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Abstract: A well-regarded as well as powerful method named the ‘analytic hierarchy process’ (AHP)
uses mathematics and psychology for making and analysing complex decisions. This article aims to
present a brief review of the consistency measure of the judgments in AHP. Judgments should not be
random or illogical. Several researchers have developed different consistency measures to identify
the rationality of judgments. This article summarises the consistency measures which have been
proposed so far in the literature. Moreover, this paper describes briefly the functional relationships
established in the literature among the well-known consistency indices. At last, some thoughtful
research directions that can be helpful in further research to develop and improve the performance of
AHP are provided as well.

Keywords: analytic hierarchy process (AHP); multi-criteria decision-making (MCDM); consistency
measure; nature-inspired optimization technique; reliability optimization

MSC: 90B50; 65K10; 90C31

1. Introduction

Optimization [1] can be viewed as a decision-making process with some constraints
wherein the task is to obtain the maximum benefit from the available resources to get
the best achievable results. In literature, multicriteria decision-making (MCDM) has also
been used to exploit the search space after exploring the search space with nature-inspired
optimization techniques [2]. The analytic hierarchy process (AHP), one of the well-regarded
MCDM tools, is attributed to Thomas Saaty [3–8]. It has been widely used in many different
fields for the last forty years. In AHP the factors, which can influence the decisions, are
identified and then these factors are arranged into a hierarchal structure of different levels
to reduce the complexity of the decision problem. Then each factor in the corresponding
level is compared pairwise. These n(n−1)

2 comparisons are arranged above the principal
diagonal of a square matrix whose diagonal entries are one. The entries below to principal
diagonal are the reciprocal of the entries of the upper half of the matrix. Thus, these
comparisons contribute to constructing a positive reciprocal decision matrix which is called
a ‘pairwise comparison matrix’ or ‘judgement matrix’. In real life, it is always not possible
for the decision-maker to make perfect judgements. Therefore, there are cases when some
inconsistency may appear. Assume that there are three criteria x1, x2, and x3. The decision-
maker finds that x1 is slightly more important than x2, while x2 is slightly more important
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than x3. If the decision-maker concludes, that x3 is equally or more important than x1, then
certainly some inconsistency arises. But, if the decision-maker concludes that x1 is also
slightly more important than x3, then this decision is better than the earlier one and thus a
slight inconsistency arises in this case. Hence, the second judgement is more consistent.
Due to pairwise comparisons [9–14], the decision-maker always has an opportunity to
estimate the irrationality of his judgements. According to Saaty [4], a pairwise comparisons
matrix should be “close” to a consistent matrix. He developed an index that is known as
CI to check the degree of inconsistency of judgements. The manuscript aims to offer a
short review of consistency indices in AHP. This research article contributes to the world of
decision theory as follows:

(1) This article attempts to provide a review of consistency indices along with their limitations.
(2) The axiomatization of consistency indices by different authors have also been summarised.
(3) Five improvement strategies are identified under the section about potential research

directions for further enhancement in the performance of consistency indices.

Our analyses are based on the papers published between 1977 and 2021 retrieved
from the UPES Library, SCI-Hub, and ISI Web of Science database. We have carried out
this research in three phases. In the first phase, we selected the literature which described
the mathematical background of the consistency of pairwise comparison matrices. The
consistency indices and their mathematical properties were studied in the next phase.
In the last phase, the functional relationship and axiomatization of consistency indices
were studied.

The rest of the paper is organized as follows: Section 2 presents the mathematical
background behind AHP. Section 3 reviews consistency indices proposed in the literature.
Section 4 demonstrates some limitations of consistency methods and the importance of
the functional relationships among consistency indices. Section 5 presents some future
directions of research. Finally, Section 6 concludes the overall remarks of this article.

2. Mathematical Background of AHP

We cannot ignore the mathematical concepts that are required for a deep understand-
ing of the AHP. In this section, mathematical terms and definitions have been described.

Definition 1. Positive Reciprocal Matrix.

A square matrix A =
[
aij
]

of order n having only positive elements and satisfying the
property aij =

1
aji
∀ i, j is called a positive reciprocal matrix.

