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Abstract: Recent nanotech advancements have created a tremendous platform for the development
of a superior ultrahigh performance coolant referred to as nanofluid for several industrial and
engineering technologies. In this research, the impact of thermophoretic and viscous dissipation on
the radiative mixed convective flow comprising hybrid nanofluid through an inclined permeable
moving flat plate with a magnetic field is examined numerically. A model of non-linear differential
equations is derived based on some realistic assumptions and tackled numerically using the bvp4c
technique. The impact of the specific set of distinguished parameters on the velocity profiles, shear
stress, temperature distribution profiles, heat transfer, concentration distribution profile, and mass
transfer for the two dissimilar branch solutions are discussed in detail. In addition, it has been
discovered that double solutions exist in the case of an opposing flow, while a single solution is
observed in the case of an assisting flow. The temperature distribution profile escalates with the
radiation parameter, while decelerating the velocity and concentration profiles.

Keywords: hybrid nanofluid; thermophoretic effect; radiation effect

MSC: MHD; 76-10; 76D10; 76W05

1. Introduction

Nanotechnology is a rapidly expanding field in this modern age of advancement,
where things are becoming smaller in size and getting better in the terminology of ap-
propriate features. An area of particular importance is the preparation of products at the
atomic and molecular levels for specific industrial purposes. One of the main ingredients of
nanotechnology is nanofluid, which is primarily utilized to handle heat transfer challenges
effectively. Thermal management of extremely sensitive systems is a major challenge in
today’s engineering and science operations, such as thermal power plants, nuclear reac-
tions, and technologically advanced procedures. A nanofluid is formed by combining
some regular fluids (kerosene oil, water, alcohol, etc.) with solid nanoparticles ranging in
size from 1 to 100 nm. The credit for this large-scale advancement is given to the initial
research of Choi and Eastman [1], where they developed the nanofluid concept. According
to Eastman et al. [2], the deferment of Cu nanoparticles increases the conduction capacity of
engine oil by 40%. The primary reason for this finding is that Cu has 3000 times the thermal
conductivity of engine oil. Vajravelu et al. [3] elaborated the concept of the boundary
layer (BL) flow of nanofluids using Cu and Ag as nanoparticles. Makinde and Aziz [4]
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investigated the behavior of nanofluids flowing past a stretchable sheet while taking the
convective boundary condition into account. The time-dependent flow of a nanofluid
near a stagnation point was inspected by Bachok et al. [5]. The unsteady/steady flow of a
nanofluid through a movable surface in a consistent exterior free stream was investigated
by Roşca and Pop [6]. Reddy and Chamkha [7] examined the Dufour and Soret effects
on magneto flow through a stretchable sheet induced by water-based Al2O3 and TiO2
nanomaterials in porous media. The features of heat transfer for forced convection flow
conveying nanomaterials through a moving plate immersed in a porous media with a heat
sink/source were inspected by Ghosh and Mukhopadhyay [8]. Hussain et al. [9] presented
a statistical analysis of the magnetized flow of a nanofluid through a stretchable sheet with
a dissipation effect and also obtained the numerical solution. Waini et al. [10] utilized the
Tiwari and Das model to scrutinize the Soret and Dufour effects on the flow of a nanofluid
past a moving slim needle and presented double solutions. Hussain et al. [11] scrutinized
the impact of solar radiation on the fluid flow of a non-Newtonian nanofluid immersed
in a porous medium. Recently, Alazwari et al. [12] inspected the entropy generation of
first-grade viscoelastic nanofluid past a porous plate. They observed that the entropy
uplifts due to the volume fraction and Deborah number.

