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Abstract: DNA has evolved as a cutting-edge medium for digital information storage due to its
extremely high density and durable preservation to accommodate the data explosion. However, the
strings of DNA are prone to errors during the hybridization process. In addition, DNA synthesis and
sequences come with a cost that depends on the number of nucleotides present. An efficient model to
store a large amount of data in a small number of nucleotides is essential, and it must control the
hybridization errors among the base pairs. In this paper, a novel computational model is presented to
design large DNA libraries of oligonucleotides. It is established by integrating a neural network (NN)
with combinatorial biological constraints, including constant GC-content and satisfying Hamming
distance and reverse-complement constraints. We develop a simple and efficient implementation
of NN to produce the optimal DNA codes, which opens the door to applying neural networks for
DNA-based data storage. Further, the combinatorial bio-constraints are introduced to improve the
lower bounds and to avoid the occurrence of errors in the DNA codes. Our goal is to compute large
DNA codes in shorter sequences, which should avoid non-specific hybridization errors by satisfying
the bio-constrained coding. The proposed model yields a significant improvement in the DNA library
by explicitly constructing larger codes than the prior published codes.

Keywords: DNA data storage; bio-constrained codes; neural network; DNA computing

MSC: 68U35

1. Introduction

The exponential increase in big data demands high density and capacity storage.
Inspired by nature, DNA (deoxyribonucleic acid) has various applicable features for digital
data storage. DNA comprises four bases: adenine (A), guanine (G), cytosine (C), and
thymine (T), collectively called nucleotides. DNA data storage has three key steps [1-7]:
(i) Digital data are converted into binary data, which are encoded into DNA strands
with quaternary alphabet (A, C, T, and G) strings/sequences that are called DNA codes or
codewords. (ii) These strands are synthesized (data writing) into oligonucleotides by a DNA
synthesizer, and the data are stored. (iii) DNA strands are decoded by DNA sequencing
(data reading) to retrieve the data. These key steps come under the big umbrella of DNA
computing, in which DNA data storage is partially based on information technology (IT)
and biotechnology (BT). In IT, data encoding and decoding techniques are employed,
comprising computational and mathematical models. In BT, DNA synthesis, storage, and
sequencing are carried out with base pairs (A, C, G, and T) in a DNA molecule. It is essential
for any DNA computing model to select the DNA molecules and code them efficiently to
attain maximum storage density [8].
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In the DNA data storage system, various coding techniques, i.e., biological constraint/
bio-constraint coding [9] and error correction coding [5], are presented to overcome the dif-
ferent ambiguities. In the literature, GC-content [3], no-run-length [10], reverse-complement
(RC) constraint [11], and Hamming distance (dj;) have been found as major biological
constraints coding for DNA synthesis and sequencing errors. For any DNA sequence
=00 ...0, €Y", the GC-content is the ratio of the sum of bases content (G and C)
to the total number of bases (|G + C|/|n|) x 100% for n sequence length. It is close to
50% in each DNA codeword [12]. No-run-length is the avoidance of repetition of the
same quaternary (g-ary) alphabet. Similarly, for the RC constraint, the reverse sequence
o = ay0_1..., complement sequence & = ofa; ... «;, and reverse-complement
sequence are «’° = o ;4 ... «f, for which A€ =T, T€ = A, G€ = C, and C€ = G. For
instance, in a given DNA sequence TTCAGGA, the reverse is ATGACGT, the complement is
AAGTCCT, and the reverse-complement is TACTGCA. A (n, d, w) and Afc’Rc(n, d, w)
denote the maximum number of codewords in a DNA code satisfying two constraints
(GC-content and dp) and satisfying three constraints (GC-content, RC constraint and dp),
respectively. DNA libraries satisfying these bio-constraints will have a certain application
to DNA computing, particularly DNA data storage [3,10].

A DNA sequence is read through a particular hybridization process in which two
complementary single-stranded DNA molecules are combined to form a single-stranded
molecule via base pairing. If any sequence in DNA codewords is identical to its reverse-
complement, non-specific hybridization will occur, which causes the leading errors in
retrieving information [2]. To avoid these, the authors utilized stochastic-based optimiza-
tion algorithms and neural networks [13-17]. The algorithms in [13,17] were introduced to
improve the lower bounds of DNA codes by different iterations and parameters.

Recently, a deep learning model (DLM) was introduced with three different next-
generation sequences for DNA information storage [14]. Their DLM utilized four gated
recurrent unit (GRU) neural networks grouped into two sets, which took sequences from 5’
to 3’ or from 3’ to 5'. GRUs with two gates have been adopted with a feed-forward neural
network (FFNN) to predict the sequence during the hybridization process. The excessive
number of hidden nodes and the model’s reliance on an FENN exacerbate the DLM training.
Despite this issue, it initiated an acceptive idea to bring neural networks for DNA data
storage. This milestone has motivated us to implement a neural network on DNA codes to
provide a novel coding scheme for high-density storage. In [15], a DeepMod system was
proposed that integrates the recurrent neural network and long short-term memory (LSTM)
models to perceive the DNA codes from various Oxford Nanopore sequences. Likewise, a
convolutional neural network was embedded for the generation of DNA bases to achieve
high-density storage. It employed a DNA-mapping method consisting of GC-content and
homopolymer length constraints to design the DNA codebook [16]. Their work inspired
us to seek a model that generalizes the DNA codewords as much as possible with the
artificial neural network. However, the neural network (NN) with a fixed number of
nodes, i.e., LSTM including forwarding pass, is not well-studied for DNA sequence input.
Apart from non-specific hybridization, it is essential for DNA code development to detect
the error source to avoid insertion, deletion, and substitution errors with DNA coding
bio-constraints [4,5,12]. Several existing studies have been conducted to address these
problems with DNA codewords. However, the literature that satisfies the GC-content,
Hamming distance, and RC constraints is cited here.

In 2004, DNA codes with GC-content were extensively presented in [18]. It reported
the upper and lower bounds on DNA code size with GC-content and Hamming distance to
construct the DNA codewords. In a polymerase chain reaction (PCR), a DNA code with
huge GC-content (say, >60%) caused the insertion and deletion errors. Thus, it is necessary
to consider the GC-content for the stability of DNA sequences by avoiding computation
errors. In 2017, a study pioneered by Erlich [3] delivered a seminal work on DNA data
storage by proposing a fountain code with GC-content (45-55%) and a minimum Hamming
distance (d). They achieved 1.57 net information density; however, they still faced errors
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in GC-content which propagated severe errors, including mismatches, deletions, and
insertions, during the decoding process. In addition, no theoretical lower or upper bounds
were presented for those constraints.

