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Abstract: This article is the further work of previous papers and also the first study to adopt the
elliptic integral approach to solve the forced nonlinear structural acoustic problem. A previous elliptic
integral approach, which was only used for the free vibration analyses of various nonlinear structural
acoustic problems, is modified and custom designed for conducting this forced vibration analysis.
The main advantage of the proposed approach is that one elliptic cosine contains various harmonic
components, while one simple cosine term only carries one particular harmonic component. That is
why the proposed solution form can be more concise than those in the harmonic balance procedures.
This is the first study to employ the proposed elliptic cosine solution form for the forced vibration
and sound transmission of a nonlinear panel backed by a partitioned cavity. This study has two
focuses: (1) the development of elliptic integral approach for solving the nonlinear structural acoustic
governing equations, and (2) the effect of partitioned cavities on the forced vibration response and
sound transmission loss. Moreover, a set of elliptic cosine solutions is verified by that from the
modified residue harmonic balance method. A mode convergence study and a harmonic contribution
analysis are also conducted.

Keywords: nonlinear panel vibration; structural dynamics; wave equation; elliptical integral;
structural-acoustic interaction

MSC: 43-08; 35G99

1. Introduction

Over the past decades, nonlinear vibration/oscillation, and sound transmission have
been hot topics for many researchers. For example, Issac et al. [1] performed a study about
recent advances in sound transmission loss of sandwich and composites double panels,
in which some salient explanation of the various frequency and controlled regions were
given. They critically examined a number of parameter effects on the sound transmission of
sandwich and composite structures. Lin et al. [2] studied the sound transmission loss across
orthotropic laminates in order to understand the sound-insulating capacity at various
frequencies. Experiments and numerical simulations were carried out to investigate the
sound penetrating characteristics of various material and panel configurations. Thamburaj
and Sun [3] presented their investigations into the optimization of sound transmission
loss across anisotropic sandwich beams. The material and geometric properties of the
structure were treated as the variables to maximize the sound transmission loss. Chen
and Lin [4] proposed a convenient technique for evaluating angular frequency in some
nonlinear oscillations. In their study, it was known that once the restoring force function
was given beforehand, the period of motion was determined by an integral. The angular
frequency would depend on both the period of motion and the integral. If three divisions
were selected on the integration interval and the trapezoid quadrature rule was employed, a
higher accurate result for the angular frequency could be achieved. Sun et al. [5] studied the
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energy transfer between different modes of rectangular plate with 1:3 internal resonance.
The ordinary differential equations of motion for the plate were developed using the
Galerkin’s method. The nonlinear frequency responses and the waveforms under specific
excitation frequencies were computed. The results showed that for in-plane excitation,
the internal resonance between two modes occurred when the excitation frequency was
not close to any linear natural frequencies. Moreover, there are still limited studies about
nonlinear panel-cavity system, which adopted the common solution methods, such as
finite element method, method of multiple scales, and perturbation method (e.g., [6–10]),
although a considerable amount of research work about linear panel-cavity system has
been published [11–17]. Lee [18] studied the transmission loss of a nonlinearly vibrating
perforated panel using the multi-level residue harmonic balance method. The effects of
various parameters were investigated. However, the research problem in the study was
not about panel-cavity system. Lee [19] also employed a similar harmonic balance method
to study the effects of large-amplitude vibration on the pressure-dependent absorption
of a structure multiple-cavity system. It was the first study to consider both the effects of
large-amplitude vibration and pressure-dependent absorption. However, the work in [19]
did not consider the elliptic integral approach as the solution method and not focus on the
transmission loss of the panel cavity system. Recently, the elliptic integral approach was
used for the free vibration analyses of various nonlinear panel-cavity systems (e.g., [20]).
As aforementioned, the elliptical integral approach is modified in this paper and considers
an elliptic cosine solution form for the forced vibration and sound transmission of the
nonlinear panel-cavity model.

