)
1N1

w(1)
21 w(1)

22 · · · w(1)
2N1


2×N1

, W2 =



w(2)
11 w(2)

12 · · · w(2)
1N2

w(2)
21 w(2)

22 · · · w(2)
2N2

...
...

...
w(2)

N11 w(2)
N12 · · · w(2)

N1 N2


N1×N2

,

W3 =



w(3)
11 w(3)

12 · · · w(3)
1N3

w(3)
21 w(3)

22 · · · w(3)
2N3

...
...

...
w(3)

N21 w(3)
N22 · · · w(3)

N2 N3


N2×N3

, Wout =



w(out)
11

w(out)
21
...

w(out)
N31


N3×1

,

where w(k)
ij (k = 1, 2, 3) represents the weight of the ith neuron on the kth hidden layer to the

jth neuron on the (k + 1)th hidden layer. Similarly, b1, b2, b3, and bout are the bias vectors

b1 =
(

β
(1)
1 β

(1)
2 · · · β

(1)
N1

)
1×N1

, b2 =
(

β
(2)
1 β

(2)
2 · · · β

(2)
N2

)
1×N2

,

b3 =
(

β
(3)
1 β

(3)
2 · · · β

(3)
N3

)
1×N3

, bout =
(

β(out)
)

1×1
.

ased on Equations (6)–(8), the total loss caused by calculating all the training data can be
expressed as

Lθ(X) :=
1
D

D

∑
i=1

∣∣∣Eθ(Xi)
∣∣∣2,

where Eθ(Xi) is given by

Eθ(Xi) =
∂

∂t
φθ(Xi) +N [Xi, φθ ]

=
∂

∂t
φθ(ui, ti)− c

∂

∂u
φθ(ui, ti) + λφθ(ui, ti)− λ

ui
6Nui

[gθ(0, ti) (11)

+4
Nui

∑
k=1

gθ((2k− 1)δui , ti) + 2
Nui−1

∑
k=1

gθ(2kδui , ti) + gθ(ui, ti)].

For the activation function σ(x) =
ex − e−x

ex + e−x , the values of each quantity in Figure 2

are given by the following equations:

z1 = Xi ·W1 + b1,

z2 =
ez1 − e−z1

ez1 + e−z1
·W2 + b2,

z3 =
ez2 − e−z2

ez2 + e−z2
·W3 + b3,

φθ(Xi) =
ez3 − e−z3

ez3 + e−z3
·Wout + bout.

According to Equation (10), ∂tφθ and ∂uφθ can be easily solved by employing the chain
derivative rule when the activation function is known. When calculating the gradient of
the objective function with respect to the parameters θ, the loss at each hidden layer is



Mathematics 2022, 10, 1504 7 of 21

calculated from the network output layer and then calculated layer by layer until it reaches
the input layer. Finally, the above derivations lead to the method outlined in Algorithm 1.

Xi

input layer

z1 σ1(z1)

hidden layer 1

z2 σ2(z2)

hidden layer 2

z3 σ3(z3)

hidden layer 3

φθ(Xi)

output layer

Figure 2. The data transmission process of a neural network that contains three hidden layers.

Algorithm 1 Framework of DNNs for solving finite-time survival probability.

Input:
1: Set the network structure: the number of hidden layers and the number of neurons in

each hidden layer;
2: Select the type of activation function;
3: Generate the training data set X = {(ui, ti)}D

i=1;
4: Set the iteration step size (learning rate) η, the total number of iterations Nepoch, and

the error threshold ε;
Output: φθ(X);

5: The initial parameter θ(0) is randomly selected, k = 0;
6: Calculate φθ(0)

(X) and the loss function Lθ(X);
7: If the loss function Lθ(X) > ε , then evaluate ∇Lθ(X);
8: Update the network parameter: θ(k+1) = θ(k) − η∇Lθ(X), and return to Step 6, k =

k + 1;
9: When k = Nepoch or Lθ(X) ≤ ε, stop the iteration;

10: return φθ(X).

4. General Case
4.1. The General Network Approach

Motivated by the form of Equation (3), we consider the partial integro-differential
equation for a real function h(u, t),

∂

∂t
h(u, t) = c

∂

∂u
h(u, t)− λh(u, t) + λ

∫ u

0
h(u− x, t)p(x)dx + τ(u, t). (12)

Clearly, Equation (3) is a special case of Equation (12) with τ(u, t) = 0.
Willmot (2015) derived the general solution of Equation (12) [11]; since the general

solution contains the integral and convolution of an infinite series, the numerical solution
can be obtained only if the distribution of individual claims is a special case. For more
general claim distributions, precise numerical solutions are still difficult to find; hence,
many numerical methods have been proposed to find approximate solutions. The tra-
ditional numerical methods may face many problems when dealing with multivariable
functions. For example, the difference method may cause the curse of dimensionality when
dealing with multivariable problems. The Monte Carlo method consumes a lot of computer
resources with the increased demands of solving interval and computing paths. A deep
learning approach can avoid these problems.

