
����������
�������

Citation: Chen, K.; Luo, G.; Zhou, H.;

Zhao, D. Research on Formation

Control Method of Heterogeneous

AUV Group under Event-Triggered

Mechanism. Mathematics 2022, 10,

1373. https://doi.org/10.3390/

math10091373

Academic Editors: Thomas Hanne

and Fabio Caraffini

Received: 3 March 2022

Accepted: 18 April 2022

Published: 20 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Research on Formation Control Method of Heterogeneous AUV
Group under Event-Triggered Mechanism †

Ke Chen 1, Guangyu Luo 2,*, Hao Zhou 2 and Dongming Zhao 2

1 Naval Research Institute, Beijing 100094, China; ck3008409@163.com
2 School of Automation, Wuhan University of Technology, Wuhan 430070, China; zhzmq@whut.edu.cn (H.Z.);

dmzhao@whut.edu.cn (D.Z.)
* Correspondence: luoguangyu@whut.edu.cn; Tel.: +86-1582-745-5137
† This paper is an extended version of our paper published in BIC-TA 2021: Bio-Inspired Computing: Theories

and Applications. Communications in Computer and Information Science, Volume 1566. Springer: Singapore.
pp. 206–221.

Abstract: The time-sampling control strategy has communication discontinuities in the control of
multiple AUVs (autonomous underwater vehicles). To overcome this problem, a distributed event-
triggered communication mechanism is proposed to make each AUV communicate only when its
own state is updated, which reduces the frequency of communication and improves the stability.
This mechanism has better adaptability for formation control between heterogeneous AUV groups.
At the same time, two consistency control algorithms based on event-triggered for homogeneous
and heterogeneous AUV groups are studied, respectively. The known consistency algorithms are
applied to the control of heterogeneous AUV groups for comparative analysis. The simulation results
demonstrate that the number of communication among AUVs under the event-triggered control
strategy can be significantly reduced. Therefore, the stability of the system is improved. Compared
with the traditional consensus algorithm, the algorithm proposed in this paper has advantages in the
control of heterogeneous AUV groups.

Keywords: homogeneous AUVs; heterogeneous AUVs; event-triggered control; consistency control

1. Introduction

With the exploration of the ocean by human beings, a single AUV is no longer capable
of handling the tasks with high operation volume and complexity, such as deep-sea resource
exploration, underwater rescue, and deep-sea scientific research [1,2]. Therefore, the
cooperative control of multiple AUVs has become a popular control problem [3]. Multi-
AUV groups are mainly divided into homogeneous and heterogeneous groups [4]. The
homogeneous AUV swarm (HOAUVs) has the same type of AUVs, and the form of the
group is simple and easy to study; thus, most of the research on cooperative control
methods of multi-AUV groups is focused on HOAUVs [5,6]. However, in the actual
mission scenario, due to the different manufacturers of AUVs, their underlying technical
architectures, equipment usage management, mission load functions, and other differences,
the realistic AUV groups are mostly a heterogeneous swarm (HEAUVs). Consequently,
it is of great theoretical value and practical significance to research this type of group [7].
In the case of harsh hydrographic environments and complicated detection tasks, the
high intelligence and multi-functionality of HEAUVs can accomplish tasks that cannot be
accomplished by single AUVs or HOAUVs or are difficult to accomplish. HEAUVs are the
inevitable trend of AUV field development [8].

Multi-AUV systems face many difficulties when operating underwater. In [9], we
can find that the quality and reliability of underwater communication are lacking, and
the communication topology needs to be improved. In [10], there are phenomena such
as packet loss during communication in underwater wireless sensor networks. In [11],
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The interference of underwater acoustic communication has a greater impact on the multi-
AUV system. To reduce the communication frequency, a periodic pulse control strategy is
proposed [12]. Neighboring AUVs communicate only at pulse moments, and this strategy
also causes unnecessary communication due to the use of a fixed pulse period and does
not address the continuous update problem [13]. In practical engineering applications,
the behavior of AUVs is mainly controlled by an embedded digital controller [14]. In this
controller role, the sampling of data, control law updates, and information transfer occurs
at the moment of the fixed sampling period [15]. We call this approach a time-triggered
control strategy. This control method has been widely used for some time because of
its ease of controller design and implementation [16]. It can be found that when using
the time-triggered control strategy, the fixed sampling period is generally chosen to be
relatively small to take into account the system stability and performance, which inevitably
results in frequent controller updates and data transfer. In the operation process, when
the difference between the two sampled state values is small and the system tends to be
stable, there is no need for the system to update the controller frequently and pass the
information several times [17]. Although the time-triggered control will reduce the number
of communications and controller updates to a certain extent, it also causes unnecessary
consumption of computational and communication resources. Therefore, a more effective
control method, event-triggered control, has been proposed [18].

