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Abstract: Dynamic systems of linear and nonlinear differential equations with pure delay are consid-
ered in this study. As an application, the representation of solutions of these systems with the help of
their delayed Mittag–Leffler matrix functions is used to obtain the controllability and Hyers–Ulam
stability results. By introducing a delay Gramian matrix, we establish some sufficient and neces-
sary conditions for the controllability of linear delay differential systems. In addition, by applying
Krasnoselskii’s fixed point theorem, we establish some sufficient conditions of controllability and
Hyers–Ulam stability of nonlinear delay differential systems. Our results improve, extend, and
complement some existing ones. Finally, two examples are given to illustrate the main results.

Keywords: controllability; delay differential system; delayed matrix function; Hyers–Ulam stability;
delay Gramian matrix; Krasnoselskii’s fixed point theorem

MSC: 93B05; 93C23; 93D05

1. Introduction

Numerous processes in mechanical and technological systems were described us-
ing fractional delay differential equations. These systems are frequently utilized in the
modelling of phenomena in technological and scientific problems. These models have
applications in diffusion processes [1], viscoelastic systems [2,3], modeling disease [4],
forced oscillations, signal analysis, control theory, biology, computer engineering, finance,
and population dynamics; see for instance [5–7]. On the other hand, in 2003, Khusainov and
Shuklin [8] constructed a novel notion of a delayed exponential matrix function to represent
the solutions of linear delay differential equations. In 2008, Khusainov et al. [9] used this
method to express the solutions of an oscillating system with pure delay by constructing a
delayed matrix sine and a delayed matrix cosine. This pioneering research yielded plenty
of novel results on the representation of solutions [10–14], which are applied in the stability
analysis [15,16], and control problems [17,18] of time-delay systems. The controllability of
systems is one of the most fundamental and significant concepts in modern control theory,
which consists of determining the control parameters that steer the solutions of a control
system from its initial state to its final state using the set of admissible controls, where
initial and final states may vary over the entire space. In recent decades, the controllability
of differential delay systems has been studied by many authors. There are a few recent
studies in the literature on control theory [19–24] and Ulam stability [25–28] for delay
differential equations.

However, to the best of our knowledge, no study exists dealing with the controllability
of the linear delay differential equations

y′′(x) +Ay(x− h) = Bu(x), x ∈ Ω := [0, x1],
y(x) ≡ ψ(x), y′(x) ≡ ψ′(x), − h ≤ x ≤ 0,

(1)

Mathematics 2022, 10, 1248. https://doi.org/10.3390/math10081248 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10081248
https://doi.org/10.3390/math10081248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3574-2939
https://orcid.org/0000-0002-7968-7188
https://doi.org/10.3390/math10081248
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10081248?type=check_update&version=1


Mathematics 2022, 10, 1248 2 of 18

and the controllability and Hyers–Ulam stability of the corresponding nonlinear delay
differential equations

y′′(x) +Ay(x− h) = f (x, y(x)) +Bu(x), x ∈ Ω,
y(x) ≡ ψ(x), y′(x) ≡ ψ′(x), − h ≤ x ≤ 0,

(2)

where h > 0 is a delay; x1 > (n− 1)h, y(x) ∈ Rn, ψ ∈ C([−h, 0],Rn), A ∈ Rn×n, and
B ∈ Rn×m are matrices; u(x) ∈ Rm shows the control vector; and f ∈ C(Ω×Rn,Rn) is a
given function.

Very recently, Elshenhab and Wang [11] gave a new representation of solutions of the
linear differential equations with pure delay

y′′(x) +Ay(x− h) = f (x), x ≥ 0,
y(x) ≡ ψ(x), y′(x) ≡ ψ′(x), − h ≤ x ≤ 0,

(3)

as follows:

y(x) = Hh(A(x− h))ψ(0) +Mh(A(x− h))ψ′(0)

−A
∫ 0

−h
Mh(A(x− 2h− ϑ))ψ(ϑ)dϑ

+
∫ x

0
Mh(A(x− h− ϑ)) f (ϑ)dϑ, (4)

whereHh(A(x)) andMh(A(x)) are called the delayed matrix functions formulated by

Hh(A(x)) :=



Θ, −∞ < x < −h,
I, − h ≤ x < 0,
I−A x2

2! , 0 ≤ x < h,
...

...

I−A x2

2! +A2 (x−h)4

4!

+ · · ·+ (−1)rAr (x−(r−1)h)2r

(2r)! , (r− 1)h ≤ x < rh,

(5)

and

Mh(A(x)) :=



Θ, −∞ < x < −h,
I(x + h), − h ≤ x < 0,
I(x + h)−A x3

3! , 0 ≤ x < h,
...

...

I(x + h)−A x3

3! +A2 (x−h)5

5!

+ · · ·+ (−1)rAr (x−(r−1)h)2r+1

(2r+1)! , (r− 1)h ≤ x < rh,

(6)

respectively, where r = 0, 1, 2, . . . , and the notations I is the n× n identity matrix and Θ is
the n× n null matrix.

Applying Formula (4), the solution of (2) can be expressed as

y(x) = Hh(A(x− h))ψ(0) +Mh(A(x− h))ψ′(0)

−A
∫ 0

−h
Mh(A(x− 2h− ϑ))ψ(ϑ)dϑ

+
∫ x

0
Mh(A(x− h− ϑ)) f (ϑ, y(ϑ))dϑ

+
∫ x

0
Mh(A(x− h− ϑ))Bu(ϑ)dϑ, (7)

Motivated by [11,17], as an application, the explicit formula of solutions (7) of (3) and
the delayed matrix functions are used to obtain controllability results on Ω = [0, x1].
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The rest of this paper is arranged as follows: In Section 2, we give some preliminaries,
basic notations and fundamental definitions, and some lemmas. Furthermore, we give
two very important lemmas, which provide estimations of norms for the delayed matrix
functions, which are used while discussing controllability and Hyers–Ulam stability. In
Section 3, we give sufficient and necessary conditions of the controllability of (1) by in-
troducing a delay Gramian matrix. In Section 4, we establish sufficient conditions of the
controllability of (2) by applying Krasnoselskii’s fixed point theorem. In Section 5, we
discuss the Hyers–Ulam stability of (2) on the finite time interval [0, x1]. Finally, we give
two examples to illustrate the main results.