In 2018, ref. [10] proposed a novel altruistic algorithm with lower bounds to generate
constraint-based stable DNA codes. It also used constant GC-content and minimum
Hamming distance and reported an improved number of DNA codewords. However, the
storage efficiency was not sufficiently considered for density-based DNA data storage. In
2020, the author [17] proposed a damping multi-verse optimizer algorithm to design the
DNA coding sets by constructing the GC-content with no-run-length constraints. Their
results revealed 4-16% more improved DNA coding than that of [10], which suggests that
the increase in constraints can improve the codes for high-density DNA data storage. In
2021, our previous paper [12] extended the work [10] by proposing a novel algorithm to
construct the DNA coding sets with improved lower bounds. The proposed algorithm
was applied with GC-content and no-run-length constraints and achieved 30% better
lower bounds. However, besides the insertion and deletion errors in DNA codes, another
issue of secondary structures (SS) occurs during the reading process [19]. The SS is a
base pairing contact of a single-strand sequence that folds back on itself, as presented
in [11] (Figure 1). Any DNA sequence with an SS shape will consume the extra resources
and energy to be unfolded, which slows the chemical reaction immensely. Therefore,
DNA needs to be free from the SS shape before reading DNA sequences in the wet lab.
There are few studies on eliminating this severe issue. The author in [11,20] introduced
the RC constraint to overcome the SS issue. They subjected the GC-content and RC-
content together to improve the DNA coding sets. Their studies furnish the basic idea of
combinatorial constraints to generate DNA codes with minimum errors. Although the
literature mentioned above [10-12,17,20] received high storage DNA code sets and coding
rates, these studies do not provide a sufficient method to design higher DNA codes in
the shorter sequences that must satisfy the biological constraints, which is enormously
important for a stable density-based DNA storage system.

This paper introduces a more efficient coding technique with a novel computational
model that is based on biologically inspired computing because it uses a neural network
(NN) with biological constraints to obtain a high-density-based DNA data storage. In the
proposed model, LSTM as an NN with a forward pass is utilized to open a new door in
the NN for DNA code construction. Firstly, the binary data are converted into premiere
DNA bases by using the [3] scheme. Then, the yielded premiere DNA strings are passed
through the NN model with the forward passing mechanism. A particular criterion trains
the activation functions to randomly generate DNA codes. If those DNA codes pass that
criterion, we term them optimal DNA codes. Then, the combinatorial constraints are
utilized to concatenate these optimal DNA codes. The combinatorial constraints, including
GC-content and RC constraint with Hamming distance, are computed to generate a DNA
library that is used to store the digital information, for which different propositions and
theorems are constructed in the Magma program and proved in this paper. GC-content
and Hamming distance are computed, and results are obtained with improved lower
bounds. Meanwhile, the RC constraint with Hamming distance is constructed to avoid
secondary structure, and it is concatenated with GC to generate the DNA library with
the best-known codes. These codes are generated by Magma with different inequalities.
These inequalities are based on the previous studies that are used for the comparison of
our results. Furthermore, the results are analyzed by the coding rate formula, which helps
us to evaluate the data storage density in DNA media.

In general, there are two goals to be delivered for high-density-based DNA data
storage with the following features:

1.  Toimprove the net information density by storing a large amount of digital data in
shorter DNA sequences.

2. To construct the DNA codes that satisfy the combinatorial bio-constraints to overcome
the reading errors.
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In this scenario, these goals are accomplished by the following significant contributions:

e A novel computational model based on the LSTM neural network with a forward pass
is proposed to generate the optimal DNA codes from the premiere DNA bases. To the
best of our knowledge, such a model has not been studied in the prior studies.

e  The combinatorial bio-constraints, including GC-content, RC constraint, and Hamming
distance, are constructed for optimal DNA codes to avoid non-specific hybridization
by overcoming sequencing errors and secondary structures.

e  The results receive many DNA coding sets satisfying the bio-constraints and signifi-
cantly improving the DNA coding rates compared to the existing studies.

The structure of the rest of the paper is as follows: Section 2 delivers the prior work
about deep neural network and combinatorial constraints for DNA data storage. Section 3
presents the preliminaries and notations, Section 4 introduces the proposed model, Section 5
elaborates on the results, and Section 6 concludes this work.

2. Literature Review

This section is divided into two subsections to emphasize our paper’s contributions
based on neural networks for DNA codes and DNA coding with combinatorial constraints.

2.1. Deep Neural Networks for DNA Codes

DNA computing has successfully impacted human life due to well-known computa-
tion tools based on machine learning and the deep learning community. With the rapid
generation of digital data, efficient and effective deep learning architectures (DLAs) have
been constructed to compute big data [21]. DLA has been approved in a variety of domains
with significant accuracies and predictions. In this article, we consider applying the deep
neural network based on DLA. Recurrent neural networks (RNNSs) provide the connection
between the nodes to form a directed graph along a temporal sequence. The graph exhibits
a short-term memory that allows RNNs to remember information from the previous state
to the next state [22]. Long short-term memory (LSTM) is a variant of RNN that efficiently
learns the long-term dependencies. It has three gates: input, output, and the forget gate.
An LSTM unit has a node or cell that accounts for the values over particular time intervals
while the rest of the gates regulate the information [23,24].

Various deep neural networks have been applied with different methods and models
in various natural computing studies. In 2015, a novel method was proposed for the
transformation of DNA sequences into numerical sequences. This method was based
on a pulse-coupled neural network and Huffman coding, which used triplet codes to
encode the different lengths of DNA sequences [25]. Another study also attempted to
encode the data with that method, but it found that encoded sequences are compressed at
a close distance, making the results less informative [26]. Although numerous studies have
been conducted with deep neural networks for natural computing, deep neural networks
are still new models for the DNA data storage system. For instance, in 2021, a GRU
(gated recurrent unit)-based deep learning model was presented for DNA information
storage with next-generation sequence prediction [14]. Similarly, the author proposed a
DeepMod system that integrates the RNN and LSTM models to perceive the DNA codes
from various Oxford Nanopore sequences. While RNNs are employed to capture the
Nanopore sequencing, LSTM overcomes the vanishing gradient issues in the training
of RNNs. The proposed system collectively achieves better DNA codes from the given
sequences compared to others [15]. In addition, in [16], the problem of DNA synthesis
cost was addressed by delivering a high-density-based DNA data storage system. To
achieve a high storage density, convolutional neural networks were embedded to generate
the DNA bases. It employed a DNA-mapping method that consisted of GC-content and
homopolymer length constraints to design the DNA codebook. It was reported that the
proposed scheme efficiently stored and retrieved the information from the DNA storage
system with the integration of a deep neural network with the DNA mapping method.



Mathematics 2022, 10, 845

50f21

These studies provide the motivation for the integrational system of deep neural networks
with DNA coding and combinatorial bio-constraints.