Using the same method as in Section 3, we can construct the function hθ(u, t) to
approximate Equation (12); hθ(u, t) denotes a function realized by a deep neural network
with parameters θ. We then train this neural network to mathematically make the following
equation true, or to minimize the error of the equation for any u and t,

∂

∂t
hθ(u, t) = c

∂

∂u
hθ(u, t)− λhθ(u, t) + λ

∫ u

0
hθ(u− x, t)p(x)dx + τ(u, t). (13)



Mathematics 2022, 10, 1504 8 of 21

The loss function can be constructed from Equation (5),

Eθ(u, t) :=
∂

∂t
hθ(u, t) +N [u, t, τ, hθ ], (14)

where N [·] is given by

N [u, t, τ, hθ ] = −c
∂

∂u
hθ(u, t) + λhθ(u, t)− λ

∫ u

0
hθ(u− x, t)p(x)dx− τ(u, t).

When dealing with the integral term on the right side of Equation (13), the same
Generalized Simpson rule used in Equation (9) can be used for approximation. Let
vθ(x, t) = hθ(u− x, t)p(x), which can be discretized as

∫ u

0
hθ(u− x, t)p(x)dx ≈ u

6Nu
[vθ(0, t) + 4

Nu

∑
k=1

vθ((2k− 1)δu, t)

+ 2
Nu−1

∑
k=1

vθ(2kδu, t) + vθ(u, t)].

(15)

We derive from Equation (15) that the loss function corresponding to the solution hθ

of neural network approximation is:

Eθ(u, t) =
∂

∂t
hθ(u, t)− c

∂

∂u
hθ(u, t) + λhθ(u, t)− λ

u
6Nu

[vθ(0, t) + 4
Nu

∑
k=1

vθ((2k− 1)δu, t)

+ 2
Nu−1

∑
k=1

vθ(2kδu, t) + vθ(u, t)]− τ(u, t).

By minimizing the loss function Lθ(X) to update the parameters θ, the optimal param-
eters θ∗ are obtained

θ∗ = arg min Lθ(X) = arg min{LE
θ (XE) + LI

θ(X I)},

where X denotes the collection of training data, the loss function Lθ contains the mean
squared error LE

θ and the mean squared error with respect to the initial condition LI
θ(X I), and

LE
θ (XE) =

1
DE

DE

∑
i=1

∣∣∣Eθ(uE
i , tE

i )
∣∣∣2, (16)

LI
θ(X I) =

1
DI

DI

∑
i=1

∣∣∣hθ(uI
i , tI

i )− hI(uI
i )
∣∣∣2. (17)

XE = {(uE
i , tE

i )}
NE
i=1 ⊂ [0, ∞)× (0, ∞), X I = {(uI

i , tI
i )}

NI
i=1 ⊂ [0, ∞)× {0}, X = XE ∪ X I ,

where hθ is the neural network approximation of the solution h. hI(·) denotes the initial
value function.

In order to enable neural networks to train the function, we use the general Simpson
formula to discretize the convolution term on the right side of Equation (12). We have
introduced the fact that deep neural networks update parameters based on minimum loss
functions during back propagation. The error in the loss function includes two parts: (1)
the error caused by the discretization of the Simpson formula and (2) errors generated
when model parameters are not optimal.



Mathematics 2022, 10, 1504 9 of 21

For fixed u, t, we divide interval [0, u] into Nu equal parts, 0 = x0 < x1 < x2 < · · · <
xNu−1 < xNu = u, ∆ = u

Nu
. On each subinterval [xk, xk+1], k = 0, 1, 2, ...Nu − 1, using the

generalized Simpson formula, we have

I =
∫ u

0
vθ(x, t)dx =

Nu−1

∑
k=0

∫ xk+1

xk

vθ(x, t)dx

=
∆
6
[vθ(0, t) + 4

Nu−1

∑
k=0

vθ(xk+1/2, t) + 2
n−1

∑
k=1

vθ(xk, t) + vθ(u, t)] + RNu(vθ),

(18)

where RNu(vθ) is the remainder of Simpson’s formula. Let

SNu =
∆
6
[vθ(0, t) + 4

Nu−1

∑
k=0

vθ(xk+1/2, t) + 2
n−1

∑
k=1

vθ(xk, t) + vθ(u, t)], (19)

then,

RNu(vθ) = I − SNu = − ∆
180

(
∆
2
)4

Nu−1

∑
k=0

v(4)θ (ηk), ηk ∈ (xk, xk+1). (20)

Since vθ is a function constructed by a neural network, it is infinitely differentiable on
[0, u]. Hence, for a fixed t, any vθ(x, t) ∈ C4[0, u],

RNu(vθ) = I − SNu = − ∆
180

(
∆
2
)4v(4)θ (η), η ∈ (0, u). (21)

It can be seen from the above equation that the order of convergence is ∆4, that is,
convergence is obvious:

lim
Nu→∞

RNu(vθ)→ 0. (22)

Therefore, when the segmentation of the interval [0, u] is fine enough, the error caused by
Simpson’s discrete formula will approach zero. The error caused by parameters can be
adjusted with sufficient training times.