2. Preliminaries

Throughout the paper, we refer to C(Ω,Rn) as the Banach space of vector-valued
continuous function from Ω→ Rn endowed with the norm ‖y‖C(Ω) = maxx∈Ω‖y(x)‖ for
a norm ‖·‖ on Rn, and the matrix norm as ‖A‖ = max‖y‖=1‖Ay‖, where A : Rn → Rn.
We define a space C1(Ω,Rn) = {y ∈ C(Ω,Rn) : y′ ∈ C(Ω,Rn)}. Let X, Y be two Banach
spaces and Lb(X, Y) be the space of bounded linear operators from X to Y. Now, Lp(Ω, Y)
indicates the Banach space of functions f : Ω → Y that are Bochner integrable normed
by ‖ f ‖Lp(Ω,Y) for some 1 < p < ∞. Furthermore, we let ‖ψ‖C = maxs∈[−h,0]‖ψ(s)‖ and
‖ψ′‖C = maxs∈[−h,0]‖ψ′(s)‖.

We recall some basic notations and fundamental definitions used throughout this paper.

Definition 1 ([6]). The Mittag–Leffler function with two parameters is given by

Eα,γ(z) =
∞

∑
r=0

zr

Γ(αr + γ)
, α, γ > 0, z ∈ C,

where Γ is a gamma function. Especially, if γ = 1, then

Eα,1(z) = Eα(z) =
∞

∑
r=0

zr

Γ(αr + 1)
, α > 0.

Definition 2 ([28]). The systems (1) or (2) are controllable on Ω = [0, x1] if there exists a control
function u ∈ L2(Ω,Rm) such that (1) or (2) have a solution y : [−h, x1] → Rn with y(0) = y0,
y′(0) = y′0 satisfies y(x1) = y1 for all y0, y′0, y1 ∈ Rn.

Definition 3 ([27]). The system (2) is Hyers—Ulam stable on [0, x1] if there exists, for a given
constant ε > 0, a function ϕ ∈ C(Ω,Rn) satisfying the inequality∥∥ϕ′′(x) +Aϕ(x− h)− f (x, ϕ(x))−Bu(x)

∥∥ ≤ ε, x ∈ [0, x1], (8)

and there exists a solution y ∈ C(Ω,Rn) of (2) and a constant M > 0 such that

‖ϕ(x)− y(x)‖ ≤ Mε, for all x ∈ [0, x1].

Remark 1 ([27]). A function ϕ ∈ C(Ω,Rn) is a solution of the inequality (8) if and only if there
exists a function g ∈ C(Ω,Rn) such that

(i) ‖g(x)‖ ≤ ε, x ∈ Ω.
(ii) ϕ′′(x) = −Aϕ(x− h) + f (x, ϕ(x)) +Bu(x) + g(x), x ∈ Ω.

Lemma 1. For any x ∈ [(m− 1)h, mh], m = 1, 2, . . . , we have

‖Hh(A(x))‖ ≤ E2

(
‖A‖x2

)
.
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Proof. Using (5), we obtain the following

‖Hh(A(x))‖ ≤ 1 + ‖A‖ x2

2!
+ ‖A‖2 (x− h)4

4!

+ · · ·+ ‖A‖m (x− (m− 1)h)2m

(2m)!

≤ 1 + ‖A‖ x2

2!
+ ‖A‖2 x4

4!
+ · · ·+ ‖A‖m x2m

(2m)!

≤
∞

∑
k=0

(
‖A‖x2)k

(2k)!
= E2

(
‖A‖x2

)
.

This completes the proof.

Lemma 2. For any x ∈ [(m− 1)h, mh], m = 1, 2, . . . , we have

‖Mh(A(x))‖ ≤ (x + h)E2,2

(
‖A‖(x + h)2

)
.

Proof. Using (6), we obtain the following

‖Mh(A(x))‖ ≤ (x + h) + ‖A‖ x3

3!
+ ‖A‖2 (x− h)5

5!

+ · · ·+ ‖A‖m (x− (m− 1)h)2m+1

(2m + 1)!

≤ (x + h) + ‖A‖ (x + h)3

3!
+ ‖A‖2 (x + h)5

5!

+ · · ·+ ‖A‖m (x + h)2m+1

(2m + 1)!

≤
∞

∑
k=0

[
‖A‖(x + h)2

]k
(x + h)

(2k + 1)!
= (x + h)E2,2

(
‖A‖(x + h)2

)
.

This completes the proof.