2.2. DNA Coding with Combinatorial Bio-Constraints

In DNA synthesizing and sequencing, various errors occur, which are combated with
different coding techniques. For instance, error correction coding and bio-constraint coding
are mainly used in DNA-based information storage systems [27]. Bio-constraint coding has
been practically applied in mass data storage, i.e., magnetic and optical data recording [28].
There are different types of DNA constraint coding reported in the existing literature.
Researchers [2,29,30] have formulized single constraints and/or combined the constraints
to attain the targeted results by preventing DNA sequence (DNA code) errors.

G. M. Church delivered a pivotal work on DNA data storage by converting 8-bit ASCII
(0to Aor Cand 1 to G or T) into DNA bases. It pondered the GC-content constraint and
the homopolymer run-length constraint by disallowing a run-length greater than 3. It
was a groundbreaking step toward storing the digital information into DNA, but it was
plagued by huge errors and a lack of competency [7]. N. Goldman presented a different
method by compressing the raw data into DNA sequencing with differential coding and a
Huffman coding scheme. It employed the run-length constraint of at most 1 and achieved
an effective coding rate. It suggested considering the GC-content for better constraint
satisfaction [6]. Similarly, R. N. Grass combined the different constraints to deliver an
error-correcting scheme. It used Reed-Solomon codes for error control [5]. In comparison,
M. Blawat offered a seminal study for DNA data storage by proposing a forward error-
correction mechanism. It provided the codewords (codes) that avoided deletion and
substitution errors by utilizing the GC-content constraint [4]. Y. Erlich and D. Zielinski
proposed another benchmark study by designing the fountain code that considered the
GC-content and run-length for DNA synthesis and sequencing. Their study significantly
achieved better coding rates compared to existing work; however, in the decoding process,
it found error propagation in the information retrieval stage [3]. W. Song and Y. Wang
also conducted research on DNA data storage by presenting a mathematical method for
DNA code generation by preserving GC-content and Hamming distance constraints [9,27].
D. Limbachiya constructed an altruistic algorithm to create DNA codewords of a specific
length. The algorithm also formalized the Hamming distance for each code to satisfy the
constraints [10]. In our previous work, a novel algorithm was developed to generate the
DNA codes. The obtained DNA codes” errors have been corrected to a limited extent with
GC-content and no-run-length constraints [12].

In conjunction with GC-content, no-run-length, and Hamming distance, a few inspir-
ing and influential constraint studies deal with the reverse-complement constraint. In 2005,
Oliver D. King reported the theoretical lower and upper bounds for the maximum size
of DNA codes. The report created the codes with the minimum Hamming distance and
reverse-complement of any code with the least distance. It stated that obtained DNA codes
were larger than ever [18]. In 2010, A. Niema accommodated Oliver D. King’s bounds
to design DNA codewords with GC-content, the Hamming distance, and the reverse-
complement RC constraint by avoiding non-specific hybridizations. They employed RC
constraint to handle the searching of codes related to bases with 0 and 1 points. It obtained
many new codes for DNA data storage [20]. In 2021, Benerjee K.G. exhibited the families of
those DNA codes which avoid secondary structures. It combined the RC constraint with
homopolymers’ run-lengths to construct the dissimilar DNA codes [11].

The prior work on bio-constrained coding established an idea of combinatorial con-
straints with different mathematical methods and formulations. These studies achieved
many DNA codes in their particular methods. However, we have found that the desired
DNA codes are still capable of improving the lower and upper bounds for the generation of
high-density-based DNA codes. As we discuss a few studies on deep neural networks that
impact constructing DNA codes, in this paper, we propose a novel model that integrates a
deep neural network with combinatorial constraints to design DNA codewords.
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3. Preliminaries and Notations

According to fundamental bio-constraints (Section 1), we design the oligos as sequence
afor), ={A, C G, T}. If « € }", the alphabet at the position i in the sequence « is
presented as «;. Thus, a sequence o; = xj0t2 ... x, € Y. will be generated. In the same
way, let another sequence ; = B1B5 ... B,, € Y." be possible if the Hamming distance [31]
between both sequences (&, p € Y."), denoted dy(x, B), satisfies the following:

dp(o, B) =[{1<i<m: o # B} M

Apart from dy (o, B), sequences «, 3, € Y." must satisfy the GC-content and reverse-
complement constraints (Section 3) to produce the DNA library £. Hereafter, oligos are
denoted by Greek letters, and other notations are a generic set & of sequences «, 3, € }_".
Here, we need to provide the definition of the DNA library [31].

Definition 1. A set of DNA bases {A,C,G, T} with n-mer oligos & C Y that satisfies the constant
GC constraint, reverse-complement constraint, and Hamming distance constraint is called a DNA
code/codeword (n, d, w) which collectively forms a DNA library L =Y (n, d, w).

If a DNA library is indicated by the number of K-constrained sequences of g4 — ary
strings initiated with a non-zero symbol 7, Shannon’s relationship [32] can be written as a
recurrent relationship:

L) = (- DY Le(n 1), n> K. @)

If the number of codes 7 increases, the Ly (n) increase exponentially by the following:
Ly(n) ~cl}, n>>1, 3)

where ¢ ~ 1is a constant and I’ is an exponential growth factor which is a real root of
Tgt?— gt +g—-1=0. )

In order to store the digital data in the nucleotide, this expression leads to defining the
DNA data density [32].

Definition 2. The maximum number of digital data bits (b) stored per nucleotide (nt) is termed as
data density, denoted by Dy and defined:

. 1 b
Dy = ,}grgo(n log, Ek(”)) = log, Ik <nt) ®)

In high-density-based DNA storage, there is a probability of secondary structures.
In experiments, the Nussinov-Jacobson (N]J) algorithm is employed to predict the sec-
ondary structures approximately [33]. During the chemical reaction, a DNA sequence
o = &1,,..., 0y, releases the energy to attain stability after forming secondary struc-
tures. Thus, this form can be calculated by a DNA property called free energy (E). This

energy relies on the sequence pair (ocl-, B j) ,where1 < i < j < n and the pair releases its
energy, which is termed as interaction energy ¢ (cxi, B ]-). Note that ¢ (oci, B j) between
sequence «; and 3 j in any pair (ocl-, B ]-) will be independent of other sequence pairs. In

the NJ algorithm, the interaction energies depend on the selected sequence pairs (oci, B ]-)

as non-positive values, while, for the independent interaction energies, the assumption for
the NJ algorithm with minimum free energy E; ; for a DNA sequence o; = 013 ... ot i8
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Eij= min{EiH,j_l + @ (cxi, [3]»), Eip1+E;:K=i+1,.. .,j} for particular conditions
and El,l = El*l,l =0forl = 1,2, o, n [34]

4. Proposed Model

In this paper, the concept of a neural network is embedded with the combinatory
constraints A4GC’RC (n, d, w) to design the DNA codes (1, d, w) of nucleotides that preserve
the GC-content, Hamming distance dy(«, f), and RC constraints. The proposed model is
built on the three layers listed below:

1.  Transform the digital data into the sequence of bases (A, C, G, and T).
2. Encode the DNA bases into optimal DNA codes.
3. Create the bio-constraint codes for the DNA library construction.