4.2. Alternative Formulae

For the general claim size functions, the generalized Simpson’s rule allows us to deal
with the integral term in Equation (12); as a result, numerical solutions can be obtained
by the DNN method. With regard to the special claim distribution, namely exponential
distribution, we can use some variable substitution techniques to eliminate the integral
terms, thus transforming the original equation into a PDE. More directly, in the training
process of the neural network, only differential terms need to be calculated, which can
greatly improve the speed of calculation.

Assuming that the individual claim size follows an exponentially distributed with
density function

p(x) = αe−αx, x ≥ 0.

Then, Equation (12) can be rewritten as

∂

∂t
h(u, t) = c

∂

∂u
h(u, t)− λh(u, t) + λαe−αu

∫ u

0
h(x, t)eαxdx + τ(u, t). (23)

Taking the derivative of the left and right sides of Equation (23) with respect to u, we can
obtain the desired result



Mathematics 2022, 10, 1504 10 of 21

∂2

∂t∂u
h(u, t) =c

∂2

∂u2 h(u, t)− λ
∂

∂u
h(u, t)− λα2e−αu

∫ u

0
h(x, t)eαxdx

+ λαh(u, t) +
∂

∂u
τ(u, t).

(24)

In view of Equations (23) and (24), we have the following PDE:

c
∂2

∂u2 h(u, t)− ∂2

∂u∂t
h(u, t) + (cα− λ)

∂

∂u
h(u, t)− α

∂

∂t
h(u, t)

+
∂

∂u
τ(u, t) + ατ(u, t) = 0.

(25)

To simplify notations, we introduce the differential operator L; thus, the following
initial value problem can be obtained,

L(h, τ) = Ah + Bτ = 0, (u, t) ∈ [0, ∞)× [0, T],

hI(u) = h(u, 0),

(26)

where

Ah = c
∂2

∂u2 h(u, t)− ∂2

∂u∂t
h(u, t) + (cα− λ)

∂

∂u
h(u, t)− α

∂

∂t
h(u, t),

Bτ =
∂

∂u
τ(u, t) + ατ(u, t).

Therefore, for any u and t, we find the error function

Eθ(u, t) =
∂

∂t
hθ(u, t) +

1
α

∂2

∂t∂u
hθ(u, t) +N [u, t, τ, hθ ], (27)

where

N [u, t, τ, hθ ] = −
c
α

∂2

∂u2 hθ(u, t)− cα− λ

α

∂

∂u
hθ(u, t)− 1

α

∂

∂u
τ(u, t)− τ(u, t).

For problem (26), the neural network only needs to carry out differential operations
when calculating the loss function Lθ , and the network parameters θ are updated by
minimizing the loss function. According to Equations (16) and (17), we obtain the total
loss of data points in the region and the mean squared error with respect to the initial
value conditions.

5. Numerical Results

In this section, numerical results are given to illustrate the accuracy and efficiency of
the method we propose.

5.1. τ(u, t) = 0

When τ(u, t) = 0, the problem simplifies to determining the finite-time survival
probabilities. Next, the performance of the DNN approach in solving for the finite-time
survival probabilities under the classical risk model is demonstrated. For the following
examples with different claim size distributions, we use two sets of network parameters to
obtain the numerical results:

• Parameter 1: 4 hidden layers, each layer has 8 neurons, the activation function is the
tanh function, and the times of training is 50,000;

• Parameter 2: 10 hidden layers, each layer has 20 neurons, the activation function is the
tanh function, and the times of training is 50,000.



Mathematics 2022, 10, 1504 11 of 21

In order to ensure the accuracy of parameter convergence and improve the speed of
parameter updating iteration, we adopt a piecewise learning rate instead of a fixed learning
rate with

η(n) = 0.01 1{n<1000} + 0.001 1{1000≤n<3000} + 0.0005 1{3000≤n},

where η(n) represents the learning rate of the gradient descent type algorithm, and the
learning rate for the first 1000 iterations is 0.01. From 1000 to 3000 iterations, the learning
rate is 0.001; for all iteration steps after the 3000th iteration, η(n) = 0.0005. It decays in a
piecewise constant and establishes a ’tf.keras.Optimizer’ to train the model.

Example 1. Considering the classical risk model as described in Equation (1), we assume that the
individual claim sizes are exponentially distributed with parameter α = 1, the premium income is
c = 1.1, and the parameter of the Poisson process is λ = 1.

Firstly, the training data set is constructed. Setting (u, t) = [0, 10]× [0, 10], we ran-
domly select 200 data points according to uniform distribution in the region and then select
30 points on the initial value t = 0, that is, DE = 200, DI = 30.