Lemma 3. Let ϕ ∈ C(Ω,Rn) be a solution of the inequality (8). Then, ϕ is a solution of
the inequality

‖ϕ(x)− ϕ∗(x)‖ ≤ x2ε

2
E2,2

(
‖A‖x2

)
,

where

ϕ∗(x) = Hh(A(x− h))ψ(0) +Mh(A(x− h))ψ′(0)

−A
∫ 0

−h
Mh(A(x− 2h− ϑ))ψ(ϑ)dϑ

+
∫ x

0
Mh(A(x− h− ϑ)) f (ϑ, ϕ(ϑ))dϑ

+
∫ x

0
Mh(A(x− h− ϑ))Buϕ(ϑ)dϑ.

Proof. From Remark 1, the solution of the equation

ϕ′′(x) = −Aϕ(x− h) + f (x, ϕ(x)) +Bu(x) + g(x), x ∈ Ω,
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can be written as

ϕ(x) = Hh(A(x− h))ψ(0) +Mh(A(x− h))ψ′(0)

−A
∫ 0

−h
Mh(A(x− 2h− ϑ))ψ(ϑ)dϑ

+
∫ x

0
Mh(A(x− h− ϑ)) f (ϑ, ϕ(ϑ))dϑ

+
∫ x

0
Mh(A(x− h− ϑ))Buϕ(ϑ)dϑ

+
∫ x

0
Mh(A(x− h− ϑ))g(ϑ)dϑ.

From Lemma 2, we obtain

‖ϕ(x)− ϕ∗(x)‖ ≤
∫ x

0
‖Mh(A(x− h− ϑ))‖‖g(ϑ)‖dϑ

≤ ε
∫ x

0
(x− ϑ)E2,2

(
‖A‖(x− ϑ)2

)
dϑ

≤ x2ε

2
E2,2

(
‖A‖x2

)
,

for all x ∈ Ω. This ends the proof.

Lemma 4 (Krasnoselskii’s fixed point theorem, [29]). Let C be a closed, convex, and non-empty
subset of a Banach space X. Suppose that the operators A and B be maps from C into X such that
Ax + By ∈ C for every pair x, y ∈ C. If A is compact and continuous and B is a contraction
mapping, then there exists z ∈ C such that z = Az + Bz.

3. Controllability of Linear Delay Differential System

In this section, we establish some sufficient and necessary conditions for controllability
of (1) by introducing a delay Gramian matrix defined by

WMh [0, x1] =
∫ x1

0
Mh(A(x1 − h− ϑ))BBTMh

(
AT(x1 − h− ϑ)

)
dϑ. (9)

It follows from the definition of the matrix WMh [0, x1] that it is always positive semidefinite
for x ≥ 0.

Theorem 1. The linear system (1) is controllable if and only if WMh [0, x1] is positive definite.

Proof. Sufficiency. Let WMh [0, x1] be positive definite; then, it is non-singular and its
inverse is well-defined. As a result, we can derive the associated control input u(x), for any
finite terminal conditions y1, y′1 ∈ Rn, as

u(x) = BTMh

(
AT(x1 − h− x)

)(
WMh

)−1
[0, x1]β, (10)

where

β = y1 −Hh(A(x1 − h))ψ(0)−Mh(A(x1 − h))ψ′(0)

+A
∫ 0

−h
Mh(A(x1 − 2h− ϑ))ψ(ϑ)dϑ. (11)
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From (7), the solution y(x1) of (1) can be formulated as:

y(x1) = Hh(A(x1 − h))ψ(0) +Mh(A(x1 − h))ψ′(0)

−A
∫ 0

−h
Mh(A(x1 − 2h− ϑ))ψ(ϑ)dϑ

+
∫ x1

0
Mh(A(x1 − h− ϑ))Bu(ϑ)dϑ. (12)

Substituting (10) into (12), we obtain the following:

y(x1)

= Hh(A(x1 − h))ψ(0) +Mh(A(x1 − h))ψ′(0)

−A
∫ 0

−h
Mh(A(x1 − 2h− ϑ))ψ(ϑ)dϑ

+
∫ x1

0
Mh(A(x1 − h− ϑ))BBTMh

(
AT(x1 − h− ϑ)

)
dϑ
(

WMh
)−1

[0, x1]β. (13)

Using (9) and (11) in (13), we obtain

y(x1) = Hh(A(x1 − h))ψ(0) +Mh(A(x1 − h))ψ′(0)

−A
∫ 0

−h
Mh(A(x1 − 2h− ϑ))ψ(ϑ)dϑ + β

= y1.

We can see from (3) and (4) that the boundary conditions hold. Thus, (1) is controllable.
Necessity. Assume that (1) is controllable. For the sake of a contradiction, suppose

that WMh [0, x1] is not positive definite; there exists at least a nonzero vector z ∈ Rn such
that zTWMh [0, x1]z = 0, which implies that

0 = zTWMh [0, x1]z

=
∫ x1

0
zTMh(A(x1 − h− ϑ))BBTMh

(
AT(x1 − h− ϑ)

)
zdϑ

=
∫ x1

0

[
zTMh(A(x1 − h− ϑ))B

][
zTMh(A(x1 − h− ϑ))B

]T
dϑ

=
∫ x1

0

∥∥∥zTMh(A(x1 − h− ϑ))B
∥∥∥dϑ.

Hence,
zTMh(A(x1 − h− ϑ))B = (0, . . . , 0) := 0T , for all ϑ ∈ Ω, (14)

where 0 denotes the n dimensional zero vector. Consider the initial points y0 = y′0 = 0 and
the final point y1 = z at x = x1. Since (1) is controllable, from Definition 2, there exists a
control function u1(x) that steers the response from 0 to y1 = z at x = x1. Then,

y1 = z = −A
∫ 0

−h
Mh(A(x1 − 2h− ϑ))ψ(ϑ)dϑ

+
∫ x1

0
Mh(A(x1 − h− ϑ))Bu1(ϑ)dϑ. (15)

Multiplying (15) by zT and using (14), we obtain zTz = 0. This is a contradiction to z 6= 0.
Thus, Wh[0, x1] is positive definite. This ends the proof.

Corollary 1. Let A = A2 in (1). Then, Theorem 1 holds.
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Corollary 2. Let A = A2 in (1) such that A is a nonsingular n × n matrix. Then, the linear
system (1) is controllable if and only if Wh[0, x1] is nonsingular, where Wh[0, x1] is defined as

Wh[0, x1] = A−1
∫ x1

0
sinh(A(x1 − h− ϑ))BBT sinh

(
AT(x1 − h− ϑ)

)
,

and sinh(Ax) and cosh(Ax) are called the delayed matrix of sine and cosine type, respectively,
defined in [9].