Let P be a matrix of order n with each element equal to 1. We can generate nontrivial
positive reciprocal matrices of the same order with the help of the matrix. Here, by using a
nontrivial reciprocal matrix, meaning a positive reciprocal matrix whose entries are not all
necessarily 1. Let D = diag (d1,d2, ..., dn) be a diagonal matrix (which is not an identity or a
null matrix for the nontrivial case) of order n with the positive diagonal entries. Then the
matrix A = DPD−1 is a positive reciprocal matrix. Another way to generate a reciprocal
matrix A =

[
aij
]

of order n is by taking aij = wi/wj, where wi, wj are the elements of a finite
set W = {w1, w2, . . . , wn : wi ∈ R, i = 1, 2, . . . n}. The structure of a pairwise comparison
matrix of order n is as follows:

A =


a11 a12 · · · a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


where aij > 0 and aji =

1
aij
∀i, j.

According to Saaty [3], if w = {w1, w2, . . . , wn : wi ∈ R, i = 1, 2, . . . n} is the weight
vector (priority vector), then the elements of the above matrix can be approximated as
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aij ≈ wi
wj

. Thus, the matrix A =
[
aij
]

can be expressed in terms of the ratios of weights

A =
[

wi
wj

]
as follows:

A =


1 w1

w2
· · · w1

wnw2
w1

1 . . . w2
wn

...
...

. . .
...

wn
w1

wn
w2

. . . 1


Definition 2. Spectrum and Spectral Radius of a Square Matrix.

Spectrum σ(A) of a square matrix A is a collection of all of its eigenvalues in which
the s eigenvalues are repeated according to their algebraic multiplicity.

The multiplicity of an eigenvalue in spectrum is equal to the dimension of generalized
eigenspace. The spectral radius ρ(A) of A is the maximum value of the modulus of its
eigenvalues i.e.,

ρ(A) = max{|λ| : λ ∈ σ(A)}

Definition 3. Primitive Matrix.

If all the elements aij of a square matrix A are nonnegative (i.e., aij ≥ 0) then such
a matrix is known as the non-negative matrix. A primitive matrix is a special type of
nonnegative matrix. A nonnegative matrix A is called primitive if there exist a natural
number k such that aij

k > 0, ∀ (i, j), where aij
k is the element of Ak at ith row and jth

column. Thus, every positive reciprocal matrix is a primitive matrix.
The Perron–Frobeniuos theorem [11] is a well-known theorem for identifying the

primitive matrix. According to this theorem, if A is a primitive matrix with spectral radius
ρ(A), then there exists a unique largest eigenvalue λmax such that:

(1) ρ(A) = |λmax|, i.e.,
(2) The algebraic multiplicity of λmax must be one, and hence, the geometric multiplicity

of λmax is one.
(3) The eigenvectors corresponding to λmax are strictly positive.

For example,[
0 3
2 1

]
is a primitive matrix with eigenvalues 3 and −2.[

0 2
2 0

]
is not a primitive matrix with eigenvalues 2 and −2.[

2 3
0 2

]
is not a primitive matrix with repeated eigenvalues 2.

Definition 4. Consistency of Reciprocal Matrix.

Let A be a positive reciprocal matrix of order n. If λmax is the eigenvalue of A such
that ρ(A) = |λmax|, then λmax is called the principal eigenvalue or Perron value. The
value of λmax can never be less than n, i.e., λmax ≥ n. If λmax is equal to n, then the
matrix A satisfies the consistency property, which is also known as transitive relation
aijajk = aik, where i, j, k = 1, 2, 3 . . . .n. If A is a consistent reciprocal matrix, then it will
satisfy following properties:

(1) A positive reciprocal matrix A of order n has λmax = n, if and only if A is consistent.
(2) A positive reciprocal matrix A of order n is consistent if and only if its characteristic

polynomial PA(λ) is of the form PA(λ) = λn − nλn−1.
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(3) The column vectors of A are proportional and hence the rank of a consistent positive
reciprocal matrix is always one. Thus, if a matrix is less consistent then its columns
will be less proportional.

The main objective of any multi-criteria decision-making method is to decide the
weight for each criterion. In AHP, as its name suggests, the process of decision-making
starts with breaking down the multi-criteria decision-making problem into a hierarchy
modal, and then by using mathematical calculation, basically based on linear algebra,
one can find the weights. These weights can be generated with the help of the pairwise
comparisons of two alternatives under the given criterion. The decision maker judges the
weak, strong, very weak or very strong preference under the particular criterion. In the
discrete case these pairwise comparisons lead to a matrix and in the continuous case to
kernels of Fredholm operators [8,12].