Several kinds of research have been carried out on nanofluids up to this point, but a
binary hybrid nanofluid (HBN), one of the novel sorts of nanoliquid has recently piqued
the interest of researchers. HBNs are made in two ways: (a) two or more dissimilar kinds of
nanoparticles scattered in a regular or working base fluid, or (b) composite nanomaterials
deferred in the regular fluid (conjoined). In fact, the application of nanofluid can improve
heat transfer rates and lower production costs, which is why researchers are interested
in this topic. The influences of convective heat transport through the tube employing a
water-based Al2O3/Cu hybrid nanofluid were scrutinized by Suresh et al. [13] in which
he discovered that hybrid nanofluids have a higher Nusselt number than regular fluids.
Generally, the necessary cooling important for the electronic ingredients to avoid overheat-
ing is accomplished through the use of air-cooled heat sinks (ACHS) or liquid-CHS, with
liquid-CHS being more suitable in terms of thermal efficiency. Selvakumar and Suresh [14]
measured the pressure difference and rate of heat transport in an EHS using a water-based
Al2O3/Cu hybrid nanofluid. According to their experimental outcomes, the coefficient
of convective heat transport of a heat sink is augmented when hybrid nanoparticles are
utilized as the working liquid. The features of heat loss through a riser pipe past a solar
collector of the flat plate filled with a water-based hybrid nanofluid were inspected by
Nasrin and Alim [15]. Devi and Devi [16] utilized the water-based hybrid nanofluid as well
as a normal nanofluid to inspect the parametric characteristics of fluid flow past a porous
stretchable sheet with a magnetic field. Ghadikolaei et al. [17] examined the transitive mag-
netic effect on the flow of water-based HBN past a stretching sheet with an ambient velocity
and different kinds of shape factors. Huminic and Huminic [18] developed and intensely
inspected the hybrid nanofluids which led to an enhancement of the thermal conductivity
and ultimately an enhancement of heat transfer in the heat exchanger. The impact of the
convective condition on the steady flow induced by HBN with heat transfer over a porous
shrinking/stretching sheet was investigated by Waini et al. [19]. They observed that the rate
of heat transfer is higher for HBN relative to a normal nanoliquid. Khan et al. [20] examined
the mixed convective flow of HBN through a moving wedge with a magnetic effect and
found double solutions. Roy and Pop [21] obtained an analytic solution of Stoke’s second
problem induced by a water-based Cu/Al2O3 HBN with a heat source. The impact of a heat
source/sink on magnetized flow through an exponentially stretchable sheet induced by a
hybrid nanofluid was examined by Khan et al. [22]. They scattered alumina and copper
nanoparticles in the blood base fluid. Recently, Khan et al. [23] discussed the axisymmetric
flow and heat transport impinging on a permeable shrinkable/stretchable rotating disk
conveying hybrid nanofluid and discovered a double branch outcome. Hussain [24] and
Hussain et al. [25] examined the significance of a hybrid nanofluid with different aspects.
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Thermophoresis refers to the phenomenon in which tiny micron-sized particles scat-
tered in a non-isothermal gas accumulate velocity in the diminishing temperature direction.
The velocity of gas molecules emerging from the warm end of the particles is higher than
that of those emerging from the cold end. Collision of the molecules with the particles oc-
curs quite vigorously, as they move more quickly. Because of the discrepancy in momentum,
the particles develop a velocity in the cooler temperature direction. At first, Hales et al. [26]
examined the impact of a thermophoretic assumption in the interest of engineering ge-
ometry. They inspected laminar equations through steam and aerosol transfer towards
a vertical isothermal sheet. Chamkha and Pop [27] explored the role of thermophoresis
particle deposition in a natural convection flow layer generated by a flat vertical plate in a
porous media. Chamkha et al. [28] investigated the effect of aerosol particle thermophoresis
in the laminar boundary layer through a vertical plate. Kandasamy et al. [29] analyzed the
impact of irregular viscosity on magneto flow past a permeable wedge with a chemical
reaction. The time-dependent flow of a micropolar fluid near a stagnation-point past a
flat plate with thermophoresis and suction effects was examined by Zaib and Shafie [30].
Animasaun [31] inspected the Dufour and thermophoresis effects on magneto flow of a
Casson fluid through a porous vertical plate with dissipation and temperature-dependent
conductivity. Recently, Chamkha and Issa [32] scrutinized the 2D flow past a permeable
semi-infinite surface subjected to a heat sink/source and thermophoresis effects.

Thermal radiation is critical in several engineering and industrial procedures such
as nondestructive testing, electric power, panels of solar cells, and others. As a result,
understanding the characteristic of thermal radiation is critical to achieving the preferred
class of goods in industrial processes. The impact of radiation through the features of
a non-Newtonian fluid with thermal diffusion and mixed convection was inspected by
Mahmoud and Megahed [33]. Shehzad et al. [34] studied the thermal radiative impact on
the 3D flow and heat transfer of a Jeffrey nanofluid with magnetism. Sheikholeslami and
Rokni [35] investigated the roles of Coulomb force and thermal radiation in the trajectories
of nanofluids in an enclosure of porous space. They discovered that the process of radi-
ation aids in increasing the thickness of the thermal layer. Wakif et al. [36] explored the
significance of the radiative effect on magneto flow of a hybrid nanofluid with effects of
surface roughness. Recently, Khan et al. [37] discussed the impressions of porous media
on radiative mixed convective flow induced by a hybrid nanofluid with an erratic heat
sink/source from a vertical porous cylinder and presented double solutions.

As a result of the above reviews, the novelty of the current work lies in determining the
numerical dual solutions of the MHD stagnation point flow induced by an HBN towards a
porous moving inclined flat plate with mixed convection and thermal radiation. Moreover,
the impact of viscous dissipation and thermophoretic effects are also incorporated which
have not been investigated previously. The Tiwari–Das model is utilized to calculate the fine
point of fluid flow. The hybrid nanofluid is created by suspending two distinct nanoparticles
in the working fluids, namely silver (Ag) and titanium dioxide (TiO2) (water). Using the
similarity variables, the leadings equations and boundary conditions are later transformed
into a system of ordinary differential equations, and then analysis is carried out in MATLAB
using the bvp4c solver. The impacts of numerous values of the pertinent parameters on the
physical quantities are demonstrated graphically, as well as in tabular form.

2. Mathematical Formulation

Consider a steady two-dimensional (2D) laminar flow of an incompressible electrically
conducting hybrid nanofluid over a continuously moving semi-infinite inclined permeable
flat plate with an acute angle Γ to the vertical, as shown in Figure 1, where, (xr, yr) are
the Cartesian coordinates with xr− and yr− being measured along the flat plate and
normal to it, respectively. We assume that the velocities of the moving plate and the
free stream are Ua and Ub, respectively (in other words, the plate moves away or toward
the origin with constant velocities Ua and ambient velocity Ub), while vw(xr) is the mass
flux velocity with vw(xr) > 0 for suction and vw(xr) < 0 for injection, respectively, Tw
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is the constant temperature and Cw is the constant concentration of the plate, while T∞
and C∞ are the temperature and concentration of the free stream, Qra is the radiative
heat flux (RHF) in the yr-direction. In addition, Tw(x) < T∞ represents the cooled plate,
whereas Tw(x) > T∞ denotes the heated plate. For thermal enhancement, two different
nanoparticles are considered, namely Ag (silver) and TiO2 (titanium dioxide), diluted in
the base working fluid (water) to form a novel class of hybrid nanofluid. A magnetic field
(MF) B(xr) is applied in the yr-direction. The following requisite assumptions are made:

• The particles of concentration flux are adequately undersized such that neither the
temperature field nor the main velocity stream are exaggerated via the thermo-physical
processes practiced by the moderately small number of particles.

