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Abstract: Qian presented multigranulation rough set (MGRS) models based on Pawlak’s rough
set (RS) model. There are two types of MGRS models, named optimistic MGRS and pessimistic
MGRS. Recently, Shabir et al. presented an optimistic multigranulation intuitionistic fuzzy rough
set (OMGIFRS) based on soft binary relations. This paper explores the pessimistic multigranulation
intuitionistic fuzzy rough set (PMGIFRS) based on soft relations combined with a soft set (SS) over
two universes. The resulting two sets are lower approximations and upper approximations with
respect to the aftersets and foresets. Some basic properties of this established model are studied.
Similarly, the MGRS of an IFS based on multiple soft relations is presented and some algebraic
properties are discussed. Finally, an example is presented that illustrates the importance of the
proposed decision-making algorithm.

Keywords: intuitionistic fuzzy set; soft relation; multigranulation roughness; decision making

1. Introduction

Naturally, we face several critical situations that have vagueness and uncertainty. In
today’s fast-paced life, we need methods and techniques through which we manage this
uncertainty in a better way. Mathematicians have shown interest in overcoming these
situations and have presented several theories, such as fuzzy set (FS) theory, IFS theory, SS
theory, RS theory, etc.

Zadeh [1] built a framework of FSs to manage uncertainty, vagueness and impre-
ciseness. For several research purposes, FSs are useful, ingenious and innovative sets.
The FSs are very helpful sets to solve real world problems due to qualitative expressions.
Each element of FS is described with its degree of membership. However, often, we face
many situations involving vagueness and impreciseness that can not be controlled by a FS
due to its degree of membership only. For example, a doctor wants to diagnose a disease
in a patient but the disease can not be diagnosed by the membership degree only. To
manage such situations, Attanasov presented an IFS [2], which is extension of a FS, and
each element of an IFS is described with a membership degree, non-membership degree
and hesitant degree. IFSs are very useful sets, and applications of IFSs in several fields
show their importance. The IFSs have many applications in market prediction, the electoral
system, career determination, medical diagnosis and machine learning [3]. The IFSs have
many operations and properties that help to manage impreciseness and uncertainty better
than FSs.

Many new models, such as FS (1965), RS (1982) and IFS (1986), have been introduced
to control uncertainty, which is an inherent characteristic of modern databases. All of these
models have their own algebraic properties and operations but these models lack a sufficient
number of parameters to control uncertainty. To solve this problem, Molodtsov (1999) [4]
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introduced the SS, which is an untraditional approach to deal with uncertainty. SSs have
an adequate number of parameters and many operations. SSs are also helpful in decision
making, data clustering, parameter reduction and data to deal with incompleteness. Many
extensions of SSs have been introduced, such as vague SS [5], fuzzy SS (FSS) [6], IF soft
set (IFSS) [7], soft RS (SRS) [8], trapezoidal FSS [9], fuzzy RS (FRS), etc. Sang et al. [10]
presented an intuitionistic fuzzy rough set (IFRS) model to deal with the unnaturalness
of FRS.

Pawlak (1982) [11] invented the RS, which is an untraditional approach to deal with
inconsistent, imprecise and incomplete knowledge. The RS theory can be divided into two
major parts as a simple information model. The first part concerns the rules and concepts
formed by the classification of the relational database, and the second part concerns the
innovative knowledge discovered by the equivalence relation and approximation of the
target. The RS theory is a better theory than the FS theory because the FS has a degree
that is uncertain and the RS establishes two precise boundary lines for a description of
imprecise concepts [12]. The RS theory is a useful tool in the intelligent information
processing field. Many extensions of RS models have been developed recently. Combining
RS theory with existing theories, many generalizations have been introduced, such as
probabilistic RSs [13], a decision theoretic RS model, a game theoretic RS model [14], etc.
The RS model has rich applications in several fields of modern research. In theoretical
research, the RS model describes algebraic structures with abstract algebra [15], rough
approximation topology [16] and a combination of a soft computing method with RS
theory [17]. In application research, the RS model is helpful in medical diagnosis [18],
image processing [19], intelligent analysis [20], E-mail filtering [21], etc.

The multigranulation rough set (MGRS) is a very helpful technique for the description
of problem solving. In the MGRS, multiple relations are used, which is advantageous as
a collective decision based on multiple experts’ opinions is wiser than a single expert’s
opinion. Granular computing is a very useful method to make better decisions in compli-
cated real world problems nowadays. In 2010, Qian [22] introduced an extension of the
RS model in terms of the MGRS model for the first time. Comparing with the classical RS
model, the MGRS model is proposed, and the resulting sets are smaller in lower approx-
imation sets and bigger in upper approximation sets. Qian [23] introduced two types of
MGRS models: optimistic MGRS (OMGRS) and pessimistic MGRS (PMGRS). Covering the
MGRS [24] is useful in dealing with data sets that involve overlapping and a large amount
of knowledge. After that, MGRSs with generalized relations [25], order relations [26] and
fuzzy compatible relations [27] have been discussed by relaxing the condition of equiv-
alence relations. Different researchers modified MGRS models to manage different data
set needs. According to the nature of problems in several fields, the MGRS showed its
significance and importance [28–32]. The risk attitudes by OMGRS and PMGRS models
based on multiple relations have been discussed by Qian et al. [33,34]. Huang et al. [35]
built a suitable framework of a combination of MGRS with an IFS, which was named the
IFMGRS model. Pang et al. [36] described the combination with three-way decision making
and proposed a multi-criteria decision-making model. Sun and Ma [37] presented a MGRS
model in connection with two universes. Tan et al. [38] combined a MGRS model and a
granularity selection algorithm to make a selective data set approximation. Xu et al. [39]
built a framework of a combination of the RS model, MGRS model and FRS model in
connection with granular computing, and this combination is said to be a MGFRS. Shabir
et al. [40] presented a MGRS model based on multi soft relations. Recently, the extension of
the MGRS in terms of the FS has been presented by Shabir et al., and is called the OMFGRS.
After that, Shabir et al. [41–43] presented an optimistic multigranulation intuitionistic fuzzy
rough set. They discussed the basic properties of the OMIFGRS in [41]. Now, we discuss
the PMGRS in terms of the IFS based on soft relations.

In our realistic world, multiple universes of objects are needed in several practical
problems, such as medication and disease symptoms used in disease diagnostics. Since
Pawlak discussed the RS model using a single universe, to solve the above problem about
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multiple universes of objects, Yan et al. and Liu discussed the RS model using dual
universes. They presented a comparative study of the RS model based on single universe
and dual universes. The RS model based on dual universes is very useful in dealing with
multi-granulation information. Qian et al. extended the RS model based on dual universes
and presented the MGRS to approximate a set based on a finite number of relations.