Figure 3 demonstrates the training data selected according to uniform distribution
in a given area. For the initial value data point, that is, t = 0, we select u according to
the equidistance principle. In the figure, the mark ’x’ is used to represent the data points
selected at the initial time t = 0. The data points in the region are randomly sampled and
represented by gray points. In addition, data points on the boundary can also be added
in the construction of the training data set, which can make the neural network training
results more accurate.

Figure 3. The randomly selected data points used to construct the training data set.

Figure 4 shows the finite-time survival probability calculated by the DNN approxima-
tion method after 50,000 iterative calculations, and when using Simpson’s rule to process
the integral term, we set δu = 0.05. From the image of the numerical solution, we know that
the approximate solution obtained by the deep neural network method is consistent with
our expected results. Figures 5 and 6 show the errors between the approximate solutions
and exact solutions after 50,000 times of training of two groups of different neural network
parameters. We can see that under Parameter 1, the errors between the value calculated by
DNN method after 50,000 times of training and the exact solution range from 0 to 0.0015;
under Parameter 2, the error range is roughly between 0 and 0.001. On the whole, the error
in Figure 6 is smaller. Combined with the results in Figures 5 and 6, and Table 1, we can see
that the more layers there are in the neural network and the higher the number of neurons
in each layer, the more accurate the calculation results are. However, the more complex
the network structure is, the more resources are consumed in the calculation. Therefore, in
order to balance the accuracy of the calculation results, the time needed for program calcu-
lation, and the computational resources consumed, a more appropriate set of parameters
needs to be selected, which usually requires the experimenter to have enough experience.



Mathematics 2022, 10, 1504 12 of 21

Figure 4. The DNN approximation solution for parameter 1.

Figure 5. The error between DNN approximation for parameter 1 and the explicit solution.

Figure 6. The error between DNN approximation for parameter 2 and the explicit solution.

The key points of Table 1 are as follows:

(1) gives the exact values of the finite-time survival probabilities;
(2) denotes the values of the survival probabilities computed by using the multinomial

lattice approximate method proposed by [15] with ∆h = 0.01;
(3) represents the values calculated by the Monte Carlo simulation with 10,000 path and

∆t = 0.01;
(4) represents the values calculated by the nonparametric estimation (see [21]) with

10,000 data points;
(5) denotes the values computed by using the DNN method with parameter 1;
(6) denotes the values computed by using the DNN method with parameter 2.



Mathematics 2022, 10, 1504 13 of 21

Table 1. Approximated finite-time survival probabilities with exponential claims for different time
horizons (t = 1, 3, 5, 7, 9, 10) with various initial reserves (u = 0, 1, 2, 10).

t = 1 t = 3 t = 5 t = 7 t = 9 t = 10

(1) 0.5366 0.3448 0.2804 0.2457 0.2232 0.2146
(2) 0.5343 0.3429 0.2785 0.2437 0.2212 0.2126

u = 0 (3) 0.5360 0.3385 0.2763 0.2457 0.2196 0.2174
(4) 0.5401 0.3526 0.2876 0.2505 0.2257 0.2121
(5) 0.5369 0.3450 0.2804 0.2458 0.2233 0.2147
(6) 0.5364 0.3445 0.2803 0.2455 0.2226 0.2142

(1) 0.7619 0.5740 0.4881 0.4365 0.4013 0.3874
(2) 0.7625 0.5740 0.4876 0.4357 0.4001 0.3861

u = 1 (3) 0.7624 0.5798 0.4925 0.4341 0.4080 0.3849
(4) 0.7644 0.5815 0.4926 0.4399 0.465 0.3891
(5) 0.7591 0.5753 0.4881 0.4368 0.4017 0.3876
(6) 0.7623 0.5738 0.4877 0.4361 0.4008 0.3871

(1) 0.8803 0.7315 0.6456 0.5886 0.5475 0.5309
(2) 0.8809 0.7318 0.6453 0.5880 0.5465 0.5297

u = 2 (3) 0.8798 0.7336 0.6383 0.5931 0.5460 0.5371
(4) 0.8842 0.7374 0.6483 0.5943 0.5507 0.5322
(5) 0.8801 0.7315 0.6452 0.5882 0.5472 0.5306
(6) 0.8801 0.7315 0.6453 0.5884 0.5473 0.5308

(1) 0.9997 0.9968 0.9908 0.9826 0.9731 0.9681
(2) 0.9994 0.9968 0.9908 0.9827 0.9731 0.9681

u = 10 (3) 0.9999 0.9971 0.9921 0.9813 0.9742 0.9688
(4) 0.9999 0.9986 0.9927 0.9846 0.9765 0.9713
(5) 0.9999 0.9973 0.9916 0.9827 0.9753 0.9705
(6) 0.9999 0.9964 0.9906 0.9823 0.9731 0.9679

Example 2. Considering the classical risk model as described in Equation (1), we assume that the
individual claim size follows Pareto distribution with parameter k = 4, xmin = 2, the premium
income is c = 1.1, and the parameter of the Poisson process is λ = 1.

p(x) =


0, if x ≤ xmin,

kxk
min

xk+1 , if x > xmin.