• Owing to the behavior of the BL, the gradient of temperature is greater in the yr-
direction than the xr-direction. As a result, only the component of thermophoretic
velocity perpendicular to the surface is significant.

• The particle diffusivity is assumed to be constant, and the particle concentration is low
enough that particle clotting in the BL is assumed to be negligible.

• The Bossiness approximation may be adopted for steady laminar flow.
• The magnetic Reynolds number (MRN) is taken to be small enough that the IMF is

insignificant in comparison to the AMF.
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The considered fluid is measured to be gray, representing an absorbing–emitting but
non-scattering medium, and the Rosseland approximation (RAN) is exercised to describe
a Qra in the xr-direction that is measured to be negligible relative to the yr-direction. It is
also assumed that B(xr) = B0/

√
2(xr/lr) where B0 is the constant strength of the magnetic

field and lr is the characteristic length of the plate. Under the above stated conditions,
the steady continuity, the momentum, the energy, and the concentration boundary layer
equations of the hybrid nanofluid, in Cartesian coordinates (xr, yr), can be written as (see
Noor et al. [38]):

∂ur

∂xr
+

∂vr

∂yr
= 0 (1)

ur
∂ur

∂xr
+ vr

∂ur

∂yr
=

µhbn f

ρhbn f

∂2ur

∂y2
r
+

(ρβ)hbn f

ρb f
(Tr − T∞)gr cos Γ−

σhbn f

ρb f
B2(xr)(ur −Ub) (2)
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ur
∂Tr
∂xr

+ vr
∂Tr
∂yr

=
khbn f

(ρcp)hbn f

∂2Tr
∂y2

r
− 1

(ρcp)hbn f

∂Qra
∂yr

+
µhbn f

(ρcp)hbn f

(
∂ur
∂yr

)2
+

σhbn f

(ρcp)hbn f
B2(xr)(ur −Ub)

2
(3)

ur
∂Cr

∂xr
+ vr

∂Cr

∂yr
= DB

∂2Cr

∂y2
r
− ∂(VTMCr)

∂yr
(4)

subject to the boundary conditions

ur = Ua, vr = vw(xr), Tr = Tw, Cr = Cw = 0 at yr = 0,
ur → Ub, Tr → T∞, Cr → C∞ as yr → ∞.

(5)

where ur and vr are the velocity components along (xr, yr)-axes, Tr the temperature, and
Cr the concentration of the hybrid nanofluids, gr is the acceleration due to gravity, DB the
molecular diffusivity of the species concentration, and VTM the thermophoretic velocity.
Here, Cw = 0 represents fully absorbing surface concentration, see Mills et al. [39] and
Tsai [40].

Further, khbn f is the thermal conductivity, ρhbn f is the density, σhbn f is the electrical
conductivity, µhbn f is the absolute viscosity,

(
ρcp
)

hbn f is the heat capacity, and (ρβ)
hbn f

is the
coefficient of thermal expansion, which are given by (see Ho et al. [41]; Sheremet et al. [42]).

khbn f

kb f
=

[
(φaka+φbkb)

φa+φb
+

{
(DA − 1)kb f + (DA − 1)(φaka + φbkb)

−(DA − 1)(φa + φb)kb f

}]
[
(φaka+φbkb)

φa+φb
+

{
(DA − 1)kb f − (φaka + φbkb)

+(φa + φb)kb f

}] , (6)

µhbn f

µb f
=

1

(1− φa − φb)
2.5 ,

ρhbn f

ρb f
= φa

(
ρa

ρb f

)
+ φb

(
ρb
ρb f

)
+ (1− φa − φb), (7)

σhbn f

σb f
=

[
(φaσa+φbσb)

φa+φb
+

{
(DA − 1)σb f + (DA − 1)(φaσa + φbσb)

−(DA − 1)(φa + φb)σb f

}]
[
(φaσa+φbσb)

φa+φb
+

{
(DA − 1)σb f − (φaσa + φbσb)

+(φa + φb)σb f

}] , (8)

(
ρcp
)

hbn f(
ρcp
)

b f
= φa

( (
ρcp
)

a(
ρcp
)

b f

)
+ φb

( (
ρcp
)

b(
ρcp
)

b f

)
+ (1− φa − φb), (9)

(ρβ)hbn f

(ρβ)b f
= φa

(
(ρβ)a
(ρβ)b f

)
+ φb

(
(ρβ)b
(ρβ)b f

)
+ (1− φa − φb). (10)

In Equations (6)–(10), the symbol φ is called the solid nanoparticles volume fraction
(where φ = 0 corresponds to a regular (viscous) fluid) and DA represents the shape
factor parameter, and here the value of the shape factor is considered as DA = 3 (spherical).
Moreover, the other notations such as σb f , kb f , µb f ,

(
ρcp
)

b f ,ρb f , and (ρβ)b f are the respective
electrical conductivity, thermal conductivity, viscosity, specific heat capacity, density, and
thermal expansion coefficient of the base working fluid while φa signifies the Ag (silver)
nanoparticles and φb denotes the TiO2 (titanium dioxide) nanoparticles. The physical data
of the base working fluid and the two distinct hybrid nanoparticles (Ag (silver) and TiO2
(titanium dioxide)) are written in Table 1.
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Table 1. The thermophysical properties of the hybrid nanoparticles.