Total n(n− 1)/2 pairwise comparisons contribute to form a pairwise comparison
matrix A =

[
aij
]

(PCM) of order n. The diagonal entries of PCM equal to 1 and the
remaining entries are simply the reciprocals of these n(n− 1)/2 comparison. If aij denotes
the preference of ith alternative over the jth alternative, where i, j = 1, 2, . . . , n then

A =
[
aij
]
, where aij =

{
1 i = j
1

aji
i < j

This matrix A is always positive reciprocal in nature which may or may not be con-
sistent. Fechner [13] was the one who introduced the pairwise comparison method in
1860. Further, Thurstone [14] developed this method in 1927. Saaty used this pairwise
comparison method to develop analytic hierarchy process (AHP) as a method for multi-
criteria decision-making. Pairwise comparison between the two criteria is measured by
using a numerical scale from 1 to 9, which was proposed by Saaty [3]. This scale es-
tablishes one-to-one correspondence between the set of alternatives and a discrete set{

9, 8, 7, 6, 5, 4, 3, 2, 1, 1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 1

7 , 1
8 , 1

9

}
. Other scales have also been proposed by oth-

ers [15,16]. As discussed earlier in the mathematical working of AHP this matrix A is
consistent if and only if aijajk = aik. In other words, if A is consistent then its characteristic
polynomial is of the form λn − nλn−1 = 0. The priority weights derived from a PCM have
been used to judge the importance of criteria in AHP. The AHP uses a principal eigenvalue
method (EM) to derive priority vectors [4,5]. Several other prioritization methods have
also been introduced such as the eigenvector method (EVM), the arithmetic mean method
(AMM), the Row geometric mean method (RGMM), the logarithmic least squares method,
and singular value decomposition [17–23].

3. Consistency Indices in the Analytic Hierarchy Process

In real-world problems, it is not possible to obtain a perfectly consistent judgmental
matrix after pairwise comparison, so the goal is to acquire a positive reciprocal matrix
which is near to some consistent positive reciprocal matrix. The consistency index is a
number, which tells us how far we are from the consistent matrix. Mathematically, one can
define the consistency index as a function from the set of the judgmental matrices to the set
of the real numbers. The first consistency index was proposed by Kendall and Smith in
1940 [24]. Since then, several consistency indices have been suggested in the literature.

Aupetit and Genest [25] have shown that there is a direct effect on CI if we change an
element of the matrix. If any upper triangular entry of the matrix increases, then CI must
be always increasing, always decreasing or decreasing to a minimum and then increasing.
Thus, there should be a unique local minimum in CI functions. If the consistency measure
exceeds the threshold value, then the earlier judgements must be changed. The idea of
a consistency measure is meaningless without the thresholds associated to it. However,
many consistency indices have been proposed in literature without telling the thresholds
associated with them.
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To measure inconsistency, Saaty [3] introduced the consistency index:

CI =
(λmax − n)
(n− 1)

This inconsistency measure is the negative of the average of the other eigenvalues of
the positive reciprocal matrix A:

∵ Trace o f A = λmax +
n−1

∑
i=1

λi = n

=⇒ (λmax − n)
(n− 1)

= −∑n−1
i=1 λi

n− 1

If A is consistent, then the average of other eigenvalues must be 0, and hence, CI = 0.
Saaty calculated the CI of a large number of matrices of the same order. The random
consistency index (RI) is the average of these CI of the matrices of same order. Saaty
introduced a consistency ratio which is the rescaled version of CI and defined as

CR =
CI
RI

Saaty decided the threshold of 0.10. If CR is greater than this threshold, then it
questions the credibility of judgements. These judgements are revised by the decision-
maker until he/she achieves a CR smaller than 0.10 [5]. Saaty [4] further suggested that for
the matrices of order three and four the thresholds can be taken as 0.5 and 0.8, respectively.

Crawford [23] introduced another consistency index which is known as the ‘geometric
index’ GCI. This index was further reformulated by Aguaron and Moreno-Jimenez [18]. The
ith element wi of priority vector w (normalized priority vector) is evaluated by using geometric
mean of the elements of the ith row of the pairwise comparison matrix A =

[
aij
]
, i.e.,

wi =

(
n

∏
j=1

aij

)1/n

÷
n

∑
i=1

(
n

∏
j=1

aij

)1/n

The error term eij associated with each entry aij of the matrix A is given by

eij = aij
wj

wi

If the matrix is consistent then it is obvious that aij =
wi
wj

, and hence, for a consistent
matrix, eij = 1.