Proof. From the definition of Hh(A(x)) andMh(A(x)) in the case of the matrix A = A2,
we find that

Hh

(
A2(x)

)
= cosh(A(x)), Mh

(
A2(x)

)
= A−1 sinh(A(x)),

which implies that

WMh [0, x1] =
∫ x1

0
Mh

(
A2(x1 − h− ϑ)

)
BBTMh

((
A2
)T

(x1 − h− ϑ)

)
dϑ

=
∫ x1

0
A−1 sinh(A(x1 − h− ϑ))BBT sinh

(
AT(x1 − h− ϑ)

)(
A−1

)T
dϑ

= A−1
∫ x1

0
sinh(A(x1 − h− ϑ))BBT sinh

(
AT(x1 − h− ϑ)

)
dϑ
(
AT
)−1

= Wh[0, x1]
(
AT
)−1

.

Hence,
Wh[0, x1] = WMh [0, x1]AT . (16)

From the conclusion of Theorem 1, we have that WMh [0, x1] is nonsingular. Thus, from (16),
we find that Wh[0, x1] is also nonsingular. This completes the proof.

4. Controllability of Nonlinear Delay Differential System

In this section, we establish the sufficient conditions of controllability of (2) using
Krasnoselskii’s fixed point theorem.

We impose the following assumptions:

(G1) The function f : Ω × Rn → Rn is continuous, and there exists a constant L f ∈
Lq(Ω,R+) and q > 1 such that

‖ f (x, y1)− f (x, y2)‖ ≤ L f (x)‖y1 − y2‖, for all x ∈ Ω, y1, y2 ∈ Rn.

Let supx∈Ω f (x, 0) = M f < ∞.

(G2) The linear operator Q : L2(Ω,Rm)→ Rn is defined by

Q =
∫ x1

0
Mh(A(x1 − h− ϑ))Bu(ϑ)dϑ.

Suppose that Q−1 exists and takes values in L2(Ω,Rm)/ ker Q, and there exists a
constant M1 > 0 such that

∥∥Q−1
∥∥ ≤ M1.

To establish our result, we now employ Krasnoselskii’s fixed point theorem.

Theorem 2. Let (G1) and (G2) hold. Then, the nonlinear system (2) is controllable if

M2

[
1 +

M1x2
1

2
E2,2

(
‖A‖x2

1

)
‖B‖

]
< 1, (17)
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where

M2 =
x

1+ 1
p

1

(p + 1)
1
p
E2,2

(
‖A‖x2

1

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

and
1
p
+

1
q
= 1, p, q > 1.

Proof. Before we start to prove this theorem, we shall use the following assumptions and
estimates: we consider the set

Bε =

{
y ∈ C([−h, x1],Rn) : ‖y‖C[−h,x1]

= sup
x∈[−h,x1]

‖y(x)‖ ≤ ε

}
.

Let x ∈ [0, x1]. From (G1) and Hölder inequality, we obtain∫ x

0
(x− ϑ)E2,2

(
‖A‖(x− ϑ)2

)
L f (ϑ)dϑ

≤
(∫ x

0

(
(x− ϑ)E2,2

(
‖A‖(x− ϑ)2

))p
dϑ

) 1
p
(∫ x

0
Lq

f (ϑ)dϑ

) 1
q

≤ E2,2

(
‖A‖x2

)(∫ x

0
(x− ϑ)pdϑ

) 1
p
(∫ x

0
Lq

f (ϑ)dϑ

) 1
q

=
x2− 1

q

(p + 1)
1
p
E2,2

(
‖A‖x2

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

. (18)

Furthermore, consider the following control function uy:

uy(x) = Q−1[y1 −Hh(A(x1 − h))ψ(0)−Mh(A(x1 − h))ψ′(0)

+A
∫ 0

−h
Mh(A(x1 − 2h− ϑ))ψ(ϑ)dϑ

−
∫ x1

0
Mh(A(x1 − h− ϑ)) f (ϑ, y(ϑ))dϑ](x), (19)

for x ∈ Ω. From (18), (19), (G1), and (G2) and Lemmas 1 and 2, we obtain
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∥∥uy(x)
∥∥ ≤ ∥∥∥Q−1

∥∥∥(‖y1‖+ ‖Hh(A(x1 − h))‖‖ψ(0)‖

+‖Mh(A(x1 − h))‖
∥∥ψ′(0)

∥∥
+‖A‖

∫ 0

−h
‖Mh(A(x1 − 2h− ϑ))‖‖ψ(ϑ)‖dϑ

+
∫ x1

0
‖Mh(A(x1 − h− ϑ))‖‖ f (ϑ, y(ϑ))‖dϑ)

≤ M1‖y1‖+ M1E2

(
‖A‖(x1 − h)2

)
‖ψ‖C

+ M1x1E2,2

(
‖A‖x2

1

)∥∥ψ′
∥∥

C

+ M1‖A‖‖ψ‖C

∫ 0

−h
(x1 − h− ϑ)E2,2

(
‖A‖(x1 − h− ϑ)2

)
dϑ

+ M1

∫ x1

0
(x1 − ϑ)E2,2

(
‖A‖(x1 − ϑ)2

)
L f (ϑ)‖y(ϑ)‖dϑ

+ M1

∫ x1

0
(x1 − ϑ)E2,2

(
‖A‖(x1 − ϑ)2

)
‖ f (ϑ, 0)‖dϑ

≤ M1‖y1‖+ M1E2

(
‖A‖(x1 − h)2

)
‖ψ‖C

+ M1x1E2,2

(
‖A‖x2

1

)∥∥ψ′
∥∥

C +
M1‖A‖‖ψ‖Cx2

1
2

E2,2

(
‖A‖x2

1

)
+

M1x2− 1
q

(p + 1)
1
p
E2,2

(
‖A‖x2

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖y‖C(Ω)

+
M1M f x2

1
2

E2,2

(
‖A‖x2

1

)
≤ M1‖y1‖+ M1M2ε + M1θ(x1), (20)

where

θ(x) = E2

(
‖A‖(x− h)2

)
‖ψ‖C + xE2,2

(
‖A‖x2

)∥∥ψ′
∥∥

C

+
x2
(
‖A‖‖ψ‖C + M f

)
2

E2,2

(
‖A‖x2

)
.