Properties ρ(kg/m3) cp(J kgK) k (W/mk) Pr

Water 997.1 4179 0.613 6.2
Cu 8933 385 400 —

Al2O3 3970 765 40 —

Now, employing the RAN, the Qra (RHF) can simply take the following form (see
Bataller [43]; Ishak [44]; Magyari and Pantokratoras [45]);

Qra = −
4σA
3kA

∂T4
r

∂yr
(11)

where kA and σA signify the mean absorption coefficient and the corresponding Stefan–
Boltzmann constant, respectively. In addition, by applying a Taylor series to the fourth
power of T4

r about the point T∞, and ignoring the higher power order terms, a simplified
form can be obtained as T4

r
∼= 4TrT3

∞ − 3T4
∞. Using this, Equation (3) can be re-written as:

ur
∂Tr
∂xr

+ vr
∂Tr
∂yr

=
kb f

(ρcp)hbn f

( khbn f
kb f

+ 16σAT3
∞

3kAkb f

)
∂2Tr
∂y2

r
+

µhbn f

(ρcp)hbn f

(
∂ur
∂yr

)2
+

σhbn f

(ρcp)hbn f
B2(xr)(ur −Ub)

2.
(12)

The thermophoretic velocity VTM which appears in Equation (4) can be written as

VTM = −kυb f
∇Tr

Tb
= −

kυb f

Tb

∂Tr

∂yr
, (13)

where Tb is a reference temperature and k is the thermophoretic coefficient with a range of
values from 0.2 to 1.2 as designated by Batchelor and Shen [46].

Therefore, Equation (1) is fulfilled for the choice of stream function ψ(xr, yr) defined
as ur = ∂ψ/∂yr and vr = −∂ψ/∂xr.

Guided by the boundary conditions (5), we introduce the following similarity vari-
ables:

ψ(xr, yr) =
√

2Ubυb f xrF(ξ), G(ξ) =
Tr − T∞

Tw − T∞
, S(ξ) =

Cr

C∞
, ξ = yr

√
Ub

2υb f xr
. (14)

Thus, the velocity components (ur, vr) are given by

ur = UbF′(ξ), vr = −

√
Ubυb f

2xr

(
F− ξF′

)
(15)

So that

vw(xr) = −

√
Ubυb f

2xr
fw. (16)

Here, the prime symbolizes the relative derivative with respect to ξ, fw is the constant
mass flux velocity. Therefore, the cases fw > 0 for suction and fw < 0 for injection are
observed, respectively.

Substituting Equation (14) into Equations (2), (4) and (12) generates the following
system of ordinary (similarity) coupled equations as follows:

µhbn f /µb f

ρhbn f /ρb f
F′′′ + F′′ +

(ρβ)hbn f /(ρβ)b f

ρhbn f /ρb f
ΣaG cos Γ−

σhbn f /σb f

ρhbn f /ρb f
Λa
(

F′ − 1
)
= 0 (17)
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1
Pr(ρcp)hbn f /(ρcp)b f

( khbn f
kb f

+ 4
3 Rad

)
G′′ + FG′+

Eca

(
µhbn f /µb f

(ρcp)hbn f /(ρcp)b f
F′′ 2 +

σhbn f /σb f

(ρcp)hbn f /(ρcp)b f
Λa(F′ − 1)2

)
= 0

(18)

1
Sca

S′′ + FS′ + δa
(
G′′ S + G′S′

)
= 0 (19)

with associated boundary conditions:

F(0) = fw, F′(0) = εr, G(0) = 1, S(0) = 0 at ξ = 0,
F′ → 1, G → 0, S→ 1 as ξ → ∞.

(20)

To obtain the similarity solution of Equation (3), we presume the required case is given

as βb f =
βb f ∗

xr
(see Mohamed et al. [47]), where βb f ∗ is constant. In addition, Pr is the

Prandtl number, Sca is the Schmidt number, Eca is the Eckert number, Λa is the magnetic
parameter, Rad is the radiation parameter, δa is the thermophoretic parameter, and Σa is the
mixed convection parameter, which are defined as

Pr =
µb f cp

kb f
, Sca =

υb f
DB

, Eca =
U2

b
cp(Tw−T∞)

, Λa =
σb f lr B2

0
ρb f Ub

, Rad = 4σAT3
∞

kAkb f
,

δa =
k(Tw−T∞)

Tb
, Σa =

Grxr
Re2

xr
=

2gr βb f ∗lr(Tw−T∞)

U2
b

, εr =
Ua
Ub

(21)

with Grxr =
gr βb f ∗(Tw−T∞)(2xr)

3

υ2
b f

as the local Grashof number and Rexr =
2Ubxr

√
xr/lr

υb f
as the

local Reynolds number. It should be noticed that Σa > 0 corresponds to assisting flow,
Σa < 0 corresponds to opposing flow, and Σa = 0 corresponds to forced convection flow.
In addition, εr is the constant moving plate parameter, with εr > 0 for the moving plate
in the up direction, εr < 0 for the plate moving in the down direction, and εr = 0 for the
static plate.

3. The Engineering Interest Quantities

The gradients of practical interest are the local shear stress C f , local heat transfer Nuxr ,
and the local mass transfer Shxr , which are defined as:

C f =
2µhbn f

ρb f U2
b

(
∂ur
∂yr

)∣∣∣
yr=0

, Nuxr = − xr
kb f (Tw−T∞)

(
khbn f

(
∂Tr
∂yr

)
− (Qra)w

)∣∣∣
yr=0

,

Shxr =
xr

DBC∞

(
DB

∂Cr
∂yr

)∣∣∣
yr=0

(22)

Substituting Equation (14) into the aforementioned Equation (22), the following ob-
tained dimensionless form of the gradients can be written as:

Re1/2
xr C f = 2

µhbn f
µb f

F′′ (0), (Rexr )
−1/2Nuxr = − 1

2

( khbn f
kb f

+ 4
3 Rad

)
G′(0),

(Rexr )
−1/2Shxr =

1
2 S′(0).