In many fields, the contribution of MGRS is significant, such as in conflict analysis
problems, in medical diagnostics, in decision-making problems, in steam turbine defect
diagnostic models, in granulation selection and in decision making with MGRS based on
dual universes. Shabir et al. discussed the RS model based on dual universes and the MGRS
based on multiple universes. They investigated a pessimistic MGRS of a FS in terms of soft
relations. Since the FS discusses the degree of membership only, but we have to face many
problems in the real world that have uncertainty and vagueness, the FS is not applicable in
many complicated situations. As a result of this problem, the IFS is more useful in dealing
with critical situations due to its membership degree and non-membership degree. This is
the main idea for the motivation of our research work.

The rest of the paper is organized as follows. Section 2 presents the FS, SS, RS, IFS,
IFSS, MGRS and soft binary relations. In Section 3, a pessimistic MGRS of an IFS based
on two soft binary relations over dual universes and its properties are given. Section 4
presents the PMGIFRS over dual universes and their algebraic properties with examples.
In Section 5, a decision-making algorithm of this proposed model with a practical example
is presented. Section 6 presents a comparative study of our proposed model and other
existing theories. Finally, the conclusion of our research work is described in Section 7.

2. Preliminaries and Basic Concepts

This section presents some basic notions about the RS, IFS, SS, MGRS, soft binary
relation and IFSS. Throughout this paper, W1 and W2 represent two non-empty finite sets
unless stated otherwise.

Definition 1 ([2]). Let W be a non-empty universe. An IFS T in the universe W is an object
having the form T = {〈x, µT(x), γT(x)〉 : x ∈W}, where µT : W → [0, 1] and γT : W → [0, 1]
satisfying 0 ≤ µT(x) + γT(x) ≤ 1 for all x ∈ W. The values µT(x) and γT(x) are called the
degree of membership and degree of non-membership of x ∈ W to T, respectively. The number
πT(x) = 1− µT(x)− γT(x) is called the degree of hesitancy of x ∈W to T. The collection of all
IFSs in W is denoted by IF(W). In the remaining paper, we shall write an IFS by T = 〈µT , γT〉
instead of T = {〈x, µT(x), γT(x)〉 : x ∈W}. Let T = 〈µT , γT〉 and T1 =

〈
µT1 , γT1

〉
be two IFSs

in W. Then, T ⊆ T1 if and only if µT(x) ≤ µT1(x) and γT1(x) ≤ γT(x) for all x ∈W. Two IFSs
T and T1 are said to be equal if and only if T ⊆ T1 and T1 ⊆ T.

Definition 2 ([2]). The union and intersection of two IFSs T and T1 in W are denoted and defined
by T ∪ T1 =

〈
µT ∪ µT1 , γT ∩ γT1

〉
and T ∩ T1 =

〈
µT ∩ µT1 , γT ∪ γT1

〉
, where

(
µT ∪ µT1

)
(x) =

sup{µT(x), µT1(x)},
(
γT ∩ γT1

)
(x) = inf{γT(x), γT1(x)}, for all x ∈W.

Next, we define two special types of IFSs as:
The IF universe set W = 1W =< 1, 0 > and IF empty set Φ = 0W =< 0, 1 >, where

1(x) = 1 and 0(x) = 0 for all x ∈ W. The complement of an IFS T =< µ, γ > is denoted
and defined as Tc =< γ, µ >.

For a fixed x ∈ W, the pair (µT(x), γT(x)) is called the intuitionistic fuzzy value
(IFV) or intuitionistic fuzzy number (IFN). In order to define the order between two IFNs,
Chen and Tan [44] introduced the score function as S(x) = µT(x)− γT(x) and Hong and
Choi [45] defined the accuracy function as H(x) = µT(x) + γT(x), where x ∈ W. Xu [39]
used both the score and accuracy functions to define the order relation between any pair
(x, y) of IFVS as given below:

(a) If S(x) > S(y), then x > y
(b) If S(x) = S(y), then
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(1) If H(x) = H(y), then x = y
(2) If H(x) < H(y), then x < y.

Definition 3 ([11]). Let λ be an equivalence relation on a universe W. For any P ⊆W, the Pawlak
lower and upper approximations of P with respect to λ are defined by

λ(P) = {w ∈W : [w]λ ⊆ P},
λ(P) = {w ∈W : [w]λ ∩ P 6= ∅}.

where [w]λ is the equivalence class of w with respect to λ. The set BPλ = λ(P)− λ(P) is the
boundary region of P ⊆W. If BPλ(P) = ∅, then P is defineable (exact); otherwise, P is rough with
respect to λ.

Qian et al. [23] extended the Pawlak rough set model to the MGRS model, where the
set approximations are defined by using multi-equivalence relations on a universe.

Definition 4 ([23]). Let λ1, λ2, λ3, ....., λn be m equivalence relations on a universe W. For any
P ⊆W, the Pawlak lower and upper approximations of P are defined by

PΣm
i=1λi

= {w ∈W : [w]λi ⊆ P for some i, 1 ≤ i ≤ m},

PΣm
i=1λi = (Pc

Σm
i=1λi

)c.

where [w]λi is the equivalence class of w with respect to λi.

Definition 5 ([46]). A pair (λ, A) is called a SS over W if λ is a mapping given by λ : A→ P(W),
where A is a subset of E (the set of parameters) and P(W) is the power set of W. Thus, λ(e) is a
subset of W for all e ∈ A. Hence, a SS over W is a parametrized collection of subsets of W.

Definition 6 ([47]). Let (λ, A) be a SS over W1×W1. Then, (λ, A) is called a soft binary relation
on W1. In fact, (λ, A) is a parameterized collection of binary relations on W1; that is, we have a
binary relation λ(e) on W1 for each parameter e ∈ A.

Li et al. [48] presented the generalization of soft binary relation from W1 to W2 as follows.

Definition 7 ([48]). A soft binary relation (λ, A) from W1 to W2 is a SS over W1 ×W2; that is,
λ : A→ P(W1 ×W2), where A is a subset of the set of parameters E.

Of course, (λ, A) is a parameterized collection of binary relations from W1 to W2. That is, for
each e ∈ A, we have a binary relation λ(e) from W1 to W2.

Definition 8 ([7]). A pair (λ, A) is called an IFSS over W if λ is a mapping given by λ : A →
IF(W) and A is a subset of E (the set of parameters). Thus, λ(e) is an IFS in W for all e ∈ A.
Hence, an IFSS over W is a parametrized collection of IF sets in W.

Definition 9 ([7]). For two IFSSs (λ, A) and (ρ, B) over a common universe W, we say that
(λ, A) is an IF soft subset of (ρ, B) if (1) A ⊆ B, and (2) λ(e) is an IF subset of ρ(e) for all e ∈ A.
Two IFSSs (λ, A) and (ρ, B) over a common universe W are said to be IF soft equal if (λ, A) is an
IF soft subset of (ρ, B) and (ρ, B) is an IF soft subset of (λ, A). The union of two IFSSs (λ, A) and
(ρ, A) over the common universe W is the IFSS (H, A), where H(e) = λ(e) ∪ ρ(e) for all e ∈ A.
The intersection of two IFSSs (λ, A) and (ρ, A) over the common universe W is the IFSS (K, A),
where K(e) = λ(e) ∩ ρ(e) for all e ∈ A.