This paper’s model novelty is based on layers 2 and 3. In contrast, the first layer is
described in prior literature [3], in which, firstly, a digital data file is compressed into binary
format. In our case, we compressed an image (cat.jpg) file into a binary file. Next, the
binary file is preprocessed with different segments. Furthermore, it reiterates 2 computation
processes: the Luby transform and screening. In the Luby transform, different bases are
sets for fountain codes, while screening translates the binary droplet to a DNA sequence by
converting (00, 01, 10, and 11) to (A, C, G, and T), respectively. Thereafter, we will term
these codes premiere codes & C Y.

After encoding, bio-constraints are applied to screen the sequences. However, in
layer 2, we intend to apply the following neural network (NN) over the encoded premiere
codes & C Y to generate optimal DNA codes ®py 4 for high-density storage. The 3rd
layer introduces the bio-constrained coding to overcome the errors and construct the DNA
library £ = Y (n, d, w). The comprehensive details of these layers (2 and 3) are given in
the following subsections. The model diagram for the integration of NN with DNA coding
constraints is illustrated in Figure 1.

= |

(oot [10[11] == =
10110100011101 —» i iGTG o conversion
CAGTTGGATCCT Codes into premier
| A | < || G | i | TACATCCCATGC Ecy” DNA codes

——

Primers
Template

——
s I R e N R s .- >

Em%ding
LSTM
Layer -

R A R A A A A A

:

2. Optimal
DNA codes

construction
. & @

Optimal DNA
Codes Oppa

Hamming
distance d

Y

GC-content RC constraint
i 3. DNA

l ' library
= = 5 g GC.RC Ly (n) TACTAT generation
Combinatorial Bio-Constraints A7“"“(n,d, w) f—* ACATAG
ACTCGA -

Figure 1. The proposed computational model with NN and combinatorial bio-constraints for DNA
data storage.
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4.1. NN-Based DNA Codes

The encoded premiere DNA codes & C Y- are moved through the NN model to obtain
the optimal DNA codes ®py 4. This model is based on 4 layers (encodings, 2 LSTM layers,
and forward pass). In this neural network, 128 LSTM units have been considered, while
the amount of hidden units is 4 times greater than that of the LSTM units and the dropout
rate is set to 0.5 to avoid the overfitting issue. This rate will result in a 50% decrease
in the number of neurons in the repetition oligonucleotides. It creates weight = 0 if a
code is in a forward pass for a single iteration. During the training process, the trainable
parameter is automatically set to false to prevent weight updates. The model is trained
on forward and reverse input sequences (o, ) to append the DNA codes, which must
have different oligos in front of each other. In this paper, various primer templates are
created from the & C Y with length 9 bases to make model learning efficient. The learning
sequences are essential to attain the DNA codewords, avoiding identical bases. A sequence
o = X1 ... oy, learned from one layer, is concatenated to another layer according to the
forward pass mechanism. In the encoding layer, two single-stranded sequences («, (3) are
concatenated by inserting a particular connector < ¢ > token, which serves as an ending
token also. In addition, another special token < b > is appended at the beginning of
the sequence. Each encoded base E; is indexed and fed through the LSTM layers. These
layers are double stacked, and the unique tokens are transferred through the dense layers.
Each sequence « or {3 in these layers interacts with two-headed arrows to present the
bi-directional LSTM for readability. All sequence nodes are initiated from 0 and updated
based on the next nucleotide’s information. The hidden LSTM nodes predict the potential
patterns and the forget gates update all nucleotides in the given DNA sequence. In the last
layer, the final sequence updating is passed through the forward pass of LSTM to identify
the forward-base DNA code ®pna.

To construct the NN model that permits the constant flow of sequences («, ) through
self-connected units, each oligonucleotide is protected with a self-linear unit j. The input
gate in; unit is responsible for protecting the linear unit j from the other irrelevant units’
connection. Next, the critical unit, a memory cell, is designed for each DNA sequence with
a linear unit j to stop connecting with different DNA sequences. The memory cell of j
unit is indicated by ¢;, with the current net sequence net; with ¢; achieving the input from
the multiplicative out; unit, which is considered the output gate in the LSTM model. The
activation of the input gate in; and output gate out; with iteration time # is indicated by

y™i (t) and y°*!i (1), respectively, which can be defined [23]:

v = fin, (HEtinj(t)>r (6)
where
nEtinj(t) = ;winjuyu(t —1).
youtj(t) — fout]' (nei’outj(t)), (7)
where

ndoufj (t) = Zwoutju]/u(t — 1)-
u

where w stands for the number of the weight matrix and y* is the activation of an arbitrary
unit u.

These activation functions enable the network to learn the complex features of each
DNA sequence at the input gate in; and output gate out;. Although there are other weights
and vector formulas for the LSTM gates [35,36], we omit them in this paper. However, we
generalize the above activation functions to architect the forward pass for the final output.
These functions learn the DNA bases to satisfy the following criteria for primer design.

e  The DNA primer length is generally 15-30 nt [6]. The best length for PCR amplification
primers is usually 20 nt; we also train our model at this limit.
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e The length of repeated bases in a primer is generally <4 nt [5]. The consecutive ap-
pearance of any particular base makes the unstable DNA structure. We set consecutive
base lengths < 3 nt.

e  The GC ratio of the primers should be 45-55% [3]. The bases A and T are linked by 2
hydrogen bonds, and C and G bases are connected by 3 hydrogen bonds (see Figure
6 [37]). We also consider the GC-content to be 45-55% in this work.