Event-triggered control strategy, compared with the time trigger, does not need to
set a fixed sampling period in the state acquisition [19]. Event-triggered control needs to
meet the system stability for the premise by setting a trigger condition [20]. When the
state error associated with the system does not meet this preset condition, the system will
only perform a corresponding action, that is, controller update, as well as information
transmission [21]. Event-triggered control can be divided into centralized event triggering
and distributed event triggering [22]. In centralized event-triggered control, there is only
one trigger condition in the system, and a control center is needed to obtain the state
information of all the agents. When the system does not satisfy this trigger condition, all
the agents update the controller at this moment and transmit the information to other
neighboring intelligences [23]. For the distributed event-triggered control, each agent
has its trigger condition; thus, each agent controller updates and broadcasts its trigger
sampling state at different moments [24]. Compared with the centralized trigger control,
the distributed trigger control requires only local information and has better flexibility and
immunity to interference.

At present, the problem of the coherent control of multi-intelligent systems based
on event-triggered mechanisms has received the attention of many scholars at home and
abroad, and many research results have been achieved. Deng studied the event-triggered
tracking control problem for fully driven AUVs in the vertical plane [25]. Gao studied a
fixed-time pilot-following formation control method for a set of AUVs with event-triggered
acoustic communication [26]. Kim proposed a distributed event-driven adaptive formation
control strategy for the 3D formation tracking of a group of AUVs [27]. Li proposed
asynchronous and synchronous communication strategies and proved the consistency of the
algorithm with limited information exchange and distributed communication delays [28].
Mu studied the event-triggered consensus problem for multi-intelligent systems with input
time delays [29]. Su studied the fixed-time event-triggered formation control problem for
multi-AUV systems with external uncertainty [30]. Su proposed an event-triggered integral
sliding mode fixed-time control method to solve the trajectory tracking problem for AUVs
with disturbances [31]. Xu studied the event-triggered distributed adaptive dichotomous
consensus control problem for a multi-AUV system with fixed topology [32].

From these studies, we can find that most researchers focus on the study of HOAUVs,
and there are fewer research results involving the control strategy of HEAUVs. In designing
the event triggering control strategy, it is necessary to ensure that the interval between any
two consecutive event triggering moments is greater than zero, to avoid the occurrence
of the zeno phenomenon, which refers to a system with numerous triggers in a finite
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period of time. How to effectively avoid this phenomenon is key in event triggering
control. The periodic event triggering strategy can be a good solution to this problem [33].
Unlike the trigger control in the above literature, the periodic event triggering strategy
combines the time triggering strategy and the event triggering strategy. The strategy
judges the event triggering conditions at the sampling moment, thus further saving the
computational resources. Since the event triggering moments all occur at the sampling
moment, the minimum event triggering interval is a fixed period. The difference between
event-triggered and time-triggered is illustrated in Figure 1.

AUV

Controller

System 

Status

Control 

Input
Sampling 

Status

Period 

sampler

Time-triggered control

AUV
Period 

sampler

Controller

Event -trigger

Event-triggered control

control 

input
Sampling 

status

System 

Status

Figure 1. The difference between event-triggered and time-triggered.

In the information exchange process of HEAUVs, the application of the periodic event
triggering strategy does not require continuous time communication, but through a pulse
time series. However, this strategy also creates unnecessary communication due to the
fixed pulse period and does not solve the problem of continuous controller updates.