(23)

where Rexr =
2Ubxr

√
xr/lr

υb f
is the local Reynolds number.

4. Numerical Solution Procedure and Validation of the Scheme

This section discusses mainly the complete solution procedure of the scheme as well
as the confirmation of the code. The problem is initially bounded in the form of PDEs and
then changed into ODEs via executing the similarity variables. Consequently, the given
model accomplished the similarity dual solutions (first solution and second solution) of
Equations (17)–(19) along with BCs (20) via executing a bvp4c built-in package working in
the MATLAB program, and the specifics are reported in Shampine et al. [48]. However, this
package further uses a finite difference scheme with fourth-order precision that incorporates
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the three-stage Lobatto IIIA formula. For the working system of the technique, the set of
similarity ODEs from higher second and third-order are altered into first-order ODEs via
introducing new variables. Let the new variables be as follows:

F = Da, F′ = Db, F′′ = Dc, G = Dd, G′ = De, S = D f , S′ = Dg (24)

By making use of the new variables in the requisite posited similarity equations, the
required set of first-order ODEs can be written as:

d
dξ



Da
Db
Dc
Dd
De
D f
Dg


=



Db
Dc
ρhbn f /ρb f
µhbn f /µb f

(
−DaDc −

(ρβ)hbn f /(ρβ)b f
ρhbn f /ρb f

ΣaDd cos Γ +
σhbn f /σb f
ρhbn f /ρb f

Λa(Db − 1)
)

De

Pr(ρcp)hbn f /(ρcp)b f

(khbn f /kb f +(4/3)Rad)

−DaDe − Eca


µhbn f /µb f

(ρcp)hbn f /(ρcp)b f
D2

c+

σhbn f /σb f

(ρcp)hbn f /(ρcp)b f
Λa(Db − 1)2




Dg

Sca

(
−DaDg − δaDeDg − δaD f

d
dξ De

)



(25)

The following known and unknown ICs are used to solve the above set of Equation (25)
as a one-point boundary value problem (IVP):

Da(0) = fw, Db(0) = εr, Dc(0) = E1, Dd(0) = 1, De(0) = E2, D f (0) = 0, Dg(0) = E3. (26)

Furthermore, the arbitrary constants E1, E2, and E3 are guessed during the process
of bvp4c simulations and the comprised parameters are also set accordingly to execute
the acceptable solution. For the acceptable outcome, we can estimate the value of the
aforementioned constants in such a way that the working process of iteration is repeated
until, once satisfied, the subsequent BCs are as follows:

Db(ξ)→ 1, Dd(ξ)→ 0, D f (ξ)→ 1 as ξ → ∞. (27)

To put it another way, the computational solution is deemed reasonable when no
warnings or errors are generated during execution and the far-field BCs (27) are met.
In addition, the present problem consists of more than one (first and second) solution.
Therefore, the code needed two dissimilar choices or guesses for the output. The guess or
estimate for the first solution is very simple while for the second solution the guess is quite
complex to appropriately select. Meanwhile, the guess needed more time and effort for the
second branch solution which satisfies the far-field BCs asymptotically. First and foremost,
the validation technique is carried out to ensure that the current model is reliable. In this
respect, a comparative analysis was conducted towards the solo numerical value of the
shear stress (|F′′ (0)|) with the available published works of Cortell [49], Yazdi et al. [50],
and Javed et al. [51] for the FBS due to the limiting cases of the stretching parameter
εr = 1.0 and without the influence of the stagnation point (ur → 0 as yr → ∞), fw = 0,
Γ = 0, Λa = 0, Σa = 0, φa = 0, and φb = 0. The comparison is shown computationally
in Table 2, where the solutions are exceptionally well-matched and give assurance on the
considered scheme applied in this problem. Hence, this gives further confidence and power
that the unavailable results of the existing problem are new and original.
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Table 2. Comparison of the shear stress (|F′′ (0)|) value for the first branch solution (FBS) due to the
limiting case of the stretching parameter εr = 1.0 when fw = 0, Γ = 0, Λa = 0, Σa = 0, φa = 0, φb = 0,
and without the influences of stagnation point (ur → 0 as yr → ∞).