If the primer does not satisfy the above criteria, we alter one base from one primer.
For example, if a primer does not satisfy the condition with the sequence AGGTCATC, we
alter the first base ‘A’ with “T’, because they have a connected hydrogen bond between
them, and reconfirm the criterion, while, if the primer meets the criteria, the premiere DNA
codes & C )" are trained to the multiplicative units. The j-th memory cell block c¢;, which
found the input from multiplicative units in; and out;, will have a v-th unit of a memory
cell block c}’ for a net input netcjp for time £:

netc7(t) = chjpuy”(t —1). (8)

The internal state s.» and output activation yc;'; of the v-th memory for a time ¢ with
memory cell block ¢; will be:

sar(t) = ser(t=1) +y" (1) (neter (1)). ©)

v () = y"iBh(se (). (10)

The final net input for the index k, which ranges for output units and ranges of the
final activation of output with ¢ are:

v (t) = filnete(t)), (11)

where
neti(t) = Y, weyt(t-1).
u: u not a gate
Note that each memory cell has its weight w for the final net input net; (t). The DNA
sequence is updated with the latest bases to design the DNA library. Finally, the LSTM
cell determines the output by assigning these updates to the output gate out;. The out;

computes the final output activation yc;) that is passed through the cell as a final optimal
DNA code ®ppna-

4.2. Combinatorial Constraints

This section deliberates the coding method to map the optimal DNA codes ®pn4
with sequence length k(2n — 1) to the DNA library £y (n) with sequence length kn that
satisfies the combinatorial constraints (GC, dy(«, B), RC). The basic idea is to combine
or concatenate the k optimal sequences («, ) of length n to the sequence of length kn by
constructing adjacency relations. For instance, if «; = ojotz ..., and 3; = B1B,... By,
are sequences with length 7, then «;3; = xjx2 ... &, 187 . . . By, is the concatenation of
o; and ;. Since the prescribed parameters of k and n > 3 to guarantee the sequence « is
optimal are met, it is necessary that ocgfl o; will be an optimal sequence, if Vi € {2,3,...,k},
where «/_, indicates the sequence which must have 3 symbols of o;_1.

The constant GC-content w can be presented analogously as A$“(n, d, w) for the
Ay(n, d, w) if all DNA codewords in ®py 4 have similar melting temperatures and each
code desires to be w. The following are the upper and lower bound constraints for the
DNA library L;(n) construction. Proposition 1 is based on upper bounds with modified
variables for the Hamming distance d, while the original proposition [18] considered only
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the number of sequences n. Due to new variables, the proof is presented with new codes
for this work.

Proposition 1. For the sequences (e, ) having the number of codewords n > 0, with constraint
0<d<nand0 < w < n for the upper bound,

2if w< Forw >4
AfC(n, d, w) =14 3ift <w<lorl<w<¥ (12)
difw=73

Proof. Say that if there are 3 codewords having GC-content w < %, there will be some
position i where none of the words has C or G; thus, 2 of 3 words should agree in that
position. Hence, Afc(n, d, w) <2andif w < %, then 2 codewords will be C¥ A" "¢ and
GYT"~“.In contrast, if there are 4 codewords and none of the codes is agreed at any position
i, then all 4 nucleotides will occur in each position of i. Thus, the average GC-content
will be 7, which is based on Afc(n, d, w) < 3,and 3 codewords with 7 < w < 5 will
be CWA"~w, T"=%(C%, and Al gl ], Similarly, if there are 2 codewords and no
agreement in any position, there can be 4 codes according to the pigeonhole principle.
Thus, the average GC-content will be w for Afc(n, d, w) < 4 and 4 codewords will be
AYCY,CYAY, TYGY, and G¥T*. O

From this proposition, Theorem 1 is derived by considering the n — 1 code length to
generate the improved DNA coding sets. In contrast, Theorem 2 is an explicit condition for
d — 1 Hamming distance with constant GC-content to produce the DNA coding sets which
satisfy both constraints.

Theorem 1. A code with length n can be smaller than a code with length n — 1 with a minimum
Hamming distance of 0 < d <nand 0 < w < n.

ASC(n, d, w) < ﬁ’jAfc(n —1,d,w— 1)J, (13)

2n
n—w

Afc(n, d, w) < { Afc(n - 1,d,w)J. (14)

Proof. In the case of Equation (13), the sequence «; for «; words with length n, dg(«, B),
and GC-content w, there will be position j where [wo /21| codewords have C nucleotide,
or, at some position, it will be G. Otherwise, the average GC-content can be less than w.
Considering those codewords and deleting position j can generate n — 1 and GC-content
w — 1 codes with minimum dg(«, B). In contrast, Equation (14) is analogous, which only
differs with GC-content for some position where [(n — w) «1/2n]| generates A’s or T's. OJ

The inequalities in Equations (13) and (14) are applied to achieve the upper bounds on
A4Gc(n, d, w) with =d, n = w, or w = 0 conditions. Similarly, different bounds can also
be obtained by varying different orders; for instance, at constant n = d, Equation (13) can
still be used after n = w and Equation (14) after w = 0.
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Theorem 2. For the maximum code length n with minimum distance d — 1 for the GC-content w

in lower bounds,
(&)
ASC(n, d, w) > @

T g1 emin{[’], @ n-w} [ w n—w n—2i n
S O G

(15)

Proof. By Equation (15), the numerator < Z >2” provides the total codewords with GC-
content w. The denominator yields the codewords with 4 — 1 distance for a sequence o, while
( C;] ) < " _1 @ > ( 7: : ;ll >22i denotes the lower bounds, which give the codewords of a
sequence 3 with GC-content w that must satisfy the dp (e, ), for avoiding the error r. [J

Apart from the GC-content, a reverse-complement constraint is integrated with this pa-
per since we are employing the NJ algorithm for interaction energies ¢ (oci, B j) (Section 2)

to control free energy for the secondary structures. To unfold the secondary structures
before reading, let us consider a set of codewords, {AG, AC, TC, CA, TT} € Y.". Any
DNA code & C Y in DNA codebook with 2 length is constructed by defining a bijective
map ¢ between the quinary alphabet Zs and }_", and then the net code rate (R = logsk/n,
k is number of DNA coding set, and n is number of sequence length) is, in this case,
logs5/2 ~ 0.58 times of code. The bounds on free energy DNA code & C Y" are presented
in Proposition 2 to determine the secondary structure in a DNA sequence.

Proposition 2. For all DNA sequences o; = 010 ... & and 3; = B1 o ... R, in DNA code &
C Y, the free energy Eq 5, > —2n.

From this proposition, the free energy E; ; reduces for DNA sequences over &. Hence,
any DNA sequence «; or 3; in & C Y will avoid secondary structures. In the above
coding sets, with length 2n, E1 5, > —5[ 27” | = —5n. Now, from this proposition, we need
to provide Theorems 3 and 4 to construct the model with which we avoid the secondary
structure from any sequence.

Theorem 3. Any DNA sequence («; or ;) with length 2n in & C Y " is free from the secondary
structure if the stem length | is more than 1 and minimum Hamming distance dy = d.