Definition 10 ([49]). Let (λ, A) be a soft binary relation from W1 to W2 and T = 〈µT , γT〉
be an IFS in W2. Then, the lower approximation λT = (λµT , λγT ) and upper approximation
λ

T
=

(
λ

µT , λ
γT
)

of T = 〈µT , γT〉 with respect to aftersets are defined as follows:
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λµT (e)(w1) =

{
∧a∈w1λ(e)µT(a) if w1λ(e) 6= ∅;

1 if w1λ(e) = ∅;

λγT (e)(w1) =

{
∨a∈w1λ(e)γT(a) if w1λ(e) 6= ∅;

0 if w1λ(e) = ∅;

and

λ
µT (e)(w1) =

{
∨a∈w1λ(e)µT(a) if w1λ(e) 6= ∅;

0 if w1λ(e) = ∅;

λ
γT (e)(w1) =

{
∧a∈w1λ(e)γT(a) if w1λ(e) 6= ∅;

1 if w1λ(e) = ∅.

where w1λ(e) = {a ∈W2 : (w1, a) ∈ λ(e)} and is called the afterset of w1 for w1 ∈W1 and e ∈ A.

• λµT (e)(w1) indicates the degree to which w1 definitely has the property e;
• λγT (e)(w1) indicates the degree to which w1 probably does not have the property e;
• λ

µT (e)(w1) indicates the degree to which w1 probably has the property e;
• λ

γT (e)(w1) indicates the degree to which w1 definitely does not have the property e.

Definition 11 ([49]). Let (λ, A) be a soft binary relation from W1 to W2 and T = 〈µT , γT〉
be an IFS in W1. Then, the lower approximation Tλ = (µT λ,γT λ) and upper approximation
Tλ =

(
µT λ,γT λ

)
of T = 〈µT , γT〉 with respect to foresets are defined as follows:

µT λ(e)(w2) =

{
∧a∈λ(e)w2

µT(a) if λ(e)w2 6= ∅;
1 if λ(e)w2 = ∅;

γT λ(e)(w2) =

{
∨a∈λ(e)w2

γT(a) if λ(e)w2 6= ∅;
0 if λ(e)w2 = ∅;

and
µT λ(e)(w2) =

{
∨a∈λ(e)w2

µT(a) if λ(e)w2 6= ∅;
0 if λ(e)w2 = ∅;

γT λ(e)(w2) =

{
∧a∈λ(e)w2

γT(a) if λ(e)w2 6= ∅;
1 if λ(e)w2 = ∅.

where λ(e)w2 = {a ∈W1 : (a, w2) ∈ λ(e)} and is called the foreset of w2 for w2 ∈W2 and e ∈ A.

Ofcourse, λT : A → IF(W1), λ
T

: A → IF(W1) and Tλ : A → IF(W2), Tλ : A →
IF(W2).

Theorem 1 ([49]). Let (λ, A) be a soft binary relation from W1 to W2; that is, λ : A→ P(W1 ×
W2). For any IFS, T = 〈µT , γT〉, T1 =

〈
µT1 , γT1

〉
and T2 =

〈
µT2 , γT2

〉
of W2, the following

are true:

(1) If T1 ⊆ T2 then λT1 ⊆ λT2 ;

(2) If T1 ⊆ T2 then λ
T1 ⊆ λ

T2 ;
(3) λT1 ∩ λT2 = λT1∩T2 ;

(4) λ
T1 ∩ λ

T2 ⊇ λ
T1∩T2 ;

(5) λT1 ∪ λT2 ⊆ λT1∪T2 ;

(6) λ
T1 ∪ λ

T2 = λ
T1∪T2 ;

(7) λ1W2 = 1W1 if w1λ(e) 6= ∅;

(8) λ
1W2 = 1W1 if w1λ(e) 6= ∅;

(9) λT =
(

λ
Tc)c

if w1λ(e) 6= ∅;



Mathematics 2022, 10, 685 6 of 23

(10) λ
T
=

(
λTc

)c
if w1λ(e) 6= ∅;

(11) λ0W2 = 0W1 = λ
0W2 if w1λ(e) 6= ∅.

Proof. This is proved in [49].

Theorem 2 ([49]). Let (λ, A) be a soft binary relation from W1 to W2; that is, λ : A→ P(W1 ×
W2). For any IFS, T = 〈µT , γT〉, T1 =

〈
µT1 , γT1

〉
and T2 =

〈
µT2 , γT2

〉
of W1, the following

are true:

(1) If T1 ⊆ T2 then T1 λ ⊆T2 λ;
(2) If T1 ⊆ T2 then T1 λ ⊆T2 λ;
(3) T1 λ ∩T2 λ =T1∩T2 λ;
(4) λ1 λ ∩2 λ ⊇T1∩T2 λ;
(5) T1 λ ∪T2 λ ⊆T1∪T2 λ;
(6) T1 λ ∪T2 λ =T1∪T2 λ;
(7) 1W1 λ = 1W2 if λ(e)w2 6= ∅;
(8) 1W1 λ = 1W2 if λ(e)w2 6= ∅;

(9) Tλ =
(

Tc
λ
)c

if λ(e)w2 6= ∅;

(10) Tλ =
(

Tc
λ
)c

if λ(e)w2 6= ∅;

(11) 0W1 λ = 0W2 =0W1 λ.

Proof. This is proved in [49].

3. Roughness of an Intuitionistic Fuzzy Set by Two Soft Relations

In this section, the pessimistic multigranulation roughness of an IFS by two soft binary
relations from W1 to W2 has been discussed. We approximate an IFS of universe W2 in
universe W1 and an IFS of W1 in W2 by using aftersets and foresets of soft binary relations,
respectively. In this way, we obtain two IFSSs corresponding to IFSs in W2(W1). We also
discuss some properties of these approximations.

Definition 12. Let W1 and W2 be two non-empty sets, (λ1, A) and (λ2, A) be two soft binary
relations from W1 to W2 and T = 〈µT , γT〉 be an IFS in W2. Then, the pessimistic multigranulation
lower approximation λ1 + λ2

T
p =

(
λ1 + λ2

µT
p , λ1 + λ2

γT
p

)
and the pessimistic multigranulation

upper approximation pλ1 + λ2
T
=

(
pλ1 + λ2

µT ,p λ1 + λ2
γT
)

of T = 〈µT , γT〉 are IF soft sets
over W1 and are defined as:

λ1 + λ2
µT
p (e)(w1) =

{
∧{µT(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))}, if w1λ1(e) ∩ w1λ2(e) 6= ∅;

1 otherwise;

λ1 + λ2
γT
p (e)(w1) =

{
∨{γT(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))}, if w1λ1(e) ∪ w1λ2(e) 6= ∅;

0 otherwise;

and

pλ1 + λ2
µT (e)(w1) =

{
∨{µT(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))}, if w1λ1(e) ∪ w1λ2(e) 6= ∅;

0 otherwise;

pλ1 + λ2
γT (e)(w1) =

{
∧{γT(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))}, if w1λ1(e) ∩ w1λ2(e) 6= ∅;

1 otherwise;

for all w1 ∈ W1, where w1λ1(e) = {w2 ∈W2 : (w1, w2) ∈ λ1(e)} and w1λ2(e) = {w2 ∈
W2 : (w1, w2) ∈ λ2(e)} are called the aftersets of w1 for w1 ∈ W1 and e ∈ A. Obviously,
(λ1 + λ2

T
p (e)), A) and (pλ1 + λ2

T
(e)) are two IFS soft sets over W1.
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In Definition 12, two soft binary relations from W1 to W2 are given and an IFS in W2
can be approximated as lower and upper approximations with respect to the aftersets. The
resulting sets are two pairs of IF soft sets.