Motivated by these existing works and observations, this paper proposes a distributed
event-triggered control strategy for HOAUVs and HEAUVs. The main contributions can
be summarized as follows:

1. A distributed event-triggered communication mechanism is proposed to make each
AUV communicate only when its own state is updated.

2. Solve the cooperative control problem of HEAUVs, which can make the state of all
AUVs consistent while saving computing resources and communication bandwidth.

3. When analyzing the minimum event trigger interval, a sufficient condition of the trig-
ger condition is obtained. This condition is used to prove that the zeno phenomenon
does not occur in the system.

The remainder of this paper is organized as follows: First, in Section 2, the dynamics
of AUV and some assumptions are given. Then, the controller is designed for HOAUVs
and HEAUVs in Section 3. Section 4 provides a simulation for multi-AUVs to demonstrate
the control algorithms based on the event triggering strategy. Finally, Section 5 concludes
this paper.

2. Problem Statement
2.1. Dynamics of AUV

For the convenience of problem research, this article assumes that the AUV is fully
driven; each AUV can detect its position and angle information, and can receive the status
information of the neighbor AUV. To describe the motion state of the AUV, an inertial
coordinate system I and a motion coordinate system B are established, respectively. The
AUV model is established as shown in Figure 2.

In practical engineering applications, the mathematical model of the AUV has nonlin-
ear strongly coupled characteristics, which adds a great deal of difficulty to the design of
the corresponding motion controller. When the equations of motion of a system become
complex, it is often possible to develop design models that have less mathematical complex-
ity but still capture the fundamental characteristics of the system. This paper simplifies the
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design of a model suitable for the design of AUV control algorithms. The AUV equations
of motion can be transformed into a nonlinear state space represented by a fixed coordinate
system, which is more suitable for linearization. Neglecting the external disturbances,
the equations of the AUV model of motion in three degrees of freedom are considered
as follows. {

η̇=J(η)ν
ν̇=M−1(−C(ν)ν− D(ν)ν− g(η) + τ),

(1)

where J(η) denotes the rotational transformation matrix, M denotes the inertia matrix, C(ν)
denotes the Koch force matrix, and D(ν) denotes the damping matrix. η = (x, y, z) denotes
the position state of the AUV, and x, y, z denotes the current northward, eastward, and
depth-on coordinates of the AUV in a fixed coordinate system, respectively. ν = (u, v, w)
denotes the linear velocity of the AUV, and u, v, w denotes the longitudinal, lateral, and
vertical velocities of the AUV, respectively. g(η) denotes the moment vector. τ denotes the
thrust force, which is the control quantity to be designed in this paper.

v
(sway) w

(heave)

u
(surge)

y
(earth) 

z
(depth)

x
(north)

Figure 2. Model diagram of underactuated AUV in inertial and fixed coordinates.

2.2. Assumptions and Lemmas

Assumption 1. Define the matrix:

Qi(ηi) = R−T
i (ψi)MiR−1

i (ψi), (2)

where Qi(ηi) ∈ R3×3 is a positive definite symmetric matrix. There exist positive numbers KQ min
and KQ max, which satisfy KQ minxTx ≤ xTQi(ηi)x ≤ KQ maxxTx for any x.

Assumption 2. Define the matrix:

G(ηi, η̇i) = R−T
i (ψi)

[
Ci

(
R−1

i (ψi)η̇i

)
−MiR−1

i Ṙi(ψi) + Di

]
R−1

i (ψi), (3)

where Q̇i(ηi)− 2G(ηi, η̇i) is a skew-symmetric matrix. There exists a positive number KG satisfying
xTG(ηi, η̇i)x ≤ KG‖η̇i‖xTx for any x.

Lemma 1. When trigger function fi(t) ≤ 0 and 0 < c < 2ω
(2|Ni |+ω)

, the time interval satisfies

∆ti
k > 0 [2].
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3. Controller Design
3.1. Event-Triggered Controller for HOAUVs

We designed a distributed event-triggered controller for homogeneous AUV groups.

lim
t→∞

ηi − ηj = 0

lim
t→∞

vi − vj = 0.
(4)

Suppose Ri(ψi)vi = γi. Due to Ri
−1(ψi) = Ri

T(ψi), (Ri
−1)T(ψi) = Ri

−T(ψi), vi =
R−1

i (ψi)γi; Equation (1) can be written as
η̇i = γi
MiR−1

i (ψi)(γ̇i − Ṙi(ψi)R−1
i (ψi)γi)

= −Ci(R−1
i (ψi)γi)R−1

i (ψi)γi − DiR−1
i (ψi)γi + τi.