Proof. Note that in any DNA sequence, if there is a secondary structure of stem length,
then there will be 2 disjoint sub-sequences («x and ) with length ! and there is o« = B*.
The result will be contrapositive, such as if a DNA sequence frees from an SC (secondary-
complement) sub-sequence with length /, then it will be freed from a secondary structure
with a stem length of more than one. [

Theorem 4. For any DNA code AffC(Zn, K, dy), the codeword over &, Epnya U Efyn4 will be
(2n, 2K, dy) if dg < n, wherein £5y 4 = {&°: x € Epnat-

Proof. DNA code length and size follow the complement of DNA sequence in RC con-
straints for a given codeword over &, Epna N EH4 = @. Similarly, note that dy («¢, B€) =
dp(a, p) > dy and dy(«f, B) = du(o, ) > n. Hence, we have Epna U &y, with
minimum Hamming distance min{dy, n} = dp for the RC constraint. The results will
follow the distance property of dy.

After constructing Propositions 1 and 2 for the upper and lower bounds’ improvement
and avoiding the secondary structure, respectively, we present the combinatorial constraints
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by utilizing Proposition 3 [20]. This proposition leads to Theorems 5 and 6, improving the
lower bounds of k-constraint length and avoiding particular errors from the number of
sequences with errors r.

Proposition 3. Suppose the bounds over ASC’RC(n, d, w) are concatenated with GC(«, B) and
RC(«, B) constraints with the Hamming distance d for 0 < d < nand 0 < w < n. We have
2 cases:

If nis even,
AFORC(n, d, w) = AS“R(n, d, w) (16)

If nisodd,

AR (n, 441, w) < AT (n, d, @) < AR (n, d -1, w). 17)

Proof. For any set of codewords with length 1, if their complements in any subset replace
all integers, the GC-content will be maintained due to the existence of a Hamming distance
d between each codeword of o and 3. However, the reverse or reverse-complement and
Hamming distance between the codewords are not maintained generally. Subsequen-
tially, if n is even, we can replace codeword «; by its complements to generate a new

codeword f3; with the first n/2 coordination, and then H (oci, [3]R> =H ([Si, BJRC> for all

codewords «; and f i In contrast, if # is odd, we can replace codeword «; by its com-
plements to generate a new codeword 3; with the first (1 — 1) /2 coordination, and then

’H(oci, (3]R> - H(Bi, BJRC> ’ < 1 for all codewords «; and B; [20]. OO

Theorem 5. The code with combinatorial constraint is optimal for maximum code length n
and minimum distance d = 2 for the GC-content w in lower bounds if 0 < w < n and

GC,RC _ n n—2
Ay (n,Zd,w)(w)2 .

Proof. By Theorem 2, AEC'RC(n, 2d, w) < %Afc(n, 2d, w) = %( Z )2nt = ( Z )2n2,

Similarly, by Proposition 3 (16), AEC’RC(n, 2d, w) < %AEC’R(n, 2d, w), and Theorem 4.5
of [38], AR(n, 2) = 2"72. In this argument, the set of all binary words for 2" ! does not
have palindromes for odd Hamming weight M, while the reverse of odd word weight
is still odd weight when 7 is even, so 2"~! words are distributed into 2"~ pairs {a, af },
wherein each word from each pair indicates that AX(n, 2) = 2"~2. Thus, the product lower

n

bounds AEC'R(n, d, w) > Ay(n, 2, w).AR(n,2) = ( w )2”2 for the Hamming distance

between 2 separated words of odd weight M should be at least 2; then, the inequality
determines the Halving bound, AR(n, 2) < 1A,(n, 2) =2""2.0

The lower bounds with deletion or substitution errors ¢ and with d > 2 are not tight
enough to generate the DNA library for high-density data storage. We can improve the
lower bounds of the maximum number of sequences without errors r by constructing the re-
dundancy of explicit DNA codes with /2 logM by considering Shannon’s relationship [32]
(Equation (2)). The purpose of Theorem 6 is to improve the lower bounds of sequences
without errors 7; for which, the lower bounds with deletion and substitution errors ¢ are
considered with fixed numbers of errors.
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Theorem 6. Let M, k, r, and e be positive integers with r and fixed e. Suppose that K > 3logM + €.
Then the redundancy of improved lower bounds is

| /2] logM + /2 |e — O(1).

Proof. For a sequence o € F]LVI“, we consider the sequence ojxx3 ... oty in the way of
descending lexicographic order. Each sequence contains discrete code, so each sequence of
length K¢ occurs at most 2¢ times. Hence, the number of equivalence classes m is exactly
the number of odd weights M with 2K, runs. This number is known to be (see [39,40],

page 360).
oKe i [ 2Ke 2Ke f M —j(25+1) -1
e By (3 ) (M)

This expression for m is inconvenient to work with, so we assign a lower bound on m.
W.L.O.G., we consider that for 1 <i < my, where my < m and m; < i < m with weight M
of discrete codes,

M 2¢ M

2K
sy ()
iy — < ) < . (18)

while the number of equivalence classes with repetitions is

M-1 ZKE
m—mp < Z( K )KMk

2Ke
K

KM=K counts the remaining M — K sequences as repetitions of the K discrete ones. Since
L > 3logM + ¢, when K < M — 2, we have

where, in this expression, ( ) gives the number of choices of these discrete codes, and

2Ke
KM-K 2 M—k
K C(K+1)?/ K 1
! ) M_k—1 2K —K\K+1 '
(K+1)
K+1

Ke
It follows that ( ZK )KMK is increasing in K; hence,
M-1, ~K K
2%\ M-k 2% 2
_ — <
m—m Kz_;l( % )K _(M_1>M. (19)

The Equation (18) is larger than Equation (19) w.r.t. discrete codes in each given
sequence k:

2K
( M ) 2Ke AT (2L —M+1) (2K—M+2) (2K-M+3)... 2K 1
2 M-1 M(2Ke —M12) (Ke—M13).2Ke MM
(2Ke ~M41) (2Ke —M+2) (2Ke ~M+3)... 2Ke
M3 (2Ke ~M+42) (2Ke —M+3)...2K

(2Ke —M+1)
M3

> 2Ke—1-3logM > 1.
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Hence,

m <

Now, let S be an error-correcting code. According to the pigeonhole principle, the

.. ) C .1 %
sequence size is least % for a class S, which indicates $ £33 Therefore,

S S
>

e

¢ > (20)

Let = {0,1}° and

Li(n) £ {(x1[Ke +1,K], x2[Ke +1,K], ..., am[Ke +1,K]) € ZM | {ag, 00, 3, ..., o} € S}

We noted that while {ojoas... o} € S is a coding set, at this point, we use the
lexicographic order to assign the indices, (o [Ke + 1, K]oo[Ke +1,K] ... o [Ke +1,K]) € =M.