Definition 13. Let W1 and W2 be two non-empty sets, (λ1, A) and (λ2, A) be two soft binary
relations from W1 to W2 and T = 〈µT , γT〉 be an IFS in W1. Then, the pessimistic multigranulation
lower approximation Tλ1 + λ2 p =

(
µT λ1 + λ2 p,γT λ1 + λ2 p

)
and the pessimistic multigranu-

lation upper approximation Tλ1 + λ2 =
(

µT λ1 + λ2
p
,γT λ1 + λ2

p
)

of T = 〈µT , γT〉 are IF soft
sets over W2 and are defined as:

µT λ1 + λ2 p(e)(w2) =

{
∧{µT(w1) : w1 ∈ (λ1(e)w2 ∩ λ2(e)w2)}, if λ1(e)w2 ∩ λ2(e)w2 6= ∅;

1 otherwise;

γT λ1 + λ2 p(e)(w2) =

{
∨{γT(w1) : w1 ∈ (λ1(e)w2 ∪ λ2(e)w2)}, if λ1(e)w2 ∪ λ2(e)w2 6= ∅;

0 otherwise;

and

µT λ1 + λ2
p
(e)(w2) =

{
∨{µT(w1) : w1 ∈ (λ1(e)w2 ∪ λ2(e)w2)}, if λ1(e)w2 ∪ λ2(e)w2 6= ∅;

0 otherwise;

γT λ1 + λ2
p
(e)(w2) =

{
∧{γT(w1) : w1 ∈ (λ1(e)w2 ∩ λ2(e)w2)}, if λ1(e)w2 ∩ λ2(e)w2 6= ∅;

1 otherwise;

for all w2 ∈ W2 where λ1(e)w2 = {w1 ∈ W1 : (w1, w2) ∈ λ1(e)}
and λ2(e)w2 = {w1 ∈W1 : (a, w2) ∈ λ2(e)} are called the foresets of w2 for w2 ∈ W2 and
e ∈ A. Obviously, (Tλ1 + λ2 p(e)), A) and (Tλ1 + λ2

p
(e)) are two IFS soft sets over W2.

In Definition 13, two soft binary relations from W1 to W2 are given and an IFS in W1
can be approximated as lower and upper approximations with respect to the foresets. The
resulting sets are two pairs of IF soft sets.

Of course, λ1 + λ2
T
p (e) : A→ IF(W1), pλ1 + λ2

T
(e) : A→ IF(W1) and Tλ1 + λ2 p(e) :

A→ IF(W2), Tλ1 + λ2
p
(e) : A→ IF(W2).

The following example explains the above definitions.

Example 1. Let W1 = {a, b, c, d, e, f }, W2 = {x, y, z} and A = {e1, e2, e3}, and (λ1, A) and
(λ2, A) be two soft binary relations from W1 to W2 defined by

λ1(e1) = {(a, x), (a, y), (b, z), (c, x), (c, z), (d, x), (d, y), (d, z), ( f , x), ( f , y)},
λ1(e2) = {(a, z), (b, x), (b, y), (b, z), (c, x), (c, y), (e, y), (e, z), ( f , x)},
λ1(e3) = {(c, y), (c, z), (d, x), (d, y), (e, z), ( f , z)}
λ2(e1) = {(b, x), (c, y), (d, x), (d, z), (e, z)},
λ2(e2) = {(a, y), (a, z), (c, x), (c, y), (c, z), (e, z), ( f , z)} and

λ2(e3) = {(a, x), (a, y), (a, z), (b, y), ( f , y)}.
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Then, their aftersets and foresets are

aλ1(e1) = {x, y}, bλ1(e1) = {z}, cλ1(e1) = {x, z}, dλ1(e1) = {x, y, z},
eλ1(e1) = ∅, f λ1(e1) = {x, y},
aλ1(e2) = {z}, bλ1(e2) = {x, y, z}, cλ1(e2) = {x, y}, dλ1(e2) = ∅,

eλ1(e2) = {y, z}, f λ1(e2) = {x} and

aλ1(e3) = ∅, bλ1(e3) = ∅, cλ1(e3) = {y, z}, dλ1(e3) = {x, y},
eλ1(e3) = {z}, f λ1(e3) = {z}.
aλ2(e1) = ∅, bλ2(e1) = {x}, cλ2(e1) = {y}, dλ2(e1) = {x, z},
eλ2(e1) = {z}, f λ2(e1) = ∅,

aλ2(e2) = {y, z}, bλ2(e2) = ∅, cλ2(e2) = {x, y, z}, dλ2(e2) = ∅,

eλ2(e2) = {z}, f λ2(e2) = {z} and

aλ2(e3) = {x, y, z}, bλ2(e3) = {y}, cλ2(e3) = ∅, dλ2(e3) = ∅,

eλ2(e3) = ∅, f λ2(e3) = {y}.

λ1(e1)x = {a, c, d, f }, λ1(e1)y = {a, d, f }, λ1(e1)z = {b, c, d},
λ1(e2)x = {b, c, f }, λ1(e2)y = {b, c, e}, λ1(e2)z = {a, b, e} and

λ1(e3)x = {d}, λ1(e3)y = {c, d}, λ1(e3)z = {c, e, f }.
λ2(e1)x = {b, d}, λ2(e1)y = {c}, λ2(e1)z = {d, e},
λ2(e2)x = {c}, λ2(e2)y = {a, c}, λ2(e2)z = {a, c, e, f } and

λ2(e3)x = {a}, λ2(e3)y = {a, b, f }, λ2(e3)z = {a}.

(1) Define T1 =
〈
µT1 , γT1

〉
: W2 → [0, 1] as given in Table 1:

Table 1. Intuitionistic fuzzy set T1.

T1 x y z

(µT1 , γT1 ) (0.6, 0.3) (0.5, 0.4) (0.1, 0.9)

The pessimistic multigranulation lower and upper approximations of T1 with respect
to the aftersets are given in Table 2.