Cortell [49] Yazdi et al. [50] Javed et al. [51] Current Results

0.627547 0.6275 0.627547 0.6275625989

5. Graphical Results and Discussion

In this portion of work, we need to discuss the physical interpretation of the graphical
and tabular outcomes of the (Ag-TiO2/water) hybrid nanoparticles for the two dissimilar
branch solutions due to the influence of the various influential embedded flow parame-
ters. Tables 1 and 2 signify the thermo-physical data of the hybrid nanoparticles and the
comparison of the considered scheme. Furthermore, Table 3 explicates the values of the
quantity C f (i.e., the shear stress) towards the variation in the suitable flow parameters for
the first branch solution (FBS) as well as the second branch solution (SBS) when εr = −2.5
and Γ = π/6. The outcomes reveal that the shear stress for the FBS enriches owing to the
larger values of fw, Λa, and Σa, while it is reduced for the SBS. Meanwhile, the impacts of
the hybrid nanoparticles can boost the behavior of the quantity C f (i.e., the shear stress) for
both dissimilar branch solutions. Table 4 clarifies the computational values of the quantity
Nuxr (i.e., the heat transfer rate) owing to the variation in several flow parameters for the
first and second branch solutions when εr = −2.5, fw = 2.0, Λa = 0.05, and Γ = π/6. It is
observed that the magnitude of the heat transfer upsurges for the FBS and for the SBS due
to the superior values of Σa. Meanwhile, the escalating values of the hybrid nanoparticles,
the radiation parameter, and the Eckert number shrink the heat transfer behavior for both
solution branches. Similarly, Table 5 gives the quantitative values of the quantity Shxr (i.e.,
the Sherwood number) due to the varying values of the different flow parameters for the
FBS as well as for the SBS when εr = −2.5, fw = 2.0, Λa = 0.05, Rad = 1.0, Eca = 0.10,
Σa = −1.0, and Γ = π/6. From the results, it can be observed that the mass transfer en-
hances the FBS and shrinks for the SBS due to the mounting values of φa, φb. Alternatively,
the upsurging role of the parameters Sca and δa monotonically escalates the mass transfer
rate for both solutions (FBS and SBS). However, the shear stress is not directly affected by
Sca and δa because these parameters appeared in the concentration equation and play a
key role in the energy equation due to the presence of thermophoretic values.

Table 3. Numerical values of the quantity C f towards the variation in the pertinent flow parameters
for both the FBS and SBS results.

Parameters Default Values Varying Values First Branch Second Branch

φa, φb 0.010

0.022 6.22729136 4.22405959
0.026 6.59021932 4.29803229
0.030 6.94141190 4.38423242
0.034 7.28381296 4.47963924

Λa 0.05

0.03 4.67942626 4.41630432
0.05 4.95898798 4.18536240
0.07 5.12387194 4.07045229
0.09 5.25579388 3.98984757

Σa −1.00

−0.50 5.57399151 3.80667611
−0.75 5.31501955 3.94803128
−1.00 4.95898798 4.18536240
−1.10 4.69384304 4.40304464

fw 2.00

2.00 4.95898798 4.18536240
2.05 5.52822448 3.86463894
2.10 5.93429206 3.71024409
2.15 6.28488096 3.61473572
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Table 4. Numerical values of the quantity Nuxr towards the variation in the pertinent flow parameters
for both the FBS and SBS results.

Parameters Default Values Varying Values First Branch Second Branch

φa, φb 0.010

0.022 2.03657172 2.25628862
0.026 1.70027151 2.00652260
0.030 1.36171250 1.76142110
0.034 1.02142959 1.52022703

Rad 1.00

0.50 3.20050647 3.36473371
0.65 3.13536106 3.24569328
0.80 3.08102027 3.14712640
1.00 3.02267358 3.04550272

Eca 0.10

0.50 6.27454754 5.70503014
0.65 5.26650058 4.92350276
0.80 4.28384356 4.13090050
1.00 3.02267358 3.04550272

Σa −1.00

−0.50 2.77606952 2.49984802
−0.75 2.89282884 2.83062593
−1.00 3.02267358 3.04550272
−1.10 3.08621464 3.10171918

Table 5. Numerical values of the quantity Shxr towards the variation in the pertinent flow parameters
for both the FBS and SBS results.

Parameters Default Values Varying Values First Branch Second Branch

φa, φb 0.030

0.022 1.50928773 1.13052604
0.026 1.53278271 1.11471618
0.030 1.55262400 1.10218292
0.034 1.56966664 1.09209381

Sca 1.00

0.50 0.73292241 0.63515653
1.00 1.38929718 1.22495733
1.50 2.12769258 1.91861991
2.00 2.91986995 2.68086874

δa 0.50

0.10 1.36972543 1.20658511
0.30 1.37991567 1.21614064
0.50 1.38929718 1.22495733
0.70 1.39795933 1.23311636

Figures 2–4 elucidate the variation in the C f , Nuxr , and Shxr due to the larger values of
Λa against Σa, respectively. Multiple branch (FBS and SBS) solutions are accomplished in all
the physical quantities for the only case of the buoyancy opposing flow (Σa < 0), while in
the case of the buoyancy assisting flow (Σa > 0), only a single solution is possible. Further,
these graphs illustrate the values of C f and Shxr increase for the FBS and decline for the SBS
due to the larger impact of Λa, while the Nuxr abruptly shrinks for both solution branches.
In the physical scenario, the larger influence of the magnetic parameter Λa can create a
strong drag force which shrinks the motion of the fluid flow of the hybrid nanoparticles.
Therefore, the motion of the fluid flow is inversely related to the friction of the fluid. As a
result, the shear stress upsurges because of the larger impacts of the magnetic parameter.
Since multiple solutions are possible here only for the case of the buoyancy opposing flow
(Σa < 0) where the FBS represents the physically stable or trustworthy solution and the
SBS corresponds to the unstable (not physically reliable) solution. Moreover, the unique
solution is observed in these graphs for the case when Σa = Σac, no solution is seen for the
case when Σa < Σac, and the possible outcomes are detected for the case when Σa > Σac.
According to the graphs, it is observable that for each distinct value of Λa, the following
change critical values are found (see Figures 2–4) and are written in each window of the



Mathematics 2022, 10, 1164 11 of 21

graphs. These critical points are highlighted by the small solid balls that the readers can
easily see. Meanwhile, the magnitude of the critical values is also enriched monotonically
with growing values of Λa. This tendency further demonstrates that the boundary layer
separation diminishes due to the influences of the larger magnetic parameter.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 24 
 

 