We suppose that Li(n) € =M is a code of minimum Hamming distance at least d;
otherwise, if there are two codewords in Ly (1) that have the Hamming distance at most
d + 1, then both concerned codewords in § can be confusable. Thus, by deleting the length
of ¢ suffixes, the concerned codes will be different in L (n). Thus, by using the Hamming
bound on | £, (n)| which is same as |3, we have

2£M

z,WsJ( . )(2&—1)'

1

(21)

By combining the Equations (20) and (21), we have

()

< Y s
Z}ZSJ( i >(25_1)1

Hence,

og( 5 ) —togls| = 1ozl (M e -1)
= [r/2] logM + |r/2)e — O(1). O

In this paper, biologically constrained quaternary codes are pondered to use DNA
primers economically. The pseudo-code of Algorithm 1 is utilized to generate the DNA
library Ly (n) which is based on the optimal DNA codes ®px4 designed by a neural net-
work. This algorithm produces the codes that satisfy the GC-content w, reverse constraint,
and Hamming distance dp(«, ) using the quaternary encoding.
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Algorithm 1. Proposed algorithm to construct DNA library L (n).

Input:

Premiere DNA codes & C Y, optimal DNA codes ®pn 4, GC-content w, code length n,

Hamming distance dg(«, B), and reverse constraint;

Output:

DNA library Li(n).

1. Convert binary data into & C Y. by quaternary encoding (4 x 3"~1)

2. Initiate the NN with activation gates y (t) using Equation (6) and y°*i(t) using
Equation (7) to encode the primers;

3. Generate optimal DNA codes ®py4 by output activation yciv (t) using Equation (11) and

LSTM layers;

4. Remove the codewords from ®py 4 if that does not follow the GC-content w (Proposition 1
and Theorem 2);

5. Reverse the DNA codes that enable secondary structures (Theorems 3 and 4) and avoid the

codes that do not satisfy dy (e, B) (d —1);

6.  Concatenate the bio-constraints ASC’RC (n, d, w) for n code length by Proposition 3 and
Theorem 5;

7. Construct the error-correcting codes to produce the final DNA library £y (n) by Theorem 6.

return: DNA library £y (1) for DNA data storage.

5. Result Evaluations

This section elaborates on the improved lower bounds and DNA coding sets obtained
by the proposed model of NN and combinatorial bio-constraints. Figure 2 illustrates a
random sample of forward and reverse primers for the optimal DNA codes received after
the NN implementation. These random DNA sequences were programmed in the Magma
program [41] with different sequence lengths and a minimum Hamming distance. The
aforementioned propositions and theorems were considered for program construction.
As a result, we received .cod files with different lower bounds of DNA codes, satisfying
the combinatorial bio-constraints for particular n and d. The codes in the .cod files were
calculated in the Tables format. In addition, Figure 3 illustrates the numerical analysis
by considering the coding rate and storage density of lower bounds given in these tables.
Figure 3’s analyses were drawn by using the Prism program.

3 ...AGCCCAITIG......... GAACTGGACC... o
5 ...GTACAGGGAT......... CCTAGACTCA... 3’

Figure 2. A sample of received primers for the optimal DNA codes.

Tables 1 and 2 present the lower bounds obtained by our model of GC-content w and
dp(«, B) with the NN. In each row, the upper entries in Table 1 are directly taken from [10],
while the upper entries in Table 2 belong to [17]. The lower entries are used to compare our
outputs with existing studies. The superscript i represents improved lower bounds and 4
indicates the decreased lower bounds, while the rest of the other bounds have almost the
same lower bounds as compared to [10] and [17], respectively.
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Table 1. Comparison of our lower bounds with [10] for AJ (n, d, w).
n/d d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
11
4 127
17 7
5 21 7
6 44 16 6
59 19 7
; 110 36 11 4
143° 521 19° 4
g 289 86 29 9 4
303 115° 36 10 4
9 662 199 59 15 8 4
864 ! 2911 61 31 74 5
0 1810 525 141 43 7 5 4
1973 604! 171° 51° 21° 6 4
” 4320 1235 284 82 29 9 4 4
5764 * 1716 401° 125° 41° 17 5 4
1 12,068 3326 662 190 58 22 8 4
11,6184 4986 ° 6174 7117 72 29 11° 4
13 41,867 7578 1432‘ 1201 123 39‘ 13 6.
57,322 8113 2564 * 1391 368 71! 21 8!

In Table 1, the lower bounds are based on GC-content w and dy(«, ) by deriving
Proposition 1 and Theorem 1, and they are compared with Table 1 of [10], which uses the
4 <n <13 and 3 < d < 10 inequalities to construct the DNA codes. We have compared
our proposed model’s results with [10] by considering the GC-content w and dy(«, B)
with NN. As a comparison, 51% of bounds are improved, 5% have decreased, and 44% are
almost the same lower bounds as in [10].

Similarly, in Table 2, the lower bounds are based on RC constraint and dg(«, ) by
deriving Proposition 1 and Theorem 2 and are compared with the Table 7 of the study [17],
which considers the 4 < n < 10 and 3 < d < n inequalities to design the DNA codes. In
comparison, 64% of bounds are improved in our work, while 11% have decreased and
25% are almost the same as the lower bounds of [17]. However, the limitations of these
bounds can be further improved by constructing new theorems or modifying Proposition 1
by varying the values of n and w.

Apart from the lower bound improvements for the given constraints, the coding rates
(R = %lo 4L, n is the sequence length number, and L is the total number of lower bounds
in a sequence) have also been improved in a shorter sequence (n — 1). For instance, ref. [10]
reported R = 0.3036 when n = 8 and d = 5, while our work reports the same coding
rate (0.3034) with a shorter sequence when n = 7 and d = 5. Similarly, ref. [17] obtained
R = 0.4881 when n = 6 and d = 3; in contrast, this work receives this coding rate (0.4857)
when nn = 5 and d = 3. The reported improved lower bounds have a better influence on
the DNA library £ (n) generation, indicating the proposed model’s effectiveness for DNA
code construction.
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Table 2. Comparison of our lower bounds with [17] for A7 (n, d, w).
n/d d=3 d=4 d=5 d=6 d=7 d=8 d=9
12
4 12
20 8
5 291 141
6 58 24 8
63* 271 12°
7 125 44 17 7
1184 51 22 10
3 324 106 35 14 5
3341 124° 41°! 17°1 8!
9 713 223 64 24 10 5
9211 237 941 234 141 7t
10 1906 555 159 51 20 10 4
2010 913 163 484 21 12° 4

Regardless of this improvement, the 95% confidence interval (CI) mean (Figure 3a) of
received bounds presents a breakthrough coding for DNA data storage in DNA computing.
The bigger the interval, the more significant the development of coding for DNA data
storage. As the purpose of individual RC constraints is to avoid the secondary structures
in the DNA sequences, the RC constraints are not concerned with generating the lower
bounds separately. However, the studies [11,13,18,20] motivate the idea of integrating the
RC constraint with GC-content and Hamming distance in an assembled format to design
new DNA coding sets. Taking advantage of their work, we generalize the RC constraint
with Proposition 3 and Theorems 5 and 6 to generate the new DNA codes.