Figure 7 shows the approximations of survival probability calculated by the DNN
method when the individual claim function is a Pareto distribution. It can be seen from the
figures that when t is fixed, the probability of survival increases when the initial surplus
level u increases, and when u is fixed, the probability of survival decreases as t increases.

The key points of Table 2 are as follows:

(1) denotes the values of the survival probabilities computed by using the multinomial
lattice approximate method with ∆h = 0.01;

(2) represents the values calculated by the Monte Carlo simulation with 10,000 path and
∆t = 0.01;

(3) represents the values calculated by the nonparametric estimation with 10,000 data points;
(4) denotes the values computed by using the DNN method with parameter 1;
(5) denotes the values computed by using the DNN method with parameter 2.



Mathematics 2022, 10, 1504 14 of 21

Figure 7. The DNN approximation solution with a Pareto distribution (the times of training: 50,000).

Table 2. Approximated finite-time survival probabilities with Pareto claim size for different time
horizons(t = 1, 3, 5, 7, 9, 10) with various initial reserves(u = 0, 1, 2, 10).

t = 1 t = 3 t = 5 t = 7 t = 9 t = 10

(1) 0.6240 0.4977 0.4569 0.4361 0.4236 0.4191
(2) 0.6260 0.5020 0.4460 0.4351 0.4283 0.4164

u = 0 (3) 0.6306 0.5061 0.4521 0.4326 0.4265 0.4206
(4) 0.6258 0.5019 0.4518 0.4363 0.4246 0.4132
(5) 0.6254 0.5016 0.4523 0.4358 0.4241 0.4146

(1) 0.8701 0.7666 0.7212 0.6956 0.6793 0.6732
(2) 0.8710 0.7709 0.7229 0.6999 0.6776 0.6774

u = 1 (3) 0.8732 0.7724 0.7219 0.6987 0.6761 0.6754
(4) 0.8680 0.7652 0.7173 0.6933 0.6779 0.6692
(5) 0.8692 0.7659 0.7187 0.6942 0.6773 0.6714

(1) 0.9451 0.8788 0.8425 0.8199 0.8048 0.7990
(2) 0.9430 0.8775 0.8397 0.8183 0.8075 0.8017

u = 2 (3) 0.9418 0.8793 0.8375 0.8214 0.8061 0.8028
(4) 0.9431 0.8771 0.8398 0.8174 0.8029 0.7965
(5) 0.9438 0.8774 0.8407 0.8186 0.8043 0.7987

(1) 0.9989 0.9972 0.9952 0.9933 0.9916 0.9909
(2) 0.9997 0.9987 0.9946 0.9941 0.9911 0.9902

u = 10 (3) 0.9995 0.9991 0.9968 0.9943 0.9897 0.9877
(4) 0.9989 0.9967 0.9944 0.9925 0.9910 0.9904
(5) 0.9989 0.9969 0.9947 0.9941 0.9924 0.9917

5.2. τ(u, t) 6= 0

When τ(u, t) = λ[P̄(u)− P̄(u + y)], the problem becomes how to find the joint distri-
bution function (df) of the ruin time and the deficit at ruin. The joint df satisfies the equation,

∂

∂t
Gθ(u, y, t) =c

∂

∂u
Gθ(u, y, t)− λGθ(u, y, t)

+ λ
∫ u

0
Gθ(u− x, y, t)p(x)dx + λ[P̄(u)− P̄(u + y)].

(28)

Then, we use DNN method to solve Equation (28) under the classical risk model.
For the following examples with different claim size distributions, we use a network
architecture as follows: 4 hidden layers, each layer has 8 neurons, and the activation
function is the tanh function. In order to ensure the accuracy of parameter convergence



Mathematics 2022, 10, 1504 15 of 21

and improve the speed of parameter updating iteration, we adopt a piecewise learning rate
instead of a fixed learning rate

η(n) = 0.01 1{n<1000} + 0.001 1{1000≤n<3000} + 0.0005 1{3000≤n},

where η(n) means that for the step size in the gradient descent type algorithm, the first
1000 steps use a learning rate of 0.01; from 1000 to 3000 the learning rate = 0.001; from 3000
onward, the learning rate = 0.0005, which decays in a piecewise constant fashion, and we
set up a “tf.keras.optimizer” to train the model.

Example 3. We assume that individual claims follow an exponential distribution with the same
parameters as Example 1.

Example 4. We assume that individual claims follow a Pareto distribution with the same parameters
as Example 2.

Firstly, the training data set is constructed and letting (u, y, t) = [0, 10] × (0, 10] ×
[0, 10], we randomly select 200 data points according to uniform distribution in the region
and then select 30 points on the initial value t = 0, that is, DE = 200, DI = 30. The data
collected to construct the training data set for solving Equation (28) are shown in Figure 8.
The data points at t = 0 are represented by a red ’x’, and the data samples inside the region
are represented by black dots. All data points are randomly sampled. Figures 9–11 are the
numerical simulation results of Example 3, and Figures 12–14 are the results of Example 4.