2. Theory

Figure 1 shows a nonlinear panel coupled with a partitioned cavity. The acoustic
boundary conditions of the partitioned cavity are listed in the following equations [19]:

∂P
∂x

= 0 at x = 0 or a/3 or 2a/3 or a (1)

∂P
∂z

= 0 at z = c1, x = 0 to a/3 (2)

∂P
∂z

= 0 at z = c2, x = a/3 to 2a/3 (3)

∂P
∂z

= 0 at z = c3, x = 2a/3 to a (4)

∂P
∂y

= 0 at y = 0 and b (5)

∂P
∂z

= −ρa
∂2W(x, y, t)

∂t2 at z = 0 (6)

where a and b are the panel width and length; c1, c2, and c3 are the cavity depths; ρa is
air density, 1.2 kg/m3; W(x,y,t) is the nonlinear transverse displacement; P is the acoustic
pressure field within the cavity and the acoustic governing equation is given by [12,20]:

∇2P− 1
C2

a

∂2P
∂t2 = 0 (7)

where Ca is sound speed, 340 m/s.
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Figure 1. Nonlinear panel backed by a partitioned cavity.

By applying the boundary conditions in Equations (1)–(6) to the acoustic governing
equation, the solution form of the acoustic pressure at a particular location can be obtained.

P(x, y, z, t) = ∑U
u ∑V

v (Luvsinh(µuvz) + Nuv cosh(µuvz))ψuv(x, y) cos(ωt) (8)

where Luv and Nuv are the coefficients depending on the boundary conditions; ψuv is the
acoustic mode function, µuv = 1

Ca

√
ω2

uv −ω2; u and v are acoustic mode numbers; U and
V are the numbers of modes considered; ω is the driving frequency; ωuv is the resonant
frequency of the (u, v) mode.

Next, consider multiplying the mode shape function, and taking integration over
the panel area for the pressure field in Equation (8), and obtaining the following overall
acoustic pressure force:

Pc = ρaω2 ∑U
u ∑V

v
coth(µuvci)

µuv

(λuv)
2 A

λψuv λϕ
cos(ωt) (9)

where A is the nonlinear panel vibration amplitude (note that W(x, y, t) = A(t)ϕ(x, y));
ω is the driving frequency of the external excitation; i = 1, 2, 3; λuv =

∫ b
0

∫ a
0 ψuv ϕdxdy;

λψuv =
∫ b

0

∫ a
0 ψuvψuvdxdy; λϕ =

∫ b
0

∫ a
0 ϕϕdxdy. The structural and acoustic mode functions

are given by [19]:

(x, y) = sin
(πx

a

)
sin
(πy

b

)
(10)

ψuv(x, y) = cos
(

uπ
a
3

x
)

cos
(vπ

b
y
)

at x = 0 to a/3 (11)

ψuv(x, y) = cos
(

uπ
a
3

(
x− a

3

))
cos
(vπ

b
y
)

at x = a/3 to 2a/3 (12)

ψuv(x, y) = cos
(

uπ
a
3

(
x− 2

3
a
))

cos
(vπ

b
y
)

at x = 2a/3 to a (13)

Over the past decades, there have been many studies about Duffing equation (or Duff-
ing oscillator) e.g., [21–25]. According to [21,22], the general Duffing equation with a
harmonic forcing term is given by:

d2s
dt2 + αs + βs3 + Γ cos(ωt) = 0 (14)

where s is used as the variable in the Duffing equation; α and β are the coefficients associated
with the linear and nonlinear terms, s and s3; Γ = excitation magnitude.
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Fundamentally, the governing equation of a nonlinear flexible panel coupled with a
cavity [19,20] can be exactly the same as Equation (14) by changing the following symbols:

s = A (15)

α = ω2
o (16)

β =
Eτ

4(1− v2)ρ

(π

a

)4
[(

1 + γ4
)(3

4
− v2

4

)
+ vγ2

]
(17)

Γ = κcg + κg (18)

where ω0 is structural resonant frequency of the panel; ρ is structural density; Γ is panel
aspect ratio; τ is thickness; E is Young’s modulus; ν is Poisson’s ratio; κ is dimensionless
external excitation parameter; g is gravity, 9.81 m/s2; κc is the normalized magnitude of the
acoustic pressure force in Equation (4) and given by:

κc =
ρaω2

ρg

U

∑
u

V

∑
v

coth(µuvci)

µuv

(λuv)
2 A

λψuv λϕ
(19)

Let s be the solution of the following Duffing equation:

d2s
dt2 +

(
α +

∆

Λ

)
s + βs3 + Γ cos(ωt) = 0 (20)

where s = Λcn(ωt); Λ is vibration magnitude; cn is elliptic cosine; ∆ is a constant to be
found. The elliptic cosine modulus is given by [20]:

k2 =
βΛ2

2
(

α + ∆
Λ + βΛ2

) (21)

The driving frequency in Equation (14) is equal to the response frequency of s, which
is given by:

ω =
2π

4

(α+ ∆
Λ+βΛ2)

1/2

∫ π/2
0

1√
1−k2 sin(θ)2 dθ

(22)

Consider Equation (14) and rewrite it into the following form:

d2s
dt2 +

(
α +

∆

Λ

)
s + βs3 − ∆

Λ
s + Γ cos(ωt) = 0 (23)

Then replace s by s in Equation (23). The value on the right side is nonzero and
considered as the residual:

d2s
dt2 +

(
α +

∆

Λ

)
s + βs3 −∆cn(ωt) + Γ cos(ωt) = R(∆)

⇒

−∆cn(ωt) + Γ cos(ωt) = R(∆) (24)

The hth harmonic residual and overall residual are defined as:

Rh =
∫ T

0
R(∆) cos(ωt)dt (25)

R =
√

∑h=1,3,5... (Rh)
2 (26)
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Note that the overall residual in Equation (24) also depends on ∆. Then, find the opti-
mum value of ∆ to minimize it, on the condition that the driving frequency in Equation (23)
is equal to the response frequency of s in Equation (22). Once the optimum value of ∆ is
found, the vibration magnitude Λ or A can also be found. Hence, the magnitude of Pc in
Equation (4) can be obtained. The transmission loss of a nonlinear flexible panel coupled
with a partitioned cavity is defined by:

TL = −20 log
(
|Pc|
κρg

)
(27)

where |Pc| is the magnitude of the acoustic pressure.
Now, consider finding the peak frequency of damped case. According to the har-

monic balance approximation approach in [19], the peak frequency can be found by the
following equations:

Λ =
Γ′

α′ + 3
4 βΛ2 + j

(
2ξωωp

) (28)

Let Λ = C + jD:

C + jD =
Γ′

α′ + 3
4 β(C2 − D2) + j

(
2ξωωp +

3
2 βCD

) (29)

where C and D are the real and imaginary parts of Λ; ωp is the peak resonant frequency;
ξ is the damping factor; and j is complex number,

√
−1. Note that when considering a

nonlinear flexible panel coupled with a partitioned cavity to find the peak frequency:

α′ = ω2
o + ε ω2 (30)

Γ′ = κ g (31)

ε =
ρaω2

ρ

U

∑
u

V

∑
v

coth(µuvci)

µuv

(λuv)
2

λψuv λϕ
(32)

Consider that the magnitude of Λ is maximum when ω = ωp. Hence,

α′ +
3
4

β
(

C2 − D2
)
= 0 (33)

Thus, Equation (29) is purely imaginary (

1 
 

∴ C = 0)

α′ − 3
4

βD2 = 0 (34)

iD =
Γ′

i
(
2ξωωp

) (35)

Hence, the peak frequency ωp, can be obtained by solving Equations (34) and (35).