The consistency index GCI is found by evaluating the distance from a specific consis-
tent matrix by using the following formula:

GCI =
2

(n− 2)(n− 1) ∑
i<j

(
ln eij

)2

They added the squared deviations of the log of the elements of a matrix from the log
of the matrix elements generated by the row geometric mean solution. They proved that
for an arbitrary judgment matrix A, the geometric mean vector gives rise to the m-closest
consistent matrix to A. The normalized geometric mean scale is similar to the normalized
eigenvector scale for a consistent matrix A. If the dimension is not more than three, then
two scales are always the same even for the inconsistent matrices.

Several similarity measures have been developed in literature [26] like the Dice similar-
ity measure, overlap similarity measure, Jaccard similarity measure, and cosine similarity
measure, etc. The cosine similarity measure is the building block behind the development
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of the cosine consistency index. The cosine similarity identifies the similarity between two
vectors. Let u and v be two vectors in an inner product space V; then, the cosine similarity
measure is the modulus of the cosine of the angle between u and v, i.e.,

cosine similarity measure between u and v =
< u, v >

‖u‖‖v‖

If the two vectors have the same orientation, then their cosine similarity measure is
equal to one. If two vectors are orthogonal, then they have a 0 similarity measure. Thus, the
cosine similarity measure is a function from V×V to the closed interval [0, 1]. A consistent
positive reciprocal matrix has rank one and columns of A are linearly dependent of each
other (collinear). Thus, if we want to find the near consistent matrix corresponding to an
inconsistent matrix, we can use cosine similarity measure. Cosine similarity measure has
also been widely used to derive the priority vector in AHP [27–29]. The sum of the cosine
of the angle between the priority vector and each column vector of the judgment matrix is
maximized by Kuo and Lin [27]. They modelled the optimization problem

Max C =
n

∑
j=1

cj =
∑n

j=1 ∑n
i=1 wiaij√

∑n
k=1 wk

2 ∑n
k=1 akj

2

subject to
n

∑
i=1

wi = 1

wi ≥ 0, i = 1, 2, . . . , n.

They further proposed a cosine consistency index CCI = C∗/n, where C∗ is the
optimal value of the above optimization model. For the perfectly consistent matrix C∗ = n,
otherwise, 0 < C∗ < n. In other words, for the perfectly consistent matrix CCI must
be 1 otherwise CCI ∈ (0, 1). CCI must be greater than or equal to 90% for accepting the
approximation. Cosine maximization method was used by Khatwani and Kar [29] to revise
the entries of judgement matrix.

Salo-Hamalainen index (CMSH) was introduced in 1997 [30]. This index is different
from others as it doesn’t require any prioritization method unlike CI and GCI. Unfortunately,
this index could not catch that much attention because the thresholds associate to this
measure was not described. Later, in 2019 Amanta et al. [31] introduced the threshold
associated to this consistency index.

If the preferences are represented by additive approach, then the geometric consistency
index (GCI) of Crawford [23] corresponds to the Euclidean norm. Recently, Fedrizzi,
Civolani and Critch [32] proposed a new measure to evaluate inconsistency which can be
considered as the generalization of geometric consistency index provided by Crawford [23].
They introduced an inconsistency of the pairwise comparison matrix A with index Id(A),
which is a normed based distance of a matrix A from the nearest consistent matrix in linear
subspace L∗ of consistent matrices:

Id (A) = d(A, L∗) = min
B∈L∗

d(A, B)

A very interesting result was found by Shiraishi, Obata, and Daigo [33–35]. They
found that the inconsistency of a matrix A of order n ≥ 3 is related to the coefficient c3
of λn−3 of the characteristic polynomial of A. From the Perron–Frobenius theorem the
characteristic polynomial of any consistent positive reciprocal has the form:

PA(λ) = λn − nλn−1

Inclusion of any other term in this formulation will certainly make the matrix inconsis-
tent. Shiraishi, Obata, and Daigo [35] further proved that for a positive reciprocal matrix of
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order n ≥ 3, c3 must be either negative or zero, and the matrix is consistent if c3 = 0, and
for better consistency the value of c3 must tend towards 0. In other words, maximization of
the c3 is expected to obtain a consistent matrix. Thus, measure of inconsistency index is the
value of c3

c3 = ∑
i<j<k

2−
(

aik
aijajk

+
aijajk

aik

)
= 2

(
n
3

)
− ∑

i<j<k

aik
aijajk

+
aijajk

aik

as the algebraic mean is always greater than or equal to geometric mean, i.e.,

1
2

(
aik

aijajk

+
aijajk

aik

)
≥

√√√√( aik
aijajk

aijajk

aik

)
=⇒

(
aik

aijajk

+
aijajk

aik

)
≥ 2

Thus, c3 is always negative or zero. They suggested to skip an entry while making the
pairwise comparison matrix. Let this entry be x. Now the objective is to find an appropriate
value of x such that c3(x) becomes maximum.

Lamata and Peláez [21,36] proposed a consistency index CI∗ which is based upon the
determinant of pairwise comparison matrix of order 3. This index is developed by using
the fact that for three alternatives xi, xj and xk if the judgement matrix M is

M =

 1 aij aik
1

aij
1 ajk

1
aik

1
ajk

1


then the judgements are perfect if and only if

(i) the entries of M are transitive and (ii) M is a singular matrix.
If M is non-singular, i.e.,

det(M) =
aik

aijajk
+

aijajk

aik
− 2 > 0

then judgements are inconsistent. For a judgmental matrix A of order n > 3, the consis-
tency index CI∗ was taken as the mean of the determinants of all sub matrices of order
3 of the matrix A. The total number of submatrices of order 3 of a matrix of order n are(

n
3

)
= n!

3!(n−3)! . Hence, the mathematical formula for the consistency index CI∗ becomes

CI∗ =



0 n < 3
det(M) n = 3
∑i<j<k(

aik
aij ajk

+
aij ajk

aik
−2) n

3

 n > 3

It is easy to identify [37,38] that for n ≥ 3 the consistency index CI∗ proposed by
Lamata is related to the consistency index c3 proposed by Shiraish as:

c3 = −
(

n
3

)
CI∗

In [39], the further scope of improvement in CI∗ was found and this improved version
of CI∗ was denoted by CI+. By considering Saaty’s scale the minimum value of

∣∣∣ a13
a12a23

∣∣∣
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should be 9−3 and maximum value of
∣∣∣ a13

a12a23

∣∣∣ should be 93. Using these values, they defined
the consistency index of a matrix of order 3 which is bounded in [0, 1] as

CI+ =
93 + 9−3 −

(∣∣∣ a13
a12a23

∣∣∣+ ∣∣∣ a12a23
a13

∣∣∣)
93 + 9−3 − 2

= 1 +
2−

(∣∣∣ a13
a12a23

∣∣∣+ ∣∣∣ a12a23
a13

∣∣∣)
93 + 9−3 − 2

Thus, for a consistent matrix CI+max = 1, because for a consistent matrix of order
three a13

a12a23
= 1 = a12a23

a13
.

The value of CI+min = 0, when
∣∣∣ a13

a12a23

∣∣∣ takes its maximum or minimum value, i.e.,

93 or 9−3, respectively. For any other value of
∣∣∣ a13

a12a23

∣∣∣, CI+ falls in the interval [0, 1].

They formulated CI+ for any matrix A of order n as the mean value of the CI+ of all the
submatrices of order three of A i.e.,

CI+ =



0 n < 3
CI+(A3×3) n = 3

∑

(
n
3

)

i=1 CI+i n
3

 n > 3

where CI+i is the consistency of ith submatrix order three of A.
Benítez et al. [39,40] proposed linearization technique to obtain the nearest consistent

matrix corresponding to a given inconsistent matrix. Orthogonal projection in linear space
is used to obtain the nearest consistent matrix. Let Fm×n be the set of all m× n real matrices
and let Fm×n

+ be the set of all positive matrices. Then it is obvious that Fm×n
+ ⊆ Fm×n. They

defined a nonlinear bijective map L : Fn×n
+ → Fn×n as

[L(X)]ij = log
(
[X]ij

)
Thus, L maps a positive reciprocal matrix B to a skew Hermitian matrix L(B). They

further defined a subspace Ln consisting of the images L(A) of all consistent matrices A in
Fn×n
+ . The dimension of Ln is of course n− 1. The objective is to find the nearest consistent

matrix L(A) in subspace Ln to L(B). A linear map f from Rn to vector space Fn×n of all
n× n matrices is defined as