FBS and decline for the SBS due to the larger impact of a , while the 
rxNu  abruptly 

shrinks for both solution branches. In the physical scenario, the larger influence of the 
magnetic parameter a  can create a strong drag force which shrinks the motion of the 
fluid flow of the hybrid nanoparticles. Therefore, the motion of the fluid flow is inversely 
related to the friction of the fluid. As a result, the shear stress upsurges because of the 
larger impacts of the magnetic parameter. Since multiple solutions are possible here only 
for the case of the buoyancy opposing flow ( 0 a ) where the FBS represents the physi-
cally stable or trustworthy solution and the SBS corresponds to the unstable (not physi-
cally reliable) solution. Moreover, the unique solution is observed in these graphs for the 
case when   a ac , no solution is seen for the case when   a ac , and the possible out-
comes are detected for the case when   a ac . According to the graphs, it is observable 
that for each distinct value of a , the following change critical values are found (see Fig-
ures 2–4) and are written in each window of the graphs. These critical points are high-
lighted by the small solid balls that the readers can easily see. Meanwhile, the magnitude 
of the critical values is also enriched monotonically with growing values of a . This ten-
dency further demonstrates that the boundary layer separation diminishes due to the in-
fluences of the larger magnetic parameter. 

 

Figure 2. Variation in the skin friction coefficient  '' 0F  with a  for different values of a . 

 

Figure 2. Variation in the skin friction coefficient F′′ (0) with Σa for different values of Λa.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 3. Variation in the local Nusselt number  ' 0G  with a  for different values of a . 

 
Figure 4. Variation in the local Sherwood number  ' 0S  with a  for different values of a . 

The impacts of the radiation parameter adR  on the physical quantities such as fC , 

rxNu , and 
rxSh of the (Ag-TiO2/water) hybrid nanoparticles for the FBS as well as the SBS 

towards the buoyancy parameter a  are graphically portrayed in Figures 5–7. It is ob-
served that the fC  declines in the FBS but inclines in the SBS due to the augmentation in 
the values of adR , while 

rxNu  diminishes in the outcomes of the FBS as well as in the 
SBS due to the larger influence of the radiation parameter. In general, the larger impact of 
adR  gives a lower quantity of heating to the adjustable (Ag-TiO2/water) hybrid nanofluid 

Figure 3. Variation in the local Nusselt number G′(0) with Σa for different values of Λa.



Mathematics 2022, 10, 1164 12 of 21

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 3. Variation in the local Nusselt number  ' 0G  with a  for different values of a . 

 
Figure 4. Variation in the local Sherwood number  ' 0S  with a  for different values of a . 

The impacts of the radiation parameter adR  on the physical quantities such as fC , 

rxNu , and 
rxSh of the (Ag-TiO2/water) hybrid nanoparticles for the FBS as well as the SBS 

towards the buoyancy parameter a  are graphically portrayed in Figures 5–7. It is ob-
served that the fC  declines in the FBS but inclines in the SBS due to the augmentation in 
the values of adR , while 

rxNu  diminishes in the outcomes of the FBS as well as in the 
SBS due to the larger influence of the radiation parameter. In general, the larger impact of 
adR  gives a lower quantity of heating to the adjustable (Ag-TiO2/water) hybrid nanofluid 

Figure 4. Variation in the local Sherwood number S′(0) with Σa for different values of Λa.

The impacts of the radiation parameter Rad on the physical quantities such as C f ,
Nuxr , and Shxr of the (Ag-TiO2/water) hybrid nanoparticles for the FBS as well as the SBS
towards the buoyancy parameter Σa are graphically portrayed in Figures 5–7. It is observed
that the C f declines in the FBS but inclines in the SBS due to the augmentation in the values
of Rad, while Nuxr diminishes in the outcomes of the FBS as well as in the SBS due to the
larger influence of the radiation parameter. In general, the larger impact of Rad gives a
lower quantity of heating to the adjustable (Ag-TiO2/water) hybrid nanofluid owing to the
presence of the Eckert number in the similarity Equation (18). As a result, the heat transfer
decelerates with the superior influences of Rad. On the other hand,Shxr initially improves
for the FBS and then significantly starts decaying for the same branch as Rad increases.
Meanwhile, the behavior of the solution continuously develop higher and higher for the
SBS owing to the larger impressions of Rad. For a particular domain of, unique solution is
observed when, no solution when, and two solutions when. Moreover, the obtained critical
values are Σac = −1.7383, −1.3687, and −1.1164 for the corresponding dissimilar values of
Rad (=0, 0.5 and 1.0), respectively. From these outputs, it can be seen that the behavior of
the magnitude of the critical values decreases if we escalate the values of Rad. Hence, the
current pattern suggests that the separation of the boundary layer augments with larger
values of Rad.