3. Results and Discussion

Figure 2 shows the comparison between the frequency response curves obtained from
the proposed method and the modified residue harmonic balance method [18]. The results
obtained from the two methods reasonably agree with each other. The main discrepancy
occurs (1) at very low frequency (ω ≈ 0.6

√
α), where the two solution curves intercept;

and (2) at very high frequency (ω > 5
√

α), the nonlinear solution curve from the proposed
method is slightly lower. It is noted that the super harmonic solution of the proposed
method is obtained by setting the response frequency equal to 3 × driving frequency. In the
following case studies, the configurations and material properties of the nonlinear panel
are: 200 mm × 200 mm × 1 mm aluminum panel, Young’s modulus E = 7 × 1010 N/m2,
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Poisson’s ratio ν = 0.3, and panel mass density ρ = 2700 kg/m3. Tables 1 and 2 show the
mode convergences and harmonic contributions for various driving frequencies. It can
be seen that the nine-mode approximation can achieve three digital accuracies. When the
driving frequency is higher, the higher harmonic components of the elliptic cosine solution
form are more significant. In Table 2, it is found that when the driving frequency is near
or above the first resonant frequency, the fundamental harmonic component is always
dominant (over 90%); when the driving frequency is far below the first resonant frequency
and the excitation level is higher (e.g., k = 150) and the higher harmonic components
would be more significant. When a harmonic balance method is adopted for such case,
there would be more nonlinear coupled equations generated in the harmonic balance
procedures. It is due to more harmonic terms being required. As aforementioned, the main
advantage of the proposed approach is that one elliptic cosine contains various harmonic
components, while one simple cosine term carries one particular harmonic component.
That is why the proposed solution form can be more concise than those in the harmonic
balance procedures. Figures 3 and 4 show the panel amplitude and transmission loss
plotted against the excitation frequency for various excitation magnitudes, respectively. In
Figures 3 and 4, the peak frequency increases with the excitation magnitude. The bigger
the excitation magnitude is, the longer the nonlinear solution curve extends. In the case of
small excitation magnitude, the amplitude peak and transmission loss dip are much more
symmetric. In Figure 3, the differences between the amplitude curves of the four different
excitation magnitudes are obvious. On contrary, in Figure 4, the differences between the
transmission loss curves of the four different excitation magnitudes are almost undetectable
in the linear and low frequency nonlinear cases. The tips of the nonlinear solution curves are
far from each other. Note that according to the linear theory, the resonant peak frequencies
and transmission loss dips are independent of excitation magnitude. In Figure 3, the
nonlinear solution curve of k = 50 appears as a straight line with a shallow slope (note the
excitation magnitude in this case is very large). The super harmonic solution curve is the
longest one. There is an interesting finding in Figure 4. The overall slopes of the nonlinear
and super harmonic transmission curves of k = 50 are also quite shallow. Unlike those
of other curves, the upper and lower limits of them are only about ±8 dB. It is implied
that under very large excitation, the nonlinear panel sound transmission would not vary
largely for different driving frequencies. Besides, it is found that in the case of the smallest
excitation magnitude, there is a narrower transmission loss dip and a higher dip value; and
in the case of the biggest excitation magnitude, the nonlinear vibration would widen the
transmission loss dip and decrease the dip value. From this observation, for wideband
excitation, the nonlinear vibration would make the overall transmission loss worse; and
for narrowband excitation (near the resonant frequency), the linear vibration would make
the overall transmission loss worse. The negative effect of the super harmonic response
would be minimal when the excitation magnitude is small. Figures 5 and 6 show the
panel amplitude and transmission loss plotted against the excitation frequency for various
cavity depths, respectively. It is found that a longer cavity depth would induce a lower
transmission loss peak frequency, and a higher transmission loss dip value. In the linear
amplitude solution cases, the three curves are drawing closer when the driving frequency
is higher. Unlike those in Figure 5, the linear transmission loss curves in Figure 6 are nearly
parallel to each other for their frequency range. In the case of the shortest cavity depth, the
tip values of the super harmonic amplitude and transmission loss curves are significantly
smaller. It is due to the damping effect, which depends on the corresponding dip frequency,
that it is much stronger. Besides, the nonlinear amplitude curve and linear transmission
loss solution curve are the lowest. It is implied that the amplitude is the smallest due to
the highest stiffness for that low frequency range, and the sound reduction capacity of the
panel is the weakest for the high frequency range. Note that the nonlinear transmission
loss solution curve is the lowest only for the dimensionless driving frequency less than
one and higher than two. The linear amplitude solution curve is the highest one. This is
implied that the overall stiffness is the weakest in the linear solution case.
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Table 1. Vibration amplitude convergence for various driving frequencies and number of modes
used (c/a = 0.5, k = 10, ξ = 0).