[ f (x)]i,j = xi − xj, x = (x1, x2, . . . , xn)
T

This function maps any vector of Rn to the skew Hermitian matrix of order n. Thus Ln

coincides with Im ( f ). If W is the one-dimensional subspace spanned by vector (1, 1, . . . , 1)T,
then this subspace is, of course, the null space of f . Let {y1, y2, . . . , yn−1} be the orthogonal
basis of the orthogonal complement of W then they proved that { f (y1), f (y2), . . . , f (yn−1)}
is the orthogonal basis of Ln. If (v1, v2, . . . , vn) is an orthogonal basis of Rn, then any vec-
tor v ∈ Rn can be expressed as the linear combination of the vectors v1, v2, . . . , vn as

v =
n
∑

i=1

〈vT , vi〉
〈vi , vi〉

vi. The nearest consistent matrix to L(B) in Ln is the orthogonal projection XB

of L(B) on Ln,

XB =
1

2n

n−1

∑
i=1

〈L(B), f (yi)〉
〈yi , yi〉

f (yi)

where, the inner product 〈 〉 on the n2 dimensional vector space Fn×n is defined as

〈A, B〉 = trace
(

AT B
)
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As L is a bijective mapping hence the inverse mapping of L is E which is defined as
[E(X)]ij = exp[X]i,j. Thus if B is a positive reciprocal matrix in Fn×n

+ then E(XB) is the
nearest consistent matrix to B in the sense of the distance defined in Fn×n

+ as

d(A, B) = ‖L(A)− L(B)‖F.

This distance is developed from the Frobenius norm ‖.‖F i.e.,

‖X‖2 = Trace
(

XTX
)

Benítez et al. [41] proposed the same formula in a much simpler form. The nearest
consistent matrix to L(B) in Ln is the orthogonal projection XB of L(B) on Ln,

XB =
1
n

[
(BUn)− (BUn)

T
]

where Un is a n× n singular matrix of rank one whose elements are all 1. Then BUn is a
matrix such that the elements in ith row of BUn are the same and equal to the sum of the
elements of ith row of B. The resultant matrix XB is, of course, a skew Hermitian matrix,
whose inverse image E will give the nearest consistent matrix corresponding to B.

Koczkodaj [42,43] introduced to the research community a new definition of consis-
tency denoted by CM which was based on a triad of any pair-wise comparison matrix.
Triad is a vector

(
aij, aik, ajk

)
of R3 where 1 ≤ i < j < k ≤ n such that aijajk = aik. For

any pair-wise comparison matrix of order three, there is only one triad (a12, a13, a23). If
(a, b, c) is the triad of any pair-wise comparison matrix A of order three, then they defined
consistency measure as

CM(a, b, c) = min
{

1
a

∣∣∣a− b
c

∣∣∣, 1
b |b− ac|, 1

c

∣∣∣c− b
a

∣∣∣}
= min

{∣∣∣1− b
ac

∣∣∣, ∣∣1− ac
b

∣∣}
Thus,

CM(a12, a13, a23) = min
{∣∣∣∣1− a13

a12a23

∣∣∣∣, ∣∣∣∣1− a12a23

a13

∣∣∣∣}.

The total number of triads of any pair-wise comparison matrix of order n are n(n−1)(n−2)
6 .

Thus, CM corresponding to each triad
(

aij, aik, ajk

)
can be evaluated with the help of the

formula CM
(

aij, aik, ajk

)
= min

{∣∣∣1− aik
aijajk

∣∣∣, ∣∣∣1− aijajk
aik

∣∣∣}. They generalized the consistency

measure of any PCM of order n as the maximum value of CM
(

aij, aik, ajk

)
, 1 ≤ i < j <

k ≤ n, among the n(n−1)(n−2)
6 CM corresponding to each triad.

Szybowski et al. [44] proposed Manhattan-index, and K-index for the incomplete
pairwise comparisons matrices. Mazurek [45] presented row inconsistency index (RIC).
Metaheuristics [46–49] have also been used to reduce the inconsistency in pairwise com-
parison matrices. Several iterative algorithms are also available in the literature for the
reduction of the inconsistency in pairwise comparison matrices. Recently, Mazurek [50]
have done a numerical comparison of such iterative methods.