Table 2. Pessimistic multigranulation lower and upper approximations of T1.

a b c d e f

(λ1 + λ2
µT1
p (e1), λ1 + λ2

γT1
p (e1)) (1, 0.4) (1, 0.9) (1, 0.9) (0.1, 0.9) (1, 0.9) (1, 0.4)

(λ1 + λ2
µT1
p (e2), λ1 + λ2

γT1
p (e2)) (0.1, 0.9) (1, 0.9) (0.5, 0.9) (1, 0.0) (0.1, 0.9) (1, 0.9)

(λ1 + λ2
µT1
p (e3), λ1 + λ2

γT1
p (e3)) (1, 0.9) (1, 0.4) (1, 0.9) (1, 0.4) (1, 0.9) (1, 0.9)

(pλ1 + λ2
µT1 (e1),p λ1 + λ2

γT1 (e1)) (0.6, 1) (0.6, 1) (0.6, 1) (0.6, 0.1) (0.1, 1) (0.6, 1)

(pλ1 + λ2
µT1 (e2),p λ1 + λ2

γT1 (e2)) (0.5, 0.9) (0.6, 1) (0.6, 0.3) (0.0, 1) (0.5, 0.9) (0.6, 1)

(pλ1 + σ2
µT1 (e3),p λ1 + λ2

γT1 (e3)) (0.6, 1) (0.5, 1) (0.5, 1) (0.6, 1) (0.1, 1) (0.5, 1)

(2) Define T2 =
〈
µT2 , γT2

〉
: T1 → [0, 1] as given in Table 3:

Table 3. Intuitionistic fuzzy set T2.

T2 a b c d e f

(µT2 , γT2 ) (0.9, 0.0) (0.6, 0.3) (0.7, 0.3) (0.5, 0.4) (0.3, 0.7) (0.1, 0.7)
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The pessimistic multigranulation lower and upper approximations of T2 with respect
to the foresets are given in Table 4.

Table 4. Pessimistic multigranulation lower and upper approximations of T2.

x y z

(µT2 λ1 + λ2 p(e1),
γT2 λ1 + λ2 p(e1)) (0.5, 0.7) (1, 0.7) (0.5, 0.7)

(µT2 λ1 + λ2 p(e2),γT2 λ1 + λ2 p(e2)) (0.7, 0.7) (0.7, 0.7) (0.3, 0.7)

(µT2 λ1 + λ2 p(e3),γT2 λ1 + λ2 p(e3)) (1, 0.4) (1, 0.7) (1, 0.7)

(µT2 λ1 + λ2
p
(e1),

γT2 λ1 + λ2
p
(e1)) (0.9, 0.4) (0.9, 1) (0.7, 0.4)

(µT2 λ1 + λ2
p
(e2),γT2 λ1 + λ2

p
(e2)) (0.7, 0.3) (0.9, 0.3) (0.9, 0.0)

(µT2 λ1 + λ2
p
(e3),γT2 λ1 + λ2

p
(e3)) (0.9, 1) (0.9, 1) (0.9, 1)

Table 2 shows the pessimistic multigranulation lower and upper approximations of
IFS T1 with respect to the aftersets by using Definition 12. Table 4 shows the pessimistic
multigranulation lower and upper approximations of IFS T2 with respect to the foresets by
using Definition 13.

Proposition 1. Let (λ1, A), (λ2, A) be two soft relations from W1 to W2; that is, λ1 : A →
P(W1 ×W2) and λ2 : A→ P(W1 ×W2) and T ∈ IF(W2). Then, the following hold with respect
to the after sets.

(1) λ1 + λ2
T
p > λ1

T ∧ λ2
T ;

(2) pλ1 + λ2
T
= λ1

T ∨ λ2
T .

Proof. (1) Let w1 ∈W1. Then, λ1 + λ2
µT
p (e)(w1) = ∧{µT(w2) : w2 ∈ (w1λ1(e)∩w1λ2(e))}

> (∧{µT(w2) : w2 ∈ (w1λ1(e)}) ∧ (∧{µT(w2) : w2 ∈ (w1λ2(e)}) = λ1
µT (e)(w1) ∧

λ2
µT (e)(w1).

Similarly, let w1 ∈ W1. Then, λ1 + λ2
γT
p (e)(w1) = ∨{γT(w2) : w2 ∈ (w1λ1(e) ∪

w1λ2(e))} = (∨{γT(w2) : w2 ∈ (w1λ1(e)}) ∨ (∨{γT(w2) : w2 ∈ (w1λ2(e)}) = λ1
γT (e)

(w1) ∨ λ2
γT (e)(w1).

Hence, λ1 + λ2
T
p > λ1

T ∧ λ2
T .

(2) Let w1 ∈W1. Then, pλ1 + λ2
µT (e)(w1) = ∨{µT(w2) : w2 ∈ (w1λ1(e)∪w1λ2(e))} =

(∨{µT(w2) : w2 ∈ (w1λ1(e)}) ∨ (∨{µT(w2) : w2 ∈ (w1λ2(e)}) = λ1
µT (e)(w1) ∨ λ2

µT

(e)(w1).
Similarly, let w1 ∈ W1. Then, pλ1 + λ2

γT (e)(w1) = ∧{γT(w2) : w2 ∈ (w1λ1(e) ∩
w1λ2(e))} > (∧{γT(w2) : w2 ∈ (w1λ1(e)}) ∧ (∧{γT(w2) : w2 ∈ (w1λ2(e)}) = λ1

γT

(e)(w1) ∧ λ2
γT (e)(w1).

Hence, pλ1 + λ2
T
= λ1

T ∨ λ2
T

.

For the converse, we have the following example.

Example 2. (Continued from Example 1). According to Example 1, we have the following:
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λ1
µT (e1)(c) = 0.1 and λ2

µT (e1)(c) = 0.5;

λ1
γT (e1)(c) = 0.9 and λ2

γT (e1)(c) = 0.4;

λ1
µT (e2)(c) = 0.5 and λ2

µT (e2)(c) = 0.1;

λ1
γT (e2)(c) = 0.4 and λ2

γT (e2)(c) = 0.9;

λ1
µT (e3)(c) = 0.1 and λ2

µT (e3)(c) = 1.0;

λ1
γT (e3)(c) = 0.9 and λ2

γT (e3)(c) = 0.0;

λ1
µT (e3)(b) = 0.0 and λ2

µT (e3)(b) = 0.5;

λ1
γT (e3)(b) = 0.0 and λ2

γT (e3)(b) = 0.4.

Hence,

λ1 + λ2
µT
p (e1)(c) = 1.0 
 0.1 = λ1

µT (e1)(c) ∧ λ2
µT (e1)(c);

λ1 + λ2
γT
p (e1)(c) = 0.9 = 0.9 = λ1

γT (e1)(c) ∨ λ2
γT (e1)(c);

λ1 + λ2
µT
p (e2)(c) = 0.5 
 0.1 = λ1

µT (e2)(c) ∧ λ2
µT (e2)(c);

λ1 + λ2
γT
p (e2)(c) = 0.9 = 0.9 = λ1

γT (e2)(c) ∨ λ2
γT (e2)(c);

λ1 + λ2
µT
o (e3)(c) = 1.0 
 0.1 = λ1

µT (e3)(c) ∧ λ2
µT (e3)(c);

λ1 + λ2
γT
p (e3)(c) = 0.9 = 0.9 = λ1

γT (e3)(c) ∨ λ2
γT (e3)(c);

pλ1 + λ2
µT (e3)(b) = 0.5 = 0.5 = λ1

µT (e3)(b) ∨ λ2
µT (e3)(b);

pλ1 + λ2
γT (e3)(b) = 1.0 
 0.4 = λ1

γT (e3)(b) ∨ λ2
γT (e3)(b).