(5)

Suppose
Qi = Ri

−T(ψi)MiR−1
i (ψi),

Gi = Ri
−T(ψi)[Ci(R−1

i (ψi)η̇i)−MiR−1
i (ψi)Ṙi(ψi)− Di]R−1

i (ψi),

pij = ηi − ηj,

then, Equation (5) can be written as{
ṗij = γi − γj

γ̇i = −Q−1
i (Gγi − τqi),

(6)

where τqi = Ri
−T(ψi)τi denotes the control input we need to design.

Aiming at the control problems of the above systems, Hu et al. proposed a consistent
distributed control protocol under the action of impulses in order to reduce the number of
communications [34].

τ(t) = − ∑
j∈Ni

aij
(
ηi(t)− ηj(t)

)
o(t− tk)−ωγi(t), (7)

where aij represents the corresponding element value of the adjacency matrix, ω is a
constant, o(t− tk) represents the impulse function at time tk and works once. It can
be observed that in this control strategy, the control inputs of all AUVs still need to be
updated continuously. Based on the shortcomings of this control protocol, the following
improvements are made.

The controller is shown below.

τqi(t) = − ∑
j∈Ni

aij(ηi(ti
k)− ηj(t

j
k))−ωγi(ti

k), t ∈ [tk, tk+1], (8)

Unlike Equation (7), we change the cycle time t to the event trigger (ti
k), where k

denotes the trigger moment, implying that the control volume is updated once only when
the state changes. Additionally, if we consider more general motion scenarios, we only
need to add depth to the control input in the control protocol. The control input can be
changed to η(x, y, z), where z is the depth. To describe the variation of the control quantity
more precisely, we introduce the error function eηi(t) and eγi(t), which denote the errors
between the AUV and the leader in position and velocity, respectively. The event-triggered
function can be represented as follows.

fi(t) = ‖ei(t)‖ −

√
cαiβi
2θi
‖γi(t)‖ − δi(t), (9)
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where αi, βi, θi are all constants greater than 0, and δi(t) denotes compensation function.
Next, we will demonstrate the stability of the controller.

Proof. Suppose a Lyapunov function:

V =
1
2

n

∑
i=1

n

∑
j=1

aij pT
ij pij +

1
2

n

∑
i=1

γT
i Qiγi, (10)

where Qi is a symmetric and positive definite matrix. V > 0 when pij and γi are not
simultaneously 0. The derivative of V is

V̇ =
n

∑
i=1

n

∑
j=1

aij pT
ij(γi − γj) +

n

∑
i=1

γi
TQiγ̇i +

1
2

γi
TQ̇iγi

≤ −
n

∑
i=1

ωγi
Tγi −

n

∑
i=1

γi
T

n

∑
j=1

aijeηi(t)

+
n

∑
i=1

γi
T

n

∑
j=1

aijeη j(t)−
n

∑
i=1

ωγi
Teγi(t).

(11)

Due to
n

∑
i=1

n

∑
j=1

aij
∥∥eηi(t)

∥∥ =
n

∑
i=1

n

∑
j=1

aij
∥∥eη j(t)

∥∥, (12)

V̇ ≤ −
n

∑
i=1

ωγi
Tγi + 2

n

∑
i=1

∥∥∥γi
T
∥∥∥ n

∑
j=1

aij
∥∥eηi(t)

∥∥− n

∑
i=1

ωγi
Teγi(t)

≤ −
n

∑
i=1

ωγi
Tγi +

n

∑
i=1
|Ni|

(
cγi

Tγ +
1
c

eηi
T(t)eηi(t)

)
+

n

∑
i=1

|Ni|
c

eηi
T(t)eηi(t) +

n

∑
i=1

ω

2c
eγi

T(t)eγi(t).