Furthermore, ∥∥uy(x)− uz(x)
∥∥

≤ M1

∫ x1

0
‖Mh(A(x1 − h− ϑ))‖‖ f (ϑ, y(ϑ))− f (ϑ, z(ϑ))‖dϑ

≤ M1

∫ x1

0
‖Mh(A(x1 − h− ϑ))‖L f (ϑ)‖y(ϑ)− z(ϑ)‖dϑ

≤ M1M2‖y− z‖C(Ω). (21)

We also define the operators L1, L2 on Bε as follows:

(L1y)(x) = Hh(A(x− h))ψ(0) +Mh(A(x− h))ψ′(0)

−A
∫ 0

−h
Mh(A(x− 2h− ϑ))ψ(ϑ)dϑ

+
∫ x

0
Mh(A(x− h− ϑ))Buy(ϑ)dϑ, (22)

(L2y)(x) =
∫ x

0
Mh(A(x− h− ϑ)) f (ϑ, y(ϑ))dϑ. (23)
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Now, we see that Bε is a closed, bounded, and convex set of C([−h, x1],Rn). Therefore,
our proof is divided into three main steps.

Step 1. We prove L1y + L2z ∈ Bε for all y, z ∈ Bε.
For each x ∈ Ω and y, z ∈ Bε, using (20), we obtain

‖L1y + L2z‖C[−h,x1]

= sup
x∈[−h,x1]

‖(L1y + L2z)(x)‖

≤ sup
x∈[−h,x1]

{
‖Hh(A(x− h))‖‖ψ(0)‖+ ‖Mh(A(x− h))‖

∥∥ψ′(0)
∥∥

+‖A‖
∫ 0

−h
‖Mh(A(x− 2h− ϑ))‖‖ψ(ϑ)‖dϑ

+
∫ x

0
‖Mh(A(x− h− ϑ))‖‖B‖

∥∥uy(ϑ)
∥∥dϑ

+
∫ x

0
‖Mh(A(x− h− ϑ))‖‖ f (ϑ, z(ϑ))‖dϑ}

≤ E2

(
‖A‖(x− h)2

)
‖ψ‖C + xE2,2

(
‖A‖x2

)∥∥ψ′
∥∥

C

+
x2‖A‖‖ψ‖C

2
E2,2

(
‖A‖x2

)
+

M f x2

2
E2,2

(
‖A‖x2

)
+

x2

2
E2,2

(
‖A‖x2

)
‖B‖(M1‖y1‖+ M1M2ε + M1θ(x1))dϑ

+
x2− 1

q

(p + 1)
1
p
E2,2

(
‖A‖x2

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖z‖C(Ω)

≤ θ(x1) + M2ε +
M1x2

2
E2,2

(
‖A‖x2

1

)
‖B‖‖y1‖

+
M1M2εx2

2
E2,2

(
‖A‖x2

1

)
‖B‖+ M1θ(x1)x2

2
E2,2

(
‖A‖x2

1

)
‖B‖

≤ θ(x1)

[
1 +

M1x2
1

2
E2,2

(
‖A‖x2

1

)
‖B‖

]
+

M1x2
1

2
E2,2

(
‖A‖x2

1

)
‖B‖‖y1‖

+ M2

[
1 +

M1x2
1

2
E2,2

(
‖A‖x2

1

)
‖B‖

]
ε.

Thus, for some ε sufficiently large and from (17), we have L1y + L2z ∈ Bε.
Step 2. We prove that L1 : Bε → C([−h, x1],Rn) is a contraction.
For each x ∈ Ω and y, z ∈ Bε, using (21), we obtain

‖(L1y)(x)− (L1z)(x)‖ ≤
∫ x

0
‖Mh(A(x− h− ϑ))‖‖B‖

∥∥uy(ϑ)− uz(ϑ)
∥∥dϑ

≤ ‖B‖M1M2‖y− z‖C(Ω)

∫ x

0
‖Mh(A(x− h− ϑ))‖dϑ

≤
x2

1‖B‖M1M2

2
E2,2

(
‖A‖x2

1

)
‖y− z‖C(Ω)

≤ µ‖y− z‖C(Ω),

where µ := x2
1‖B‖M1 M2

2 E2,2
(
‖A‖x2

1
)
. From (17), note µ < 1, we conclude that L1 is a

contraction mapping.
Step 3. We prove L2 : Bε → C([−h, x1],Rn) is a continuous compact operator.
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Firstly, we show that L2 is continuous. Let {yn} be a sequence such that yn → y as
n → ∞ in Bε. Thus, for each x ∈ Ω, using (23) and Lebesgue’s dominated convergence
theorem, we obtain

‖(L2yn)(x)− (L2y)(x)‖

≤
∫ x

0
‖Mh(A(x− h− ϑ))‖‖ f (ϑ, yn(ϑ))− f (ϑ, y(ϑ))‖dϑ

≤
∫ x

0
(x− ϑ)E2,2

(
‖A‖(x− ϑ)2

)
L f (ϑ)‖yn(ϑ)− y(ϑ)‖dϑ→ 0, as n→ ∞.