Proposition 2. Let (λ1, A), (λ2, A) be two soft relations from W1 to W2; that is, λ1 : A →
P(W1 ×W2) and λ2 : A→ P(W1 ×W2) and T ∈ IF(W1). Then, the following hold with respect
to the foresets.

(1) Tλ1 + λ2 p >T λ1 ∧T λ2;

(2) Tλ1 + λ2
p
=T λ1 ∨T λ2.

Proof. The proof is similar to the proof of Proposition 1.

Proposition 3. Let (λ1, A), (λ2, A) be two soft relations from W1 to W2; that is, λ1 : A →
P(W1 ×W2) and λ2 : A→ P(W1 ×W2) and T ∈ IF(W2). Then, the following hold.

(1) λ1 + λ2
1W2
p = 1W1 for all e ∈ A;

(2) pλ1 + λ2
1W2 = 1W1 if w1λ1(e) ∪ w1λ2(e) 6= ∅ and w1λ1(e) ∩ w1λ2(e) 6= ∅;

(3) λ1 + λ2
0W2
p = 0W1 if w1λ1(e) ∩ w1λ2(e) 6= ∅ and w1λ1(e) ∪ w1λ2(e) 6= ∅;

(4) pλ1 + λ2
0W2 = 0W1 for all e ∈ A.

Proof. (1) Let w1 ∈W1 and 1W2 = 〈1, 0〉 be the universal set of W2. If w1λ1(e) ∩ w1λ2(e) =
∅, then λ1 + λ2

1
p(e)(w1) = 1 and λ1 + λ2

0
p(e)(w1) = 0.

If w1λ1(e) ∩ w1λ2(e) 6= ∅, then λ1 + λ2
1
p(e)(w1) = ∧{1(w2) : w2 ∈ (w1λ1(e) ∩

w1λ2(e))} = ∧{1 : w2 ∈ (w1λ1(e) ∩ w1λ2(e))} = 1,
and λ1 + λ2

0
p(e)(w1) = ∨{0(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))} = ∨{0 : w2 ∈ (w1λ1(e)

∪w1λ2(e))} = 0.
(2) Let w1 ∈W1 and 1W2 = 〈1, 0〉 be the universal set of W2. If w1λ1(e) ∪w1λ2(e) 6= ∅,

then λ1 + λ2
1
(e)(w1) = ∨{1(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))} = ∨{1 : w2 ∈ (w1λ1(e) ∪

w1λ2(e))} = 1,
and pλ1 + λ2

0
(e)(w1) = ∧{0(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))} = ∧{0 : w2 ∈

(w1λ1(e) ∩ w1λ2(e))} = 0.
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(3) Let w1 ∈W1 and 0W2 = 〈0, 1〉 be the universal set of W2. If w1λ1(e) ∩w1λ2(e) 6= ∅,
then λ1 + λ2

0
p(e)(w1) = ∧{0(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))} = ∧{0 : w2 ∈ (w1λ1(e) ∩

w1λ2(e))} = 0,
and λ1 + λ2

1
p(e)(w1) = ∨{1(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))} = ∨{1 : w2 ∈ (w1λ1(e)

∪w1λ2(e))} = 1.
(4) The properties can be proved similarly to (3).

Proposition 4. Let (λ1, A), (λ2, A) be two soft relations from W1 to W2; that is, λ1 : A →
P(W1 ×W2) and λ2 : A→ P(W1 ×W2) and T ∈ IF(W1). Then, the following holds.

(1) 1W1 λ1 + λ2 p = 1W2 for all e ∈ A;

(2) 1W1 λ1 + λ2
p
= 1W2 for all e ∈ A, if λ1(e)w2 ∪ λ2(e)w2 6= ∅ and λ1(e)w2 ∩ λ2(e)w2 6= ∅;

(3) 0W1 λ1 + λ2 p = 0W2 for all e ∈ A, if λ1(e)w2 ∩ λ2(e)w2 6= ∅ and λ1(e)w2 ∪ λ2(e)w2 6= ∅;

(4) 0W1 λ1 + λ2
p for all e ∈ A.

Proof. The proof is similar to the proof of Proposition 3.

Proposition 5. Let (λ1, A), (λ2, A) be two soft relations from W1 to W2; that is, λ1 : A →
P(W1 ×W2) and λ2 : A → P(W1 ×W2) and T, T1, T2 ∈ IF(W2). Then, the following proper-
ties hold.

(1) If T1 ⊆ T2, then λ1 + λ2
T1
p ⊆ λ1 + λ2

T2
p ;

(2) If T1 ⊆ T2, then pλ1 + λ2
T1 ⊆p λ1 + λ2

T2 ;
(3) λ1 + λ2

T1∩T2
p = λ1 + λ2

T1
p ∩ λ1 + λ2

T2
p ;

(4) λ1 + λ2
T1∪T2
p ⊇ λ1 + λ2

T1
p ∪ λ1 + λ2

T2
p ;

(5) pλ1 + λ2
T1∪T2 =p λ1 + λ2

T1 ∪p λ1 + λ2
T2 ;

(6) pλ1 + λ2
T1∩T2 ⊆p λ1 + λ2

T1 ∩p λ1 + λ2
T2 .

Proof. (1) Since T1 ⊆ T2, µT1 6 µT2 and γT1 > γT2 . Thus, λ1 + λ2
µT1
p (e)(w1) = ∧{µT1(w2) :

w2 ∈ (w1λ1(e) ∩ w1λ2(e))} 6 ∧{µT2(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))} = λ1 + λ2
µT2
p

(e)(w1),
and λ1 + λ2

γT1
p (e)(w1) = ∨{γT1(w2) : w2 ∈ (w1λ1(e) ∪ uw1λ2(e))} > ∨{γT2(w2) :

w2 ∈ (w1λ1(e) ∪ w1λ2(e))} = λ1 + λ2
γT2
p (e)(w1).

(2) This can be proved similar to (1).
(3) Let w1 ∈ W1. If w1λ1(e) ∩ w1λ2(e) = ∅, then λ1 + λ2

µT1∩T2
p (e)(w1) = 1 =

λ1 + λ2
µT1
p (e)(w1) ∩ λ1 + λ2

µT2
o (e)(w1)

and λ1 + λ2
γT1∩T2
p (e)(w1) = 0 = λ1 + λ2

γT1
p (e)(w1) ∪ λ1 + λ2

γT2
p (e)(w1).