4. Functional Relationship and Axiomatization of Consistency Indices

Several studies agree that the consistency indices are meaningless if the associated
threshold is not present. If the consistency index is less than the threshold, then the
judgements performed by the decision-maker are accepted. Otherwise, the decision-maker
has to revise the judgements. In literature, the threshold is defined for a few consistency
indices such as CI, GCI and CM. There are several other consistency indices that are not
associated with a threshold [51–57]. In addition, if the number of elements to be compared
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increases, then the consistency ratio defined by Saaty falls above 0.10. Due to this reason
Saaty’s consistency index was criticised in literature. According to Murphy [58], the 9-point
scale proposed by Saaty is responsible for this behaviour. On the other hand, in [59] it
was suggested that the small value of the standard deviation of CI of randomly generated
matrices by using the 9-point scale is the reason behind the restrictive threshold. In [30],
the dependency of CR threshold on the granularity of the scale was presented. Bozóki
and Rapcsák [60] compared Saaty’s and Koczkodaj’s consistency indices and arose valid
questions on these consistency indices. The effect of increasing the number of objects to be
compared on the inconsistency indices was experimentally studied by [61]. Determination
of the strength of the consistency test is still a meaningful and significant topic of research. In
recent years, work on establishing the functional relationships between different consistency
indices has also been done. The functional dependency of two consistency indices has the
following meanings:

(1) Both indices satisfy the same set of properties
(2) Both indices bring out the same results, which means that the one which is easy to

compute can be used.
(3) Functional dependency unifies the two different indices which have been developed

independently.

Brunelli [37] investigated the linear relationship between CI∗, c3 and GCI, ρ. Brunelli [62]
further studied ten consistency indices numerically to identify similarity among them. Brunelli [63]
has again functionally related the two different consistency indices that arise in two different
frameworks, i.e., (i) fuzzy preference relations and (ii) multiplicative preference relations. In [64]
functional the dependency of nine different CI on each other has been investigated, and for n = 3,
all consistency indices were found functionally dependent except RE and CCI. In [65,66], a
comparison between different indices on the basis of statistical parameters has been performed.

In the last few years, the main focus of research has been shifted to the axiomatic prop-
erties of the consistency index. Axiomatic properties are a set of mathematical properties
to be satisfied by any consistency index which makes consistency indices more reliable
to evaluate the deviation of PCM from the consistent matrices. First detailed study on
axiomatization was done by Koczkodaj and Szwarc in 2014 [67] and was revised by Koczko-
daj et al. [68]. Further, Brunelli and Fedrizzi [69] suggested five axiomatic properties to
characterize consistency indices. Some consistency measures [55,70–72] were not able to
satisfy these axioms suggested by Brunelli and Fedrizzi [69] while others do [3,22,23,36,73].
This axiomatic framework, consisting of five axioms, was expanded further, and one more
axiom was added by Brunelli in 2017 [74]. These six axioms are as follows:

Axiom 1. A is consistent if there exists a unique real number r ∈ R which represents the situation
of full consistency. That is, there must be a unique minimum value of the consistency index at which
it is fully consistent.

Axiom 2. Consistency indices should be invariant under the order of alternatives.

Axiom 3. Intensified preferences should not decrease the value of consistency indices.

Axiom 4. Monotonicity of consistent indices should be maintained for the single comparison as well.

Axiom 5. Consistency indices should be continuous function of the
(

n
2

)
variables aij (i > j)

which are the entries of the pairwise comparison matrix A =
[
aij
]
.

Axiom 6. The consistency indices of A must be the same as the consistency indices of AT . Thus,
the consistency index must be invariant under the inversion of preferences.

Another set of six properties for consistency indices was proposed by Csató [75] and
the consistency index suggested by Koczkodaj [35,36] was characterized. Csató [76] added
two more axioms in the axiomatic framework proposed by Brunelli and Fedrizzi [74].
Recently, Mazurek and Ramík [77] introduced row inconsistency indices RIC and added
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one more axiom in [69]. He further found that only Koczkodaj’s consistency index K was
able to satisfy all six axioms. Brunelli and Cavallo [78] have recently developed a new
categorization of consistency indices. The behavior of some consistency indices on different
sets of properties is listed in Table 1. Here, in the Table 1, Ai stands for the ith axiom in the
proposed set of axioms given by the author.