Figure 8. The randomly selected data points used to construct the training data set.

Figure 9 is the approximate solution obtained when y is fixed. We know that as y goes
to infinity, G(u, y, t) degenerates into the distribution of ruin time. Therefore, if y and u
are constant, the value of G(u, y, t) should increase as t increases; if y and t are fixed, the
value of G(u, y, t) decreases as u increases. This is consistent with the numerical simulation
results in Figure 9; with the increase in y or t, the color in the region gradually deepens,
which means that the value of the joint distribution Gθ keeps increasing.



Mathematics 2022, 10, 1504 16 of 21

Figure 9. The values of Gθ(u, y, t) for a fixed y (exponential distribution).

Figure 10. The values of Gθ(u, y, t) for a fixed t (exponential distribution).

Figure 10 shows the numerical solution when t is fixed. As can be seen from the four
subgraphs from the top left to the bottom right, under the condition that u and y remain
unchanged, the overall color of the figures are deepened with the increase in t, that is, the
numerical result of G(u, y, t) becomes larger with the increase in time. This is the same as
the theory that the longer the period of time, the greater the probability of bankruptcy, and
when t = 0, the ruin probability is 0. With other things being equal, the smaller the amount
of initial capital, the greater the ruin probability. The numerical results given in Figure 11
also confirm the fact that as u increases, the value of G(u, y, t) decreases. In other words, as
u increases, the color in the region gradually becomes lighter, that is, the corresponding
joint distribution value also decreases.



Mathematics 2022, 10, 1504 17 of 21

Figure 11. The values of Gθ(u, y, t) for a fixed u (exponential distribution).

Figure 12. The values of Gθ(u, y, t) for a given y (Pareto distribution).

In Figures 12–14, we use the DNN method to give numerical solutions of the joint
distribution of ruin time and the deficit at ruin G(u, y, t) with a Pareto claim distribution.
Figure 12 shows that with the increase in t, the value of G(u, y, t) also increases, that is,
the longer the time, the greater the ruin probability. This result is similar to that of the
exponential distribution; moreover, the results shown in Figures 13 and 14 are the same as
those obtained for the exponential claim size (Figures 10 and 11). According to the results
in Figures 9–11, we can see that deep learning is also suitable for solving high-dimensional
problems. After setting an appropriate network structure, more accurate results can also be
obtained after repeated network training.



Mathematics 2022, 10, 1504 18 of 21

Figure 13. The values of Gθ(u, y, t) for a given t (Pareto distribution).

Figure 14. The values of Gθ(u, y, t) for a given u (Pareto distribution).

It can be seen from the results in Tables 3 and 4 that the calculation time consumed by
the deep neural network in training data sets is positively correlated with the total number
of training times. When Simpson’s discretization is used to deal with the integral term, the
calculation time is greater, and if the replacement formula is used, the calculation time is
greatly reduced. Table 5 shows the CPU time of the Monte Carlo method under different
path number settings when ∆t = 0.01 and ∆t = 0.001. It is worth mentioning that the
results obtained by the DNN method are not for a single data point (ui, ti); rather, for a
given whole interval u× t = [0, 10]× [0, 10], the plane of the numerical solution is given.
The Monte Carlo method and other approximate algorithms can only solve a single data
point (ui, ti). Based on its calculation efficiency, it can be seen that the DNN method has
great advantages.



Mathematics 2022, 10, 1504 19 of 21

Table 3. The CPU time of the DNN method under different parameters and training times (DE = 200,
DI = 30).

N = 1000 N = 5000 N = 10,000 N = 50,000 N = 100,000

Parameter 1 56 s 248 s 515 s 2480 s 4560 s

Parameter 2 146 s 569 s 1074 s 5690 s 10,456 s

Table 4. The CPU time of the DNN method with alternative formulae (DE = 200, DI = 30).

Training Times N = 1000 N = 5000 N = 10,000 N = 50,000 N = 100,000

Parameter 1 2 s 5 s 9 s 42 s 81 s

Parameter 2 3 s 14 s 28 s 135 s 278 s

Table 5. The CPU time of the Monte Carlo method under different paths.

Path Number N = 1000 N = 5000 N = 10,000 N = 50,000 N = 100,000

∆t = 0.01 1 s 6 s 15 s 83 s 205 s

∆t = 0.001 8 s 36 s 76 s 452 s 1104 s

Moreover, the DNN method has another significant advantage: it does not consume
much computer storage space. Random simulation and other approximation algorithms
need to split the direction of time and space in the calculation process, so the previous
results need to be stored in each calculation, that is, the finer the grid, the greater the
required computer storage space. However, the deep neural network method updates the
parameters according to each calculation result, that is, there is no need to store all the
calculation results, thus greatly reducing the consumption of computer memory resources.