Table 3 is the collection of lower bounds with combinatorial constraints. Each column
has upper and lower entries; the former is taken from the Table 8 of the study [20], and
the latter is attained by our proposed computational model. The bold entries indicate the
outperformed bounds of our proposed model over [20]. Likewise, the coding rates are
compared in Figure 3b for n = 8 of our lower bounds with n = 9 of [20]. Our model
designs the codes with almost the same R with n — 1 sequences. In addition, the underlined
entries indicate the best-known codes of this work that have nine bounds total. In [20],
Tables 8 and 9 present the best-achieved bounds which satisfy the GC-content, Hamming
distance, and RC constraints; we only compare our results with Table 8 due to its particular
inequalities (i.e., 3 < d < 11). As Tables 1 and 2 are also based on these inequalities, we
focus on a particular inequality in this paper for all the results.

The new lower bounds delivered by this work are better than the prior work. For
instance, for n = 10 and d = 5, the size of our DNA codes is 22% greater than that of [20]. In
another scenario, if we consider all the sequences at d = 6, the new improved DNA codes
are still 36% better than [20]. These significant improvements are based on our proposed
computational model that integrates a neural network with combinatorial bio-constraints.
In addition, the size of these DNA codes is still capable of increasing as that of the best-
known codes for the highest storage density. The storage density with our DNA codes
forn =9ton =12and d = 3 tod = 8 is given in Figure 3c. The high storage density is
received in lower Hamming distance, which is also based on the DNA coding sets of each
sequence length. For the given particular lower bounds in Figure 3c, the highest density of
4.41 is attained for d = 3.
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0.6 1 o n = & (Our work) 4.54
o 71 G n=9[20] s
Q, !
64 = 0.44 1
E = 04 g 3.9
= 5 =
B 5 El.l }.3.6' ——
g = - -
E a4l 202 E e ——
E © 2304 =
-
T 34 2.7+
T T T T 1 0.0+ T T T T T T
0 100 200 300 400 3 4 5 6 7 3 4 S5 6 7 8
Lower bounds Hamming distance Hamming distance
(a) (b) (c)
Figure 3. Lower bounds acquired by coding constraints with dg: (a) The CI mean with lower and
upper bounds of coding constraints with GC for n = 8. (b) The coding rate comparison between
lower bounds is obtained by RC for our work (n = 8) and that of [20] n = 9. (c) The storage density
with our DNA codes forn =9ton =12andd =3tod = 8.
Table 3. Comparison of our lower bounds with [20] for AfC’RC (n, d, w).
n/d d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
6
4 6
15 3
5 27 4
6 44 16 4
67 21 4
7 135 36 11 2
243 69 19 2
8 528 128 28 12 2
617 148 42 15 2
9 1354 275 67 21 8 2
1827 430 121 36 11 2
10 4542 860 210 54 17 8 2
5914 1181 271 77 27 8 2
1 14,405 2457 477 117 37 14 5 2
23,713 6429 961 557 59 23 8 2
1 59,136 14,784 1848 924 87 29 12 4
67,761 19,132 2062 1092 131 41 18 6

Furthermore, the improvements of these lower bounds for any sequence length pioneer
the DNA coding rates. A general analysis of Table 3 indicates that the same coding rate (R)
is found in 73% of lower bounds with shorter sequences. For example, ref. [20] received
R = %log487 = 0.2684 when n = 12 and d = 7, while this work acquires the same coding
rate (0.2673) when n = 11 and d = 7. Similarly, in another example, when n = 10 and
d = 4, ref. [20] reported a 0.4874 coding rate; in contrast, this work delivers R = 0.4860
with the number of sequence lengths n = 9 at the same Hamming distance. In the case
of best-known codes (bold underlined entries), our coding rate is better than [20], with
a shorter sequence (n —1),i.e, n = 8,d = 3, and R = 0.5652, while this work reports
R =0.5660 whenn =7 and d = 3.
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Thus, these analytical results present that the shorter sequences can achieve the same
DNA storage density as the longer sequences. The improved lower bounds in various
coding sets indicate the reduction in insertion and deletion errors in the DNA sequences,
which enables the proposed computational model to avoid the non-specific hybridization
process. In addition, Table 4 presents the DNA library £y (n) satisfying the AfC’RC (n, d, w)
constraints when n =10 and d = 7, as in Table 3. The satisfaction of combinatorial constraints
over the optimal DNA codes from the NN’s output collaborated to improve the lower
bounds of DNA coding sets, which emphasizes our proposed computational model.

Table 4. DNA coding sets for DNA library £y (1) retrieved whenn =10 and d = 7.

GAGTCTAGAC CTGTATGCAT TACTAGACAG
GTCTGACATA CACTACTGAC ACTGTAGCAT
ATGACTCACT GATACGACAT CTACGTAGCA
TACTGTCACG ACATCTGTCA TGCACATGAC
AGCATACTCA TACATCTGCT GACATGACAG
CGATGTACTG AGACGATGTC TGTAGCTACA
CAGTAGATCA TACGATCGAG AGATCGACTG
GACTCATGAC CACGTCTGAT GCATAGTATC
ACTGACTACT ACGCAGATAC TGCGATACTA

6. Conclusions

An exciting research challenge in DNA data storage systems is to explore improved
lower bounds by avoiding non-specific errors to generate high-density-based storage, which
could store a large amount of information in a shorter sequence. In this paper, a novel
computational model is offered to construct an extensive DNA library of oligonucleotides. It
is accomplished by presenting a three-layer model that integrates a neural network (LSTM)
and combinatorial bio-constraints, including GC-content, Hamming distance, and reverse-
complement constraints. We derive the recursive expression in propositions and theorems
to attain all possible large DNA coding sets by satisfying combinatorial constraints.

All DNA codewords in Tables 1 and 2 satisfy the GC-content and Hamming distance
constraints and improve 51% and 64% of lower bounds compared to [10] and [17], respec-
tively. The lower bounds presented in Table 3 are single error-correcting codes based on
the concatenation constraints, while the underlined bounds exhibit the DNA sequences
that have avoided secondary structures. Furthermore, the improvements in the lower
bounds directly impact the coding rate. For example, results in Section 3 report that the
shorter sequences can achieve the same DNA storage density as the longer sequences. It is
concluded that the proposed computational model can store a large amount of data in a
small number of DNA nucleotides that can improve the data density and reduce the DNA
synthesis and sequence cost for a DNA-based data storage system.

In our results, there are still lower bounds that need to be improved by mutation
strategies for high-density data storage. Similarly, the insertion and deletion errors can
be further controlled by experimenting with the application-oriented bio-constraints, i.e.,
run-length constraints [42].
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