If w1λ1(e) ∩ w1λ2(e) 6= ∅,
then λ1 + λ2

µT1∩T2
p (e)(w1) = ∧{(µT1 ∧ µT2)(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))} =

∧{µT1(w2) ∧ µT2(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))}
= (∧{µT1(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))}) ∧ (∧{µT2(w2) : w2 ∈ (w1λ1(e) ∩

w1λ2(e))})
= λ1 + λ2

µT1
p (e)(w1) ∩ λ1 + λ2

µT2
p (e)(w1).

In addition, λ1 + λ2
γT1∩T2
p (e)(w1) = ∨{(µT1 ∨µT2)(w2) : w2 ∈ (w1λ1(e)∪w1λ2(e))} =

∨{µT1(w2) ∨ µT2(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))}
= (∨{µT1(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))}) ∨ (∨{µT2(w2) : w2 ∈ (w1λ1(e) ∪

w1λ2(e))})
= λ1 + λ2

µT1
p (e)(w1) ∪ λ1 + λ2

µT2
p (e)(w1).

This shows that λ1 + λ2
T1∩T2
p = λ1 + λ2

T1
p ∩ λ1 + λ2

T2
p .

(4) This can be proved similar to (3).
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(5) Let w1 ∈ W1. If w1λ1(e) ∪ w1λ2(e) = ∅, then pλ1 + λ2
µT1∪T2 (e)(w1) = 0 =p

λ1 + λ2
µT1 (e)(w1) ∪p λ1 + λ2

µT2 (e)(w1)

and pλ1 + λ2
γT1∪T2 (e)(w1) = 1 =p λ1 + λ2

µT1 (e)(w1) ∩p λ1 + λ2
µT2 (e)(w1).

If w1λ1(e) ∪ w1λ2(e) 6= ∅,
then pλ1 + λ2

µT1∪T2 (e)(w1) = ∨{(µT1 ∨ µT2)(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))} =
∨{µT1(w2) ∨ µT2(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))}

= (∨{µT1(w2) : w2 ∈ (w1λ1(e) ∪ w1λ2(e))}) ∨ (∨{µT2(w2) : w2 ∈ (w1λ1(e) ∪
w1λ2(e))})

=p λ1 + λ2
µT1 (e)(w1) ∪p λ1 + λ2

µT2
(e)(w1).

In addition, pλ1 + λ2
γT1∪T2 (e)(w1) = ∧{(γT1 ∧ γT2)(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))}

= ∧{γT1(w2) ∧ γT2(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))} = (∧{γT1(w2) : w2 ∈ (w1λ1(e) ∩
w1λ2(e))}) ∧ (∧{γT2(w2) : w2 ∈ (w1λ1(e) ∩ w1λ2(e))})

=p λ1 + λ2
γT1 (e)(w1) ∪p λ1 + λ2

γT2
(e)(w1).

This shows that pλ1 + λ2
T1∪T2 =p λ1 + λ2

T1 ∪p λ1 + λ2
T2 .

(6) This can be proved similar to (5).

For the converses of part (4) and (6), we have the following example.

Example 3. Let W1 = {a, b, c, d}, W2 = {1, 2, 3, 4} and A = {e1, e2}, and (λ1, A) and (λ2, A)
be soft binary relations from W1 to W2 defined by

λ1(e1) = {(a, 1), (a, 3), (b, 2), (c, 3), (c, 4), (d, 1), (d, 4)},
λ1(e2) = {(a, 2), (a, 3), (b, 4), (c, 3), (d, 1), (d, 2), (d, 3)},
λ2(e1) = {(a, 4), (b, 3), (c, 1), (c, 2), (c, 3)},
λ2(e2) = {(b, 1), (b, 2), (b, 3), (c, 1), (c, 4), (d, 4)}

Then, their aftersets are

aλ1(e1) = {1, 3}, bλ1(e1) = {2}, cλ1(e1) = {3, 4}, dλ1(e1) = {1, 4},
aλ1(e2) = {2, 3}, bλ1(e2) = {4}, cλ1(e2) = {3}, dλ1(e2) = {1, 2, 3}, and

aλ2(e1) = {4}, bλ2(e1) = {3}, cλ2(e1) = {1, 2, 3}, dλ2(e1) = ∅,

aλ2(e2) = ∅, bλ2(e2) = {1, 2, 3}, cλ2(e2) = {1, 4}, dλ2(e2) = {4}.

(1) Define T1 =
〈
µT1 , γT1

〉
: W2 → [0, 1] as given in Table 5:

Table 5. Intuitionistic fuzzy set T1.

T1 1 2 3 4

(µT1 , γT1 ) (0.6, 0.3) (0.4, 0.5) (0.1, 0.9) (0.3, 0.6)

(2) Define T2 =
〈
µT2 , γT2

〉
: W2 → [0, 1] as given in Table 6:

Table 6. Intuitionistic fuzzy set T2.

T2 1 2 3 4

(µT2 , γT2 ) (0.3, 0.7) (1.0, 0.0) (0.4, 0.5) (0.2, 0.7)

(3) Define T1∪ T2 and T1∩ T2 as given in Tables 7 and 8.
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Table 7. Union of T1 and T2.

T1∪ T2 1 2 3 4

(µT1∪ T2 , γT1∪ T2 ) (0.6, 0.3) (1.0, 0.0) (0.4, 0.5) (0.3, 0.6)

Table 8. Intersection of T1 and T2.

T1 ∩ T2 1 2 3 4

(µT1∩ T2 , γT1∩ T2 ) (0.3, 0.7) (0.4, 0.5) (0.1, 0.9) (0.2, 0.7)

The pessimistic multigranulation lower and upper approximations of T1, T2, T1 ∪ T2
and T1 ∩ T2with respect to the aftersets are given in Table 9.

Table 9. Pessimistic multigranulation lower and upper approximations of T1, T2, T1 ∪ T2 and T1 ∩ T2.

1 2 3 4

(λ1 + λ2
µT1
p (e1), λ1 + λ2

γT1
p (e1)) (1, 0.9) (1, 0.9) (0.1, 0.9) (1.0, 0.6)

(λ1 + λ2
µT1
p (e2), λ1 + λ2

γT1
p (e2)) (1.0, 0.9) (1, 0.9) (1.0, 0.9) (1.0, 0.9)

(λ1 + λ2
µT2
p (e1), λ1 + λ2

γT2
p (e1)) (1.0, 0.7) (1.0, 0.5) (0.4, 0.7) (1.0, 0.7)

(λ1 + λ2
µT2
p (e2), λ1 + λ2

γT2
p (e2)) (1.0, 0.5) (1.0, 0.7) (1.0, 0.7) (1.0, 0.7)

(λ1 + λ2
µT1∪T2
p (e1), λ1 + λ2

γT1∪T2
p (e1)) (1.0, 0.3) (1.0, 0.0) (0.4, 0.0) (1.0, 0.3)

(λ1 + λ2
µT1∪T2
p (e2), λ1 + λ2

γT1∪T2
p (e2)) (1.0, 0.0) (1.0, 0.0) (1.0, 0.3) (1.0, 0.0)