Hence, L2 : Bε → C([−h, x1],Rn) is continuous.
Next, we prove that L2 is uniformly bounded on Bε. For each x ∈ Ω, y ∈ Bε, we have

‖L2y‖ = sup
x∈Ω
‖(L2y)(x)‖

≤ sup
x∈Ω

{∫ x

0
‖Mh(A(x− h− ϑ))‖‖ f (ϑ, y(ϑ))‖dϑ

}

≤ x2− 1
q

(p + 1)
1
p
E2,2

(
‖A‖x2

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖y‖C(Ω)

+
M f x2

2
E2,2

(
‖A‖x2

)
≤ M2ε +

M f x2
1

2
E2,2

(
‖A‖x2

1

)
,

which implies that L2 is uniformly bounded on Bε.
It remains to show that L2 is equicontinuous. For each x2, x3 ∈ Ω, 0 < x2 < x3 ≤ x1

and y ∈ Bε, using (23), we obtain

(L2y)(x3)− (L2y)(x2)

≤
∫ x3

0
Mh(A(x3 − h− ϑ)) f (ϑ, y(ϑ))dϑ

−
∫ x2

0
Mh(A(x2 − h− ϑ)) f (ϑ, y(ϑ))dϑ

= K1 + K2,

where
Ψ1 =

∫ x3

x2

Mh(A(x3 − h− ϑ)) f (ϑ, y(ϑ))dϑ,

and
Ψ2 =

∫ x2

0
[Mh(A(x3 − h− ϑ))−Mh(A(x2 − h− ϑ))] f (ϑ, y(ϑ))dϑ.

Thus,
‖(L2y)(x3)− (L2y)(x2)‖ ≤ ‖Ψ1‖+ ‖Ψ2‖. (24)

Now, we can check ‖Ψi‖ → 0 as x2 → x3, i = 1, 2. For Ψ1, we obtain
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Ψ1 ≤
∫ x3

x2

(x3 − ϑ)E2,2

(
‖A‖(x3 − ϑ)2

)
L f (ϑ)‖y(ϑ)‖dϑ

+
∫ x3

x2

(x3 − ϑ)E2,2

(
‖A‖(x3 − ϑ)2

)
‖ f (ϑ, 0)‖dϑ

≤ (x3 − x2)
2− 1

q

(p + 1)
1
p

E2,2

(
‖A‖x2

3

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

‖y‖C(Ω)

+
M f (x3 − x2)

2

2
E2,2

(
‖A‖x2

3

)
→ 0, as x2 → x3.

For Ψ2, we obtain

‖Ψ2‖ ≤ ε
∫ x2

0
‖Mh(A(x3 − h− ϑ))−Mh(A(x2 − h− ϑ))‖L f (ϑ)dϑ

+ M f

∫ x2

0
‖Mh(A(x3 − h− ϑ))−Mh(A(x2 − h− ϑ))‖dϑ.

From (6), we know thatMh(Ax) is uniformly continuous for x ∈ Ω. Hence,

‖Mh(A(x3 − h− ϑ))−Mh(A(x2 − h− ϑ))‖ → 0, as x2 → x3.

Therefore, we have ‖Ψi‖ → 0 as x2 → x3, i = 1, 2, which implies that, using (24),

‖(L2y)(x3)− (L2y)(x2)‖ → 0, as x2 → x3,

for all y ∈ Bε. Thus, the Arzelà-Ascoli theorem tells us that L2 is compact on Bε.
Therefore, according to Krasnoselskii’s fixed point theorem (Lemma 4), L1 + L2 has a

fixed point y on Bε. In addition, y is also a solution of (2) and (L1y + L2y)(x1) = y1. This
means that uy steers the system (2) from y0 to y1 in finite time x1, which implies that (2) is
controllable on Ω. This completes the proof.

Corollary 3. Let A = A2 in (2). Then, Theorem 2 holds.

Corollary 4. Let A = A2 in (2) such that A is a nonsingular n× n matrix. Then, Theorem 2
coincides with Theorem 4.1 in [17].

Proof. SinceMh
(
A2(x)

)
= A−1 sinh(Ax). From (G1) and Hölder inequality, we obtain∫ x

0

∥∥∥Mh

(
A2(x− h− ϑ)

)∥∥∥L f (ϑ)dϑ

=
∥∥∥A−1

∥∥∥ ∫ x

0

∥∥∥AMh

(
A2(x− h− ϑ)

)∥∥∥L f (ϑ)dϑ

≤
∥∥∥A−1

∥∥∥ ∫ x

0
‖sinh(A(x− h− ϑ))‖L f (ϑ)dϑ

≤
∥∥∥A−1

∥∥∥ ∫ x

0
‖sinh(‖A‖(x− ϑ))‖L f (ϑ)dϑ

≤
∥∥∥A−1

∥∥∥(∫ x

0
(sinh(‖A‖(x− ϑ)))pdϑ

) 1
p
(∫ x

0
Lq

f (ϑ)dϑ

) 1
q

=
∥∥∥A−1

∥∥∥(∫ x

0

exp(‖A‖p(x− ϑ))

2p dϑ

) 1
p
(∫ x

0
Lq

f (ϑ)dϑ

) 1
q

=
∥∥∥A−1

∥∥∥( 1
2p‖A‖p

(exp(‖A‖px− 1))
) 1

p ∥∥∥L f

∥∥∥
Lq(Ω,R+)

. (25)
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and ∫ x

0

∥∥∥Mh

(
A2(x− h− ϑ)

)∥∥∥‖ f (ϑ, 0)‖dϑ

=
∥∥∥A−1

∥∥∥ ∫ x

0
‖sinh(A(x− h− ϑ))‖‖ f (ϑ, 0)‖dϑ

≤ M f

∥∥∥A−1
∥∥∥ ∫ x

0
‖sinh(‖A‖(x− ϑ))‖dϑ

=
M f
∥∥A−1

∥∥
‖A‖ ‖cosh(‖A‖x)− 1‖. (26)

By a similar way in the proof of Theorem 2 at A = A2 and by virtue of (25) and (26), we
obtain the same conclusion in Theorem 4.1 in [17]. This ends the proof.