ω/ωo = 1 =2 =3

1 acoustic mode 0.2666 1.6386 2.8236

4 acoustic modes 0.2681 1.6442 2.8312

9 acoustic modes 0.2681 1.6443 2.8313

16 acoustic modes 0.2681 1.6443 2.8314

Table 2. Harmonic contributions of the elliptic cosine solution form for various driving frequencies
(c/a = 0.5, ξ = 0).

k = 10 ω/ωo = 1/3 =1 =2

1st harmonic (h = 1) 99.5090 99.7035 97.1538

2nd harmonic (h = 3) 0.4887 0.2957 2.7674

3rd harmonic (h = 5) 0.0024 0.0009 0.0767

4th harmonic (h = 7) 0.0000 0.0000 0.0021

k = 150 ω/ωo = 1/3 =1 =2

1st harmonic (h = 1) 61.9037 93.1036 95.7717

2nd harmonic (h = 3) 26.2178 6.4492 4.0565

3rd harmonic (h = 5) 8.9249 0.4198 0.1651

4th harmonic (h = 7) 2.9536 0.0274 0.0067
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Figure 6. Transmission loss ratio versus excitation frequency for various cavity depths (k = 5, ξ = 0.02,
single cavity).

Figures 7 and 8 show the panel amplitude and transmission loss plotted against the
excitation frequency for various partitioned cavity cases, respectively. The average cavity
depths in the three cases are the same. The patterns of the solution curves in Figures 7 and 8
are very similar to those in Figures 5 and 6. The solution curves of the partitioned cav-
ity with unequal cavity depths and the partitioned cavity with equal cavity depths are
analogous to those of the shortest and second shortest cavity depths in Figures 5 and 6,
respectively. The depths of the partitioned cavity with unequal cavity depths are 50 mm,
200 mm, and 50 mm respectively. There are two partitioned cavities with depth of 50 mm,
where the stiffnesses are much stronger and thus, the overall stiffness is also the strongest.
Besides, the overall stiffness of three smaller cavities is higher than that of one big cav-
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ity. That is why the solution curves of the partitioned cavity with equal cavity depths in
between those of other two cases.
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Figures 9–11 show the waveform differences for various cases, respectively. It can be
seen that in the nonlinear solution case of k = 50, the maximum difference between the
elliptic cosine and simple cosine is about 40%. It is much bigger than that in the linear
case (smaller than 0.1%). As aforementioned, one elliptic cosine contains various harmonic
components, while one simple cosine just carries one particular harmonic component.
That is why the solution form in the proposed method can be more concise than those in
other harmonic balance methods which need more sine or cosine terms. Figure 12 shows
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the elliptic cosine waveforms of different excitation magnitudes. It can be seen that the
waveform of k = 50 looks like a triangle; and the troughs in the waveforms of k = 100 and
150 are very narrow. All these waveforms are very different from the simple cosine (i.e.,
k = 0) and contain significant higher harmonic components.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

Figure 8. Transmission loss versus excitation frequency for various cavity cases (c/a = 0.5, k = 5, ξ = 

0.02). 

Figures 9–11 show the waveform differences for various cases, respectively. It can be 

seen that in the nonlinear solution case of k =50, the maximum difference between the 

elliptic cosine and simple cosine is about 40%. It is much bigger than that in the linear case 

(smaller than 0.1%). As aforementioned, one elliptic cosine contains various harmonic 

components, while one simple cosine just carries one particular harmonic component. 