6. Conclusions

In this paper, we presented a new method for solving PIDEs. The newly proposed
method uses deep neural networks that are trained iteratively by using gradient descent
type algorithms. For the relatively general individual claim distribution, the general
Simpson’s rule is used to discretize the integral term in the equation. For the exponential
claim distribution, the integral term can be eliminated by transformation so as to transform
the PIDE into a PDE. This is beneficial for improving the efficiency and accuracy of the
calculation in neural network training. Furthermore, due to the effectiveness of neural
networks in approximating functions, this method can also be extended to other risk
models, such as the risk model with diffusion terms and the Markov arrival process (MAP)
risk model in the case of multiple dimensions.

The powerful expressive ability of DNNs enables them to accurately approximate
arbitrary functions. The accuracy of the method depends on several aspects: the depth of
the network, i.e., the number of hidden layers; the number of neurons in each hidden layer;
the iteration step size selection; and the size of the training data set. As we know, when other
conditions remain unchanged, the more layers there are in the neural network, the higher
the accuracy of its calculation. Similarly, the more neurons on each layer and the larger the
size of the training data set, the better the calculation effectiveness of the algorithm.

Although the deep neural network method has great advantages in solving equations,
it is very difficult to estimate the error of this method because the parameter updating
process is a black box. In addition, there is no theoretical basis for setting the network
structure; these decisions rely on the personal experience of researchers.

In the future, we will focus on the deep neural network method for non-local models, as it
can approximate any given function with the aid of a nonlinear structure, thus providing a new
idea for how to deal with problems in high dimensions. In addition, high-order numerical al-



Mathematics 2022, 10, 1504 20 of 21

gorithms and their error analysis in non-local models are also important research directions for
us in the future, especially with respect to irregular regions and multi-dimensional problems.

Author Contributions: Conceptualization, B.S., C.X. and J.L.; Methodology, B.S. and C.X.; Software,
B.S.; Writing—original draft, B.S.; Writing—review and editing, J.L. and C.X. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (Grant No.
2020YFB2103503).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We highly appreciate the editor and four anonymous referees for their very
useful suggestions and inspiring comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2011.
2. Klages, R.; Radons, G.; Sokolov, I.M. Anomalous Transport; Wiley: New York, NY, USA, 2008.
3. Shlesinger, M.F.; Zaslavsky, G.M.; Frisch, U. Lévy Flights and Related Topics in Physics; Springer: Berlin/Heidelberg, Germany, 1995.
4. Dickson, D.C. The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model. Insur. Math.

Econ. 2012, 50, 334–337. [CrossRef]
5. Dickson, D.C.; Willmot, G.E. The density of the time to ruin in the classical Poisson risk model. ASTIN Bull. J. IAA 2005, 35, 45–60.

[CrossRef]
6. Drekic, S.; Willmot, G.E. On the density and moments of the time of ruin with exponential claims. ASTIN Bull. J. IAA 2003, 33, 11–21.

[CrossRef]
7. Li, S.; Lu, Y. Distributional study of finite-time ruin related problems for the classical risk model. Appl. Math. Comput. 2017, 315, 319–330.

[CrossRef]
8. Constantinescu, C.; Samorodnitsky, G.; Zhu, W. Ruin probabilities in classical risk models with gamma claims. Scand. Actuar. J.

2018, 7, 555–575. [CrossRef]
9. Avram, F.; Usabel, M. Finite time ruin probabilities with one Laplace inversion. Insur. Math. Econ. 2003, 32, 371–377. [CrossRef]
10. Dickson, D.C. A note on some joint distribution functions involving the time of ruin. Insur. Math. Econ. 2016, 67, 120–124.

[CrossRef]
11. Willmot, G.E. On a partial integrodifferential equation of Seal’s type. Insur. Math. Econ. 2015, 62, 54–61. [CrossRef]
12. DeVylder, F.E.; Goovaerts, M.J. Explicit finite-time and infinite-time ruin probabilities in the continuous case. Insur. Math. Econ.

1999, 24, 155–172. [CrossRef]
13. Chen, M.; Yuen, K.C.; Guo, J. Survival probabilities in a discrete semi-Markov risk model. Appl. Math. Comput. 2014, 232, 205–215.

[CrossRef]
14. Lefevre, C.; Loisel, S. Finite-time ruin probabilities for discrete, possibly dependent, claim severities. Methodol. Comput. Appl.

Probab. 2009, 11, 425–441. [CrossRef]
15. Costabile, M.; Massabo, I.; Russo, E. Computing finite-time survival probabilities using multinomial approximations of risk

models. Scand. Actuar. J. 2015, 5, 406–422. [CrossRef]
16. Picard, P.; Lefevre, C. The probability of ruin in finite time with discrete claim size distribution. Scand. Actuar. J. 1997, 1997, 58–69.