Table 1. Axiomatic properties satisfied by different indices.

S. No. Indices Brunelli &
Fedrizzi [69] Brunelli [74] Csató [75] Csató [76] Koczkodaj

[68]
Mazurek &
Ramík [77]

1 CI [3] Satisfies all axioms. Satisfies all axioms - - Dissatisfies-
A2 and A4

Satisfies-
A1 to A5

Dissatisfies-A6

2 CI∗

[22,36] Satisfies all axioms. Satisfies all axioms - - -
Satisfies-
A1 to A5

Dissatisfies-A6

3 GCI [23] Satisfies all axioms. Satisfies all axioms - - -
Satisfies-
A1 to A5

Dissatisfies-A6

4 CM
[42,43]

Satisfies all five
axioms.

Satisfies all six
axioms

Satisfies all
six axioms

Satisfies all
eight axioms - Satisfies all six

axioms

5 RE [70]
Satisfies-A1, A2,

A3
Dissatisfies-A4, A5

Satisfies-A1, A2,
A3

Dissatisfies-A4,
A5, A6

- - - -

6 HCI [71]
Satisfies-A1, A2,

A3 and A5
Dissatisfies-A4

Satisfies-A1, A2,
A3, A5 and A6
Dissatisfies-A4

- - - -

7 GW [53]
Satisfies-A1, A2

and A5
Dissatisfies-A3

Satisfies-A1, A2,A5
and A6

Dissatisfies A3

- - -
Satisfies-A1, A2

and A5,A6
Dissatisfies-A3

8 NIσ
n [72]

Satisfies-A1, A2
and A5

Dissatisfies-A4

Satisfies-A1, A2,A5
and A6

Dissatisfies A4

- - - -

9 CMSH
[30]

Satisfies-A1, A2,
A4 and A5

Dissatisfies-A3

Satisfies-A1, A2,
A4, A5 and A6
Dissatisfies-A3

- - - -

10 CIH [73] Satisfies all five
axioms.

Satisfies-all six
axioms. - - - -

11 CCI [27]
Satisfies-A1, A2

and A5
Dissatisfies-A3

Satisfies-A1, A2,A5
and A6

Dissatisfies A3

- - - -

12 RIC [77]
Satisfies-A1, A2,

A4 and A5
Dissatisfies-A3

- - - -
Satisfies-A1, A2,
A4, A5 and, A6
Dissatisfies-A3

5. Research Gaps and Potential Research Direction

Extensive research has been done in the field of consistency in AHP, but there is still a
scope to improve the existing consistency indices and develop new consistency indices. We
have listed some potential future directions on the basis of the existent research gaps in the
field of the consistency indices in AHP as follows:

(1) While the AHP method was developed in early seventies, there is still there a bright
scope to perform mathematical analysis of AHP especially, in the area of evaluation
of consistency index.
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(2) Intensive work can be done to determine the threshold of existing consistency indices.
Many other indices have been developed by the researchers so far, but some of them
are not that meaningful because they do not provide the thresholds associated with
the indices.

(3) The linear scale (Saaty’s scale) has been criticized in literature as it is not large enough
to handle the ambiguity in real-life problems, and hence gives rise to the absurdity in
consistency index.

(4) As discussed in Section 4, there is a strong need to unify consistency indices with
the help of axiomatic properties. In recent years, the main focus of research has been
shifted to the axiomatic properties of consistency index. Axiomatization to unify the
existing consistency indices is another promising research direction.

(5) The weak consistency of preference relations with triangular numbers, interval num-
bers, and trapezoidal fuzzy numbers is not well studied yet.

6. Conclusions

AHP is one of the most popular tools in multi-criteria decision-making (MCDM).
The main disadvantage of AHP is a large number of pairwise comparisons, which can
certainly cause errors to arise. Extensive research has been performed to identify and
minimize these errors by developing consistency indices. This article starts by explaining
the mathematical concepts of AHP. Then, it reviews the different consistency indices with
their proper mathematical structure. This article also includes the limitation of consistency
indices on the basis of their functional relationship and the satisfaction level of different
axiomatizations. In a nutshell, axiomatization is the need of the hour to unify consistency
indices on the same platform. This article also covers some potential research directions as
there is still room for improvement in the field of consistency indices. These directions can
help researchers to think about unexplored areas in this field.
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