Figure 8 expounds the variations in the thermophoretic parameter δa on the local
Sherwood number Shxr of the (Ag-TiO2/water) hybrid nanoparticles for both solution
branches versus Σa. For rising values of δa, the mass transfer rate enriches for the FBS as
well as for the SBS, while the gap between the outcomes looks similar in both branches with
δa. Generally, this behavior is due to the fact that higher consequences of the parameter δa
can improve the thermophoretic coefficient k; as a result, the mass transfer rate would be
significantly developed. Moreover, higher values of the thermophoretic parameter δa can
give us a single bifurcation value as shown in the graph (see Figure 8).
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Figures 9–11 display the variation in the F′(ξ), G(ξ), and S(ξ) of the (Ag-TiO2/water)
hybrid nanoparticles for the two dissimilar branch solutions due to the greater values of
Λa against the pseudo-similarity parameter ξ, respectively. Further, to deal with these
graphical outcomes, it is observed that the velocity and concentration distribution profiles
increase for the FBS and falloffs the curves for the SBS due to the larger values of Λa.
Moreover, this dynamic growth of the (Ag-TiO2/water) hybrid nanoparticles’ fluid flow for
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the FBS indicates that the velocity and concentration boundary layer become progressively
thinner specifying that the magnetic parameter has a sensational influence and supports the
motion of the hybrid nanoparticles near the surface of the thermophoretic flat plate. On the
other hand, the temperature distribution behaves differently in both solution branches as
compared to the outcomes of F′(ξ) and S(ξ) for the larger impact of the magnetic parameter.
As a general explanation, the larger magnetic parameter produces the conception of the
Lorentz forces which creates a noticeable boost in the motion of the fluid and ultimately
affects or decreases the temperature distribution.
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The impacts of the radiation parameter Rad on the profiles F′(ξ), G(ξ), and S(ξ) of the
(Ag-TiO2/water) hybrid nanoparticles for the FBS as well as for the SBS are graphically
established in Figures 12–14, respectively. The radiation parameter has a significant influence
on the velocity, concentration, and temperature distributions. The rise in the radiation
parameter accelerates the temperature but declines the fluid velocity and concentration
for the FBS, while the tendency for the SBS is the opposite. Moreover, the thickness of
the thermal boundary layer enriches with higher radiation parameters and with lower
velocity or momentum and concentration boundary layers. Physically, the maximum
impacts of radiation cause a considerable quantity of heating to the (Ag-TiO2/water) hybrid
nanoparticles that augments the temperature distribution as well as the thickness of the
thermal boundary layer.
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6. Conclusions

The impact of thermophoretic and radiative heat flux on MHD mixed convection
water-based hybrid Ag-TiO2 nanofluid flow over a permeable moving inclined flat plate
with uniform free-stream velocity has been studied numerically. It has been found that for a
specific set of embedded influential flow parameters, the shear stress, velocity profiles, heat
transfer, temperature distribution profiles, concentration distribution, and the mass transfer
reveal multiple (FBS and SBS) solutions over a broad range of the mixed or buoyancy
convection parameter. The main findings are concluded as follows:
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• The mass transfer and the shear stress enlarge owing to the higher magnetic parameter
while the heat transfer reduces.

• Increasing the solid volume fraction of silver and titanium dioxide nanoparticles
enhances the shear stress and mass transfer but reduces the heat transfer.

• The augmented value of the thermophoretic parameter develops the mass transfer
while the heat transfer rate shrinks with Eckert number.

• The magnitude of the critical values surges due to the higher influences of the magnetic
parameter but reduces with the radiation parameter.

• The higher influence of the thermophoretic parameter enriches the mass transfer rate.
• The boundary layer separation enhances with radiation, but shrinks owing to the

Lorentz forces.
• The velocity and concentration decelerate with the radiation parameter, while the

temperature significantly increases.
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Nomenclature

B(xr) Variable magnetic field (Tesla)
C f Skin friction coefficient
cp Specific heat at constant pressure (J/Kg.K)
Cr Concentration of fluid
Cw Constant surface concentration
C∞ Constant ambient concentration
DB Molecular diffusivity of the species concentration
Eca Eckert number
F(ξ) Dimensionless velocity
fw Constant mass suction/injection parameter
G(ξ) Dimensionless temperature
gr Acceleration due to gravity (m/s2)
k Thermophoretic coefficient
kA Mean absorption coefficient (1/m)
kb f Thermal conductivity (W/(m.K))
lr Characteristics length of the plate (m)
Nuxr Local Nusselt number
Pr Prandtl number
Qra Radiative heat flux
Rad Radiation parameter
Rexr Local Reynolds number
S(ξ) Dimensionless concentration
Shxr Local Sherwood number
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Tb Reference temperature (K)
Tw Constant surface temperature (K)
T∞ Constant ambient temperature (K)
Ub Free-stream velocity (m/s)
Ua Moving plate velocity (m/s)
vw(xr) Mass flux velocity (m/s)
Sca Schmidt number
VTM Thermophoretic velocity
Tr Temperature of the fluid (K)
ur, vr Velocity components along xr and yr axes (m/s)
(xr, yr) Cartesian coordinates (m)
α Thermal diffusivity (m2/s)
Γ Acute angle
δa Thermophoretic parameter
εr Stretching/shrinking parameter
Λa Magnetic parameter
µ Absolute viscosity (N.s/m2)
υb f Kinematic viscosity (m2/s)
ξ Pseudo-similarity variable
ρ Density (kg/m3)(
ρcp
)

Specific heat capacity
(ρβ) Thermal expansion coefficient
Σa Mixed convection parameter
σ Electrical conductivity
σA Stefan–Boltzmann constant (W/(m2.K4))
φ Solid nanoparticles volume fraction
ψ Stream function
2D, 3D Two and three-dimensional
ACHS Air-cooled heat sink
Ag Silver
AMF Applied magnetic field
BAF Buoyancy assisting flow
BOF Buoyancy opposing flow
BCs Boundary conditions
BL Boundary layer
bvp4c Boundary value problem of the fourth-order
FBS First branch solution
HBN Hybrid nanofluid
ICs Initial conditions
IMF Induced magnetic field
MF Magnetic field
MHD Magneto-hydrodynamics
MRN Magnetic Reynolds number
ODEs Ordinary differential equations
PDEs Partial differential equations
RAN Rosseland approximation
SBS Second branch solution
TiO2 Titanium dioxide
a, b Solid nanoparticles
b f Base fluid
hbn f Hybrid nanofluid
w Wall boundary condition
∞ Far-field condition
’ Derivative with respect to ξ
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