Remark 2. We note that Corollary 1 extends Theorems 3.1 and 4.1 in [17] by choosing the matrix
A as an arbitrary, not necessarily squared matrix, and Corollaries 2 and 4 coincide with Theorems
3.1 and 4.1 in [17]. Therefore, our results in Corollaries 1–4 extend and improve Theorems 3.1 and
4.1 in [17] by removing the condition that A is a nonsingular matrix.

5. Hyers–Ulam Stability of Nonlinear Delay Differential System

In this section, we discuss the Hyers–Ulam stability of (2) on the finite time interval
[0, x1].

Theorem 3. Let (G1), (G2) and (17) be satisfied. Then, the system (2) is Hyers–Ulam stable.

Proof. With the help of Theorem 2, let z ∈ C(Ω,Rn) be a solution of the inequality (8) and
y be the unique solution of (2), that is,

y(x) = Hh(A(x− h))ψ(0) +Mh(A(x− h))ψ′(0)

−A
∫ 0

−h
Mh(A(x− 2h− ϑ))ψ(ϑ)dϑ

+
∫ x

0
Mh(A(x− h− ϑ)) f (ϑ, y(ϑ))dϑ

+
∫ x

0
Mh(A(x− h− ϑ))Buy(ϑ)dϑ.

From Lemma 3, in a similar way to the proof of Theorem 2, and by virtue of (21), we obtain

‖z(x)− y(x)‖ ≤ ‖z(x)− z∗(x)‖+ ‖z∗(x)− y(x)‖

≤ x2ε

2
E2,2

(
‖A‖x2

)
+
∫ x

0
‖Mh(A(x− h− ϑ))‖‖B‖

∥∥uz(ϑ)− uy(ϑ)
∥∥dϑ

+
∫ x

0
‖Mh(A(x− h− ϑ))‖‖ f (ϑ, z(ϑ))− f (ϑ, y(ϑ))‖dϑ

≤
x2

1ε

2
E2,2

(
‖A‖x2

1

)
+

x2
1‖B‖M1 M2

2
E2,2

(
‖A‖x2

1

)
‖z− y‖C(Ω)

+ M2‖z− y‖C(Ω)

=
x2

1ε

2
E2,2

(
‖A‖x2

1

)
+ M2

(
1 +

x2
1‖B‖M1

2
E2,2

(
‖A‖x2

1

))
‖z− y‖C(Ω).
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Therefore,

‖z− y‖C(Ω) ≤
x2

1ε

2(1− ρ)
E2,2

(
‖A‖x2

1

)
,

where

ρ := M2

(
1 +

x2
1‖B‖M1

2
E2,2

(
‖A‖x2

1

))
.

Thus,

‖z(x)− y(x)‖ ≤ Nε, N =
x2

1
2(1− ρ)

E2,2

(
‖A‖x2

1

)
.

This completes the proof.

6. Examples

In this section, we present applications of the results derived.

Example 1. Consider the following linear delay differential controlled system:

y′′(x) +Ay(x− 0.5) = Bu(x), for x ∈ Ω := [0, 1],
y(x) ≡ ψ(x), y′(x) ≡ ψ′(x) for − 0.5 ≤ x ≤ 0,

(27)

where

A =

(
0 1
0 0

)
, B =

(
1
2

)
, ψ(x) =

(
2x
x

)
, ψ′(x) =

(
2
1

)
.

We note that B ∈ R2×1 and u(x) ∈ R shows the control vector. Constructing the corresponding
delay Gramian matrix of (27) via (9), we obtain

WM0.5 [0, 1] =
∫ 1

0
M0.5(A(0.5− ϑ))BBTM0.5

(
AT(0.5− ϑ)

)
dϑ

=: O1 + O2,

where

O1 =
∫ 0.5

0
M0.5(A(0.5− ϑ))BBTM0.5

(
AT(0.5− ϑ)

)
dϑ,

for (0.5− ϑ) ∈ (0, 0.5),

O2 =
∫ 1

0.5
M0.5(A(0.5− ϑ))BBTM0.5

(
AT(0.5− ϑ)

)
dϑ,

for (0.5− ϑ) ∈ (−0.5, 0), where

H0.5(A(x)) :=


Θ, −∞ < x < −0.5,
I, − 0.5 ≤ x < 0,
I−A x2

2 , 0 ≤ x < 0.5,

I−A x2

2 +A2 (x−0.5)4

4! , 0.5 ≤ x < 1,

and

M0.5(A(x)) :=


Θ, −∞ < x < −0.5,
I(x + 0.5), − 0.5 ≤ x < 0,
I(x + 0.5)−A x3

3! , 0 ≤ x < 0.5,

I(x + 0.5)−A x3

3! +A2 (x−0.5)5

5! , 0.5 ≤ x < 1.

Next, we can calculate that

O1 =

(
0.28242 0.57396
0.57396 1.1667

)
, O2 =

(
4.1667× 10−2 8.3333× 10−2

8.3333× 10−2 0.16667

)
.
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Then, we obtain

WM0.5 [0, 1] = O1 + O2 =

(
0.32409 0.65729
0.65729 1.3334

)
,

and (
WM0.5

)−1
[0, 1] =

(
11962.865 −5897.01
−5897.01 2907.638

)
.