(13)

When fi(t) ≤ 0,
‖ei(t)‖2 ≤ 2ζi

2‖γi(t)‖2 + 2δi
2(t). (14)

V̇ ≤ −
n

∑
i=1

βi‖γi‖2 +
n

∑
i=1

|Ni|
c
∥∥eηi

∥∥2
+

n

∑
i=1

ω

2c
∥∥eγi

∥∥2

≤ −
n

∑
i=1

βi‖γi‖2 +
n

∑
i=1

θi
c
‖e‖2

≤ −
n

∑
i=1

(1− αi)βi‖γi‖2 +
n

∑
i=1

2θi
c

κi
2e−2ε(t−t0).

(15)

Integrating over Equation (15):

n

∑
i=1

(1− αi)βi

∫ t

0
‖γi(∂)‖2d∂ ≤ V(0) +

n

∑
i=1

θiκ
2
i

cεi
. (16)

Due to Qi and Gi being bounded, γ̇i is bounded. Therefore, lim
t→∞

γi = 0, γ̇i →

0,ηi(ti
k)− ηj(t

j
k)→ 0.

3.2. Event-Triggered Controller for HEAUVs

Supposing HEAUVs contain N AUVs, the kinetic equation can be expressed as follows [35].

η̇i(t) = Aηi(t) + Bτi(t) + ψ∗i , i = 1, 2, ..., N, (17)
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where ηi denotes state variables, τi denotes control inputs, ψ∗i denotes bounded vectors
of AUVi, and A and B denote system parameters. Based on the event triggering mecha-
nism [36], we design the controller as shown in Equation (18).

τi(t) = si(t) + K ∑
j∈Ni

aij(η̂j(t)− η̂i(t)), t ∈ [ti
k, ti

k+1), (18)

where K denotes control gain matrix, η̂i(t) = eA(t−ti
k)ηi(ti

k) denotes estimated value, and
aij denotes the i,j element of the adjacency matrix A. To compensate for the heterogeneity,
variable si(t) is introduced. si(t) updates when the event trigger condition is activated [36].

ṡi(t) = H ∑
j∈Ni

aij(ŝj(t)− ŝi(t)), (19)

where ŝi(t) = ψ∗i + si(ti
k), H denotes the corresponding control gain matrix. The event

trigger function is shown in Equation (20).

fi(t) = ‖ei(t)‖ − c1

∥∥∥∥∥ ∑
j∈Ni

aij(η̂j(t)− η̂i(t)) + ∑
j∈Ni

aij(ŝj(t)− ŝi(t))

∥∥∥∥∥− c2e−αt, (20)

where ei(t) =
[

ET
η,i(t), ET

s,i(t)
]T

, Eη,i(t) = ηi(ti
k)− ηi(t) and Es,i(t) = si(ti

k)− si(t) denote
the measurement error. Next, we will demonstrate the stability of the designed controller.

Proof. Suppose there exist positive definite matrices P̄ = diag{P̄1, P̄2} and M̄ =
diag{M1, M2}, then K = M1P̄−1

1 and H = M2P̄−1
2 . According to the event triggering

mechanism, we can know that the stability of the system can be proven when Equation (21)
is satisfied [37]. 

0 < α < λ
2

0 < c1 < min
{√

1
λmax(P̄−1)

, 1
N‖L⊗I2n‖

}
0 < c2 <

√
1

λmax(P̄−1)
.

(21)

Due to

‖ei(t)‖ ≤ c1

∥∥∥∥∥ ∑
j∈Ni

aij(x̂j(t)− x̂i(t)) + ∑
j∈Ni

aij(ẑj(t)− ẑi(t))

∥∥∥∥∥+ c2e−αt

≤ c1‖(L⊗ I2n)δ(t) + (L⊗ I2n)e(t)‖+ c2e−αt.

(22)

Sum of squares for Equation (22):

N

∑
i=1
‖ei(t)‖2 ≤ 4Nc1

2‖(L⊗ I2n)δ(t)‖2

+ 4Nc1
2‖(L⊗ I2n)e(t)‖2

+ 2Nc2
2e−2αt.