That is why the solution form in the proposed method can be more concise than those in 

other harmonic balance methods which need more sine or cosine terms. Figure 12 shows 

the elliptic cosine waveforms of different excitation magnitudes. It can be seen that the 

waveform of k =50 looks like a triangle; and the troughs in the waveforms of k =100 and 

150 are very narrow. All these waveforms are very different from the simple cosine (i.e., k 

=0) and contain significant higher harmonic components. 

 

Figure 9. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 5, w/wo = 3, ξ = 0.02, single 

cavity, nonlinear solution). 

Figure 9. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 5, w/wo = 3, ξ = 0.02,
single cavity, nonlinear solution).

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 10. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 5, w/wo = 3, ξ = 0.02, single 

cavity, linear solution). 

 

Figure 11. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 50, w/wo = 3, ξ = 0.02, single 

cavity, nonlinear solution). 

Figure 10. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 5, w/wo = 3, ξ = 0.02,
single cavity, linear solution).



Mathematics 2022, 10, 984 12 of 14

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 10. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 5, w/wo = 3, ξ = 0.02, single 

cavity, linear solution). 

 

Figure 11. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 50, w/wo = 3, ξ = 0.02, single 

cavity, nonlinear solution). 

Figure 11. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 50, w/wo = 3, ξ = 0.02,
single cavity, nonlinear solution).

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 14 
 

 

 

Figure 12. Elliptic cosine waveform (c/a = 0.5, w/wo = 3, ξ = 0.02, single cavity, nonlinear solution). 

4. Conclusions 

This study has analyzed the forced vibration and transmission loss of a nonlinearly 

vibrating panel backed by a partitioned cavity. The proposed elliptic integral method is 

newly applied to this nonlinear vibro-acoustic problem. The nonlinear structural/acoustic 

modal formulation has been developed from the well-known wave equation and Duffing 

equation. The results obtained from the proposed method and modified residue harmonic 

balance method are reasonably consistent. The effects of some parameters on the vibration 

responses and transmission loss performances are investigated. The main findings include 

(1) for wideband excitation, the nonlinear vibration would make the overall transmission loss 

worse, (2) for narrowband excitation (near the resonant frequency), the linear vibration would 

make the overall transmission loss worse; and (3) the stiffness of a system with a partitioned 

cavity with unequal cavity depths is the strongest among the three cases considered. It is the 

easiest for a sound pressure to transmit through the panel, so that the transmission loss per-

formance is generally the worst. 

Author Contributions: Data curation: Y.-Y.L.; formal analysis: Y.-Y.L.; investigation: Y.-Y.L.; meth-

odology: Y.-Y.L.; writing and editing: Y.-Y.L. The sole author has read and agreed to the published 

version of the manuscript. 

Funding: N/A. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: No additional data available. 

Conflicts of Interest: The author declares no conflict of interest. 

References 

1. Isaac, C.W.; Pawelczyk, M.; Wrona, S. Comparative Study of Sound Transmission Losses of Sandwich Composite Double Panel 

Walls. Appl. Sci. 2000, 10, 1543. 

Figure 12. Elliptic cosine waveform (c/a = 0.5, w/wo = 3, ξ = 0.02, single cavity, nonlinear solution).

4. Conclusions

This study has analyzed the forced vibration and transmission loss of a nonlinearly
vibrating panel backed by a partitioned cavity. The proposed elliptic integral method is
newly applied to this nonlinear vibro-acoustic problem. The nonlinear structural/acoustic
modal formulation has been developed from the well-known wave equation and Duffing
equation. The results obtained from the proposed method and modified residue harmonic
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balance method are reasonably consistent. The effects of some parameters on the vibration
responses and transmission loss performances are investigated. The main findings include
(1) for wideband excitation, the nonlinear vibration would make the overall transmission
loss worse, (2) for narrowband excitation (near the resonant frequency), the linear vibration
would make the overall transmission loss worse; and (3) the stiffness of a system with
a partitioned cavity with unequal cavity depths is the strongest among the three cases
considered. It is the easiest for a sound pressure to transmit through the panel, so that the
transmission loss performance is generally the worst.
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