[CrossRef]
17. Dickson, D.C.; Waters, H.R. Ruin probabilities with compounding assets. Insur. Math. Econ. 1999, 25, 49–62. [CrossRef]
18. Cheung, E.C.; Zhang, Z. Simple approximation for the ruin probability in renewal risk model under interest force via Laguerre

series expansion. Scand. Actuar. J. 2021, 2021, 804–831. [CrossRef]
19. Shimizu, Y. Non-parametric estimation of the Gerber-Shiu function for the Wiener-Poisson risk model. Scand. Actuar. J. 2012,

2012, 56–69. [CrossRef]
20. Zhang, Z. Estimating the Gerber-Shiu function by Fourier-Sinc series expansion. Scand. Actuar. J. 2017, 2017, 898–919. [CrossRef]
21. Zhang, Z. Nonparametric estimation of the finite time ruin probability in the classical risk model. Scand. Actuar. J. 2017, 2017,

452–469. [CrossRef]
22. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
23. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial

differential equations. arXiv 2017, arXiv:1711.10561.

http://doi.org/10.1016/j.insmatheco.2011.12.003
http://dx.doi.org/10.1017/S0515036100014057
http://dx.doi.org/10.1017/S0515036100013271
http://dx.doi.org/10.1016/j.cam.2016.11.024
http://dx.doi.org/10.1080/03461238.2017.1402817
http://dx.doi.org/10.1016/S0167-6687(03)00117-3
http://dx.doi.org/10.1016/j.insmatheco.2015.12.005
http://dx.doi.org/10.1016/j.insmatheco.2015.03.004
http://dx.doi.org/10.1016/S0167-6687(98)00049-3
http://dx.doi.org/10.1016/j.amc.2014.01.057
http://dx.doi.org/10.1007/s11009-009-9123-9
http://dx.doi.org/10.1080/03461238.2013.838603
http://dx.doi.org/10.1080/03461238.1997.10413978
http://dx.doi.org/10.1016/S0167-6687(99)00017-7
http://dx.doi.org/10.1080/03461238.2021.1885483
http://dx.doi.org/10.1080/03461238.2010.523515
http://dx.doi.org/10.1080/03461238.2016.1268541
http://dx.doi.org/10.1080/03461238.2016.1174876
http://dx.doi.org/10.1016/j.jcp.2018.10.045


Mathematics 2022, 10, 1504 21 of 21

24. Beck, C.; Becker, S.; Grohs, P.; Jaafari, N.; Jentzen A. Solving stochastic differential equations and Kolmogorov equations by means
of deep learning. arXiv 2018, arXiv:1806.00421.

25. Van der Meer, R.; Oosterlee, C.W.; Borovykh, A. Optimally weighted loss functions for solving pdes with neural networks. J.
Comput. Appl. Math. 2022, 405, 113887. [CrossRef]

26. Weinan, E.; Han, J.; Jentzen, A. Deep learning-based numerical methods for high-dimensional parabolic partial differential
equations and backward stochastic differential equations. Commun. Math. Stat. 2017, 5, 349–380.

27. Chen, Y.; Yu, H.; Meng, X.; Xie, X.; Hou, M.; Chevallier, J. Numerical solving of the generalized Black-Scholes differential equation
using Laguerre neural network. Digit. Signal Process. 2021, 112, 103003. [CrossRef]

28. Blanka, H.; Muguruza, A.; Tomas, M. Deep learning volatility: A deep neural network perspective on pricing and calibration in
(rough) volatility models. Quant. Financ. 2021, 21, 11–27.

29. Salvador, B.; Oosterlee, C.W.; van der Meer, R. Financial option valuation by unsupervised learning with artificial neural networks.
Mathematics 2021, 9, 46. [CrossRef]

30. Huh, J. Pricing options with exponential Lévy neural network. Expert Syst. Appl. 2019, 127, 128–140. [CrossRef]
31. You, H.; Yu, Y.; D’Elia, M.; Gao, T.; Silling, S. Nonlocal kernel network (nkn): A stable and resolution- independent deep neural

network. arXiv 2022, arXiv:2201.02217.
32. Chen, H.; Yu, Y.; Jaworski, J.; Trask, N.; D’Elia, M. Data-driven learning of Reynolds stress tensor using nonlocal models. Bull. Am.

Phys. Soc. 2021, 66. Available online: https://meetings.aps.org/Meeting/DFD21/Session/E11.2 (accessed on 23 February 2022).
33. Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 2019, 41,

A2603–A2626. [CrossRef]

http://dx.doi.org/10.1016/j.cam.2021.113887
http://dx.doi.org/10.1016/j.dsp.2021.103003
http://dx.doi.org/10.3390/math9010046
http://dx.doi.org/10.1016/j.eswa.2019.03.008
https://meetings.aps.org/Meeting/DFD21/Session/E11.2
http://dx.doi.org/10.1137/18M1229845

	Introduction
	Preliminaries
	Deep Neural Network (DNN) Approach
	General Case
	The General Network Approach
	Alternative Formulae

	Numerical Results
	(u,t)=0
	(u,t)=0

	Conclusions
	References