(23)

A Lyapunov function is chosen for a fixed topology [38]:

V(δ(t)) = δ(t)TPδ(t). (24)
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Taking the derivative of V(δ(t)):

V̇(δ(t)) = 2δ(t)TP[Âδ(t) + B̂δ(t) + B̂e(t)]

≤ η̃(t)T∏
1

η̃(t)− λδ(t)TPδ(t) + e(t)TPe(t)

≤ η̃(t)T∏
1

η̃(t)− λδ(t)TPδ(t) + λmax(P)e(t)Te(t).

(25)

Due to c2
1c2

2 ∈ (0, λmax(P)), Equation (25) can be written as

V̇(δ(t)) ≤ η̃(t)T∏
2

η̃(t)− λδ(t)TPδ(t) + 2Ne−2αt

≤ −λV(δ(t)) + 2Ne−2αt.
(26)

Integrating over Equation (26):

V(δ(t)) ≤ V(δ(t0))e−λ(t−t0) + 2N
∫ t

t0

e−2αtds

≤ V(δ(t0))e−λ(t−t0) +
2N

λ− 2α
e−2αt.

(27)

Suppose q1 = λmin(P), q2 = λmax(P)

q1‖δ(t)‖2 ≤ V(δ(t)) ≤ q2‖δ(t)‖2, (28)

‖δ(t)‖2 <
q2‖δ(t)‖2

q1
eλ(t−t0) +

2N
q1(λ− 2α)

e−2αt. (29)

In summary, HEAUVs can reach agreement with the control gain of K = M1P̄−1
1 and

H = M2P̄−1
2 .

We reflect the anti-interference ability of the controller through the proof of stability.
However, this controller still needs further improvement when dealing with the problem
of parameter uncertainty.

4. Simulation and Analysis
4.1. Simulation of HOAUVs under Event-Triggered Control

This subsection conducts a simulation analysis for the consistency control algorithm of
HOAUVs under event-triggered control. One leader and four followers form an isomorphic
multi-AUV swarm [39]. The initial position of the pilot is randomly distributed in the
interval [−5, 5], the initial position of each follower is randomly distributed in the interval
[−10, 10], the initial combined speed is assumed to be 5 m/s, and the initial values of
other state variables are set to 0. The control input of the leader AUV u0(t) = t sin t is set,
and the trigger interval is set to 0.1 s. According to the controller, select the control gain
γx = γy = 1, γz = 1.6 . The system-weighted adjacency matrix is shown as follows [40].

A =


0 1 1 0 0
1 0 0 1 1
1 0 0 0 1
0 1 0 0 0
0 1 1 0 0

D =


2 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 2

 (30)

The simulation results are shown in Figure 3. From Figure 3a,b, it can be observed
that the formation process of the AUV swarm and the state of the formation keep their
navigation. From Figure 3b, it can be observed that the followers in the AUV swarm are able
to keep the desired relative distance motion with the navigator. From Figure 3c–e, it can
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be observed that the velocity of the followers is able to reach the same speed as that of the
navigator. The acceleration of the follower eventually converges to zero. The event trigger
moments are shown in Figure 3f. It can be observed that the proposed control mechanism
can significantly reduce the number of communications. In realistic applications, we
can select four or more AUVs of equal size and type as test objects. The control center
is deployed on the shore, and control commands are sent to each AUV according to a
fixed period. According to the motion data returned by the AUV, the consistency control
algorithm is used to adjust the control instructions to realize the consistency control of
HOAUVs. Moreover, in the actual underwater communication environment, we can take
the time delay into account. In the original control strategy, we introduce a fixed time delay,
and its formation change is shown in Figure 4a,b. It can be observed from the figure that
when there is a time delay, the original control strategy obviously cannot guarantee that the
state of HOAUVs reaches the same state in a limited time. Therefore, we need to improve
the control strategy, which is also the direction for further research in this paper.

(a) (b)

(c) (d)

Figure 3. Cont.
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(e) (f)

Figure 3. (a) HOAUVs’ formation (2-D); (b) HOAUVs’ formation (3-D); (c) state in x-direction
(HOAUVs); (d) state in y-direction (HOAUVs); (e) state in z-direction (HOAUVs); (f) event trigger
time (HOAUVs).