Therefore, we see that WM0.5 [0, 1] is positive definite. Furthermore, for any finite terminal conditions
y1, y′1 ∈ R2 such that y(x1) = y1 = (y11, y12)

T , y′(x1) = y′1 =
(
y′11, y′12

)T ; as a result, we can
establish the corresponding control as follows:

u(x) = BTM0.5

(
AT(0.5− x)

)(
WM0.5

)−1
[0, 1]β,

where

β = y1 −M0.5(A(0.5))ψ′(0) +A
∫ 0

−0.5
M0.5(A(−ϑ))ψ(ϑ)dϑ

=

(
y11 − 2.1042

y12 − 1

)
.

Hence, the system (27) is controllable on [0, 1] by Theorem 1.

Example 2. Consider the following nonlinear delay differential controlled system:

y′′(x) +Ay(x− 0.6) = f (x, y(x)) +Bu(x), for x ∈ Ω1 := [0, 1.2],
y(x) ≡ ψ(x), y′(x) ≡ ψ′(x) for − 0.6 ≤ x ≤ 0,

(28)

where

A = B = I2×2, ψ(x) =
(

3x + 1
x2

)
, ψ′(x) =

(
3

2x

)
,

f (x, y(x)) =
(

0.5(x− 0.6) cos[y1(x)]
0.5(x− 0.6) cos[y2(x)]

)
.

Now, we set u(x) = ỹ, where ỹ ∈ R2. From the definition of Q in (G2), we obtain

Q =
∫ 1.2

0
M0.6(A(0.6− ϑ))Bdϑỹ

=
∫ 0.6

0
M0.6(A(0.6− ϑ))dϑỹ +

∫ 1.2

0.6
M0.6(A(0.6− ϑ))dϑỹ

=
∫ 0.6

0

[
I(1.2− ϑ)− I (0.6− ϑ)3

3!

]
dϑỹ +

∫ 1.2

0.6
I(1.2− ϑ)dϑỹ

=

(
0.5346 0

0 0.5346

)
ỹ +

(
0.18 0

0 0.18

)
ỹ

=

(
0.7146 0

0 0.7146

)
ỹ,

where

M0.6(A(x)) :=


Θ, −∞ < x < −0.6,
I(x + 0.6), − 0.6 ≤ x < 0,
I(x + 0.6)−A x3

3! , 0 ≤ x < 0.6,

I(x + 0.6)−A x3

3! +A2 (x−0.6)5

5! , 0.6 ≤ x < 1.
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Define the inverse Q−1 : R2 → L2(Ω1,R2) by

(
Q−1ỹ

)
(x) :=

(
1.3994 0

0 1.3994

)
ỹ.

Then, we obtain ∥∥∥(Q−1ỹ
)
(x)
∥∥∥ ≤ ∥∥∥∥( 1.3994 0

0 1.3994

)∥∥∥∥‖ỹ‖ = 1.3994‖ỹ‖,

and thus, we obtain
∥∥Q−1

∥∥ ≤ 1.3994 =: M1. Hence, the assumption (G2) is satisfied by Q.
Next, keep in mind that |cos λ− cos δ| ≤ |λ− δ|, for all λ, δ ∈ R, we have

‖ f (x, y)− f (x, z)‖

= |0.5(x− 0.6)|
√
(cos[y1(x)]− cos[z1(x)])2 + (cos[y2(x)]− cos[z2(x)])2

≤ |0.5(x− 0.6)|
√
(y1(x)− z1(x))2 + (y2(x)− z2(x))2

= |0.5(x− 0.6)|‖y− z‖,

for all x ∈ Ω1, and y(x), z(x) ∈ R2. We set L f (x) = |0.5(x− 0.6)| such that L f ∈ Lq(Ω1,R+)
in (G1). By choosing p = q = 2, we have

∥∥∥L f

∥∥∥
L2(Ω1,R+)

=

(∫ 1.2

0
[0.5(ϑ− 0.6)]2dϑ

) 1
2

= 0.18974.

Then, we obtain

M2 =
(1.2)1+ 1

2

(3)
1
2

E2,2

(
(1.2)2

)∥∥∥L f

∥∥∥
Lq(Ω,R+)

= 0.18114.

Finally, we calculate that

M2

[
1 +

M1(1.2)1.8

1.8
E1.8,1.8

(
‖A‖(1.2)2

)
‖B‖

]
= 0.41072 < 1,

which implies that all the conditions of Theorems 2 and 3 are satisfied. Therefore, the system (28) is
controllable and Hyers–Ulam stable.

Remark 3. It is worth noting that Theorems 3.1 and 4.1 in [17] are not applicable to ascertaining
the controllability of the systems (27) and (28) because the square of matrix A is used in [17] rather
than A, and the systems (27) and (28) are considered with matrix A rather than A2. That is, the
term A2y(x− h) is replaced by Ay(x− h); then, the definition of sinh Ax and cosh Ax must be
modified by using the square root

√
A instead of A. However,

√
A, in the general case, does not

exist as in Example 1 or may not be unique (including the possibility of infinitely many different
square roots as in Example 2). Therefore, these two examples demonstrate the effectiveness of the
obtained results.

7. Conclusions

In this work, we established some sufficient and necessary conditions for the con-
trollability of linear delay differential systems by using a delay Gramian matrix and the
representation of solutions of these systems with the help of their delayed matrix functions.
Furthermore, we established some sufficient conditions of controllability and Hyers–Ulam
stability of nonlinear delay differential systems by applying Krasnoselskii’s fixed point
theorem and the representation of solutions of these systems. Finally, we gave two exam-
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ples to demonstrate the effectiveness of the obtained results. The results are applicable to
all singular, non-singular and arbitrary matrices, not necessarily squared. As a result, our
results improve, extend, and complement the existing ones in [17].

One possible direction in which to extend the results of this paper is toward fractional
differential and conformable fractional differential systems of order α ∈ (1, 2]. Another
challenge is to find out if similar results can be derived in the case of variable delays in (1)
and (2).
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