(a) (b)

Figure 4. (a) State in x-direction (HOAUVs with time delay); (b) state in y-direction (HOAUVs with
time delay).

4.2. Simulation of HEAUVs under Event-Triggered Control

In this section, simulation is performed to verify the event-triggered controller de-
signed for HEAUVs. To contrast with the previous section, the formation and initial
condition settings are kept the same as Section 4.1. The parameters of each type of AUV
system are as follows.

AUV1:

A1=

[
03×3 diag{1, 1, 1}
03×3 diag{0.1668, 0.1991, 0.5766}

]
B1=

[
03×3

diag{−0.01236,−0.0087,−0.0087}

]
AUV2:

A2=

[
03×3 diag{1, 1, 1}
03×3 diag{0.5253, 0.3690, 0.9395}

]
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B2=

[
03×3

diag{−0.01162,−0.0068,−0.0070}

]
AUV3:

A3=

[
03×3 diag{1, 1, 1}
03×3 diag{0.0882, 0.1532, 0.1364}

]
B3=

[
03×3

diag{−0.0007,−0.0004,−0.0004}

]
AUV4:

A4=

[
03×3 diag{1, 1, 1}
03×3 diag{0.1337, 0.1902, 0.1693}

]
B4=

[
03×3

diag{−0.0002,−0.0001,−0.0001}

]
The formation process of HEAUVs can be observed in Figure 5a,b. The position and

velocity of the follower can reach the leader, and the acceleration of the follower eventually
converges to zero, as shown in Figure 5c–e. The event trigger moments are shown in
Figure 5f. As can be observed from the figure, in the distributed event-triggered control
algorithm proposed in this paper, each follower AUV only updates the control signal at the
trigger time of its event, without considering the trigger time of its neighbor nodes, which
can effectively reduce a large number of redundant AUVs. This can reduce the update
frequency of the control signal of the system. Moreover, the estimation-based triggering
condition is adopted, which can effectively prolong the release time of event triggering and
reduce the number of event triggering controls. The convergence of the final speed and
position state is better, and the consistency can be obtained faster.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. (a) HEAUVs’ formation (2-D); (b) HEAUVs’ formation (3-D); (c) state in x-direction
(HEAUVs); (d) state in y-direction (HEAUVs); (e) state in z-direction (HEAUVs); (f) event trigger
time (HEAUVs).

For comparison, we compare with the time-triggered control strategy [4]. The rest of
the conditions refer to the settings in Section 4.2 and remain unchanged. We modify the
control strategy to the time-triggered control. We select the combined velocity in the x and
y directions as a comparison, and the simulation results are shown in Figure 6a,b.

It can be observed from the figure that due to the problem of the trigger mechanism,
the state of each AUV cannot complete the convergence, and the overall situation presents
a divergent trend. The distributed consistency control strategy proposed in this paper
considers the heterogeneity of AUV groups, and has stronger applicability to HEAUVs. In
summary, the simulation results illustrate that the proposed event-triggered cooperative
formation control scheme is effective.
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(a) (b)

Figure 6. (a) Velocity in x-y direction (HEAUVs with event-triggered); (b) velocity in x-y direction
(HEAUVs with time-triggered).

5. Conclusions

In this paper, the consistency problem of the AUV swarm via event-triggered control
is studied. The distributed consistency control algorithms based on an event-triggered
mechanism for homogeneous and heterogeneous AUVs are proposed, respectively. Firstly,
an AUV dynamics model with three degrees of freedom is given. Then, a simple transforma-
tion of the model is performed. An event-triggered control protocol and an event-triggered
function are designed for the transformed model. After that, the stability analysis of the
algorithm is combined with the Lyapunov stability theory, matrix theory knowledge, and
Barbalat’s Lemma. It is proven that the algorithm can achieve the consistent state of all
AUVs while saving computational resources and communication bandwidth. In analyz-
ing the minimum event trigger interval, a sufficient condition for the trigger condition
is obtained.

The current research on the coordinated control of AUVs mainly relies on linear
models. However, the singular matrix generated by the linearization process also brings
some problems to the controller design. Therefore, the coordinated control method directly
using the complex model will become the focus of subsequent research.
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