(pλ1 + λ2
µT1 (e1),p λ1 + λ2

γT1 (e1)) (0.6, 1.0) (0.4, 1.0) (0.6, 0.9) (0.6, 1.0)

(pλ1 + λ2
µT1 (e2),p λ1 + λ2

γT1 (e2)) (0.4, 1.0) (0.6, 1) (0.6, 1.0) (0.6, 1.0)

(pλ1 + σ2
µT2 (e1),p λ1 + λ2

γT2 (e1)) (0.4, 1.0) (1.0, 1.0) (1.0, 0.5) (0.3, 1.0)

(pλ1 + σ2
µT2 (e2),p λ1 + λ2

γT2 (e2)) (1.0, 1.0) (1.0, 1.0) (0.4, 1.0) (1.0, 1.0)

(pλ1 + σ2
µT1∩T2 (e1),p λ1 + λ2

γT1∩T2 (e1)) (0.3, 1.0) (0.4, 1.0) (0.4, 0.9) (0.3, 1.0)

(pλ1 + λ2
µT1∩T2 (e2),p λ1 + λ2

γT1∩T2 (e2)) (0.4, 1.0) (0.4, 1.0) (0.3, 1.0) (0.4, 1.0)

From Table 9, we have the following

λ1 + λ2
µT1∪T2
p (e1)(3) = 0.4 = 0.4 = λ1 + λ2

µT1
p (e1)(3) ∨ λ1 + λ2

µT2
p (e1)(3); but

λ1 + λ2
γT1∪T2
p (e1)(3) = 0.0 � 0.7 = λ1 + λ2

γT1
p (e1)(3) ∧ λ1 + λ2

γT2
p (e1)(3);

pλ1 + λ2
µT1∩T2 (e1)(1) = 0.4 
 0.3 = pλ1 + λ2

µT1 (e1)(1) ∧ pλ1 + λ2
µT2 (e1)(1);

pλ1 + λ2
γT1∩T2 (e1)(1) = 1.0 = 1.0 = pλ1 + λ2

γT1 (e1)(1) ∨ pλ1 + λ2
γT2 (e1)(1).

Proposition 6. Let (λ1, A), (λ2, A) be two soft relations from W1 to W2; that is, λ1 : A →
P(W1 ×W2) and λ2 : A → P(W1 ×W2) and T, T1, T2 ∈ IF(W1). Then, the following proper-
ties hold.

(1) If T1 ⊆ T2, then T1 λ1 + λ2 p ⊆
T2 λ1 + λ2 p;

(2) If T1 ⊆ T2, then T1 λ1 + λ2
p ⊆T2 λ1 + λ2

p;
(3) T1∩T2 λ1 + λ2 p =T1 λ1 + λ2 p ∩

T2 λ1 + λ2 p;

(4) T1∪T2 λ1 + λ2 p ⊇
T1 λ1 + λ2 p ∪

T2 λ1 + λ2 p;

(5) T1∪T2 λ1 + λ2
p
=T1 λ1 + λ2

p ∪T2 λ1 + λ2
p;

(6) T1∩T2 λ1 + λ2
p ⊆T1 λ1 + λ2

p ∩T2 λ1 + λ2
p.

Proof. The proof is similar to the proof of Proposition 5.
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4. Roughness of an Intuitionistic Fuzzy Set over Two Universes by Multi
Soft Relations

In this Section, we discuss the pessimistic multigranulation roughness of an IFS
by multi soft binary relations from W1 to W2 and approximate an IFS of universe W2 in
universe W1 and an IFS W1 in W2 by using aftersets and foresets of soft binary relations,
respectively. In this way, we obtain two intuitionistic fuzzy soft sets corresponding to IFSs
in W2(W1). We also study some properties of these approximations.

Definition 14. Let W1 and W2 be two non-empty finite universes and φ be a family of soft binary
relations from W1 to W2. Then, we say (W1, W2, φ) is the multigranulation generalized soft
approximation space over two universes.

Definition 15. Let (W1, W2, φ) be the multigranulation generalized soft approximation space over
two universes W1 and W2, where φ = λ1, λ2, λ3, .....λn, and T = 〈µT , γT〉 be an IFS in W2. Then,

the pessimistic multigranulation lower approximation Σn
i=1λi

T
p
=

(
Σn

i=1λi
µT
p

, Σn
i=1λi

γT
p

)
and

the pessimistic multigranulation upper approximation pΣn
i=1λi

T
=

(
pΣn

i=1λi
µT ,p Σn

i=1λi
γT
)

of
T = 〈µT , γT〉 are IF soft sets over W1 with respect to the aftersets of soft relations (λi, A) ∈ φ, and
are defined as:

Σn
i=1λi

µT
p
(e)(w1) =

{
∧{µT(w2) : w2 ∈ ∩n

i=1w1λi(e)}, if ∩n
i=1 w1λi(e) 6= ∅;

1 otherwise;

Σn
i=1λi

γT
p
(e)(w1) =

{
∨{γT(w2) : w2 ∈ ∪n

i=1w1λi(e)}, if ∪n
i=1 w1λi(e) 6= ∅;

0 otherwise;

and

pΣn
i=1λi

µT (e)(w1) =

{
∨{µT(w2) : w2 ∈ ∪n

i=1w1λi(e)}, if ∪n
i=1 w1λi(e) 6= ∅;

0 otherwise;

pΣn
i=1λi

γT (e)(w1) =

{
∧{γT(w2) : w2 ∈ ∩n

i=1w1λi(e)}, if ∩n
i=1 w1λi(e) 6= ∅;

1 otherwise.

where w1λi(e) = {w2 ∈W2 : (w1, w2) ∈ λi(e)} are called the aftersets of w1 for w1 ∈ W1 and
e ∈ A. Obviously, (Σn

i=1λi
T
p

, A) and (pΣn
i=1λi

T
, A) are two IFS soft sets over W1.

Definition 16. Let (W1, W2, φ) be the multigranulation generalized soft approximation space over
two universes W1 and W2, where φ = λ1, λ2, λ3, .....λn, and T = 〈µT , γT〉 be an IFS in W1. Then,

the pessimistic multigranulation lower approximation TΣn
i=1λi p

=

(
µT Σn

i=1λi p
,γT Σn

i=1λi p

)
and

the pessimistic multigranulation upper approximation TΣn
i=1λi

p
=

(
µT Σn

i=1λi
p
,γT Σn

i=1λi
p
)

of
T = 〈µT , γT〉 are IF soft sets over W2 with respect to the foresets of soft relations (λi, A) ∈ φ, and
are defined as:

µT Σn
i=1λi p

(e)(w2) =

{
∧{µT(w1) : w1 ∈ ∩n

i=1λi(e)w2}, if ∩n
i=1 λi(e)w2 6= ∅;

1 otherwise;

γT Σn
i=1λi p

(e)(w2) =

{
∨{γT(w1) : w1 ∈ ∪n

i=1λi(e)w2}, if ∪n
i=1 λi(e)w2 6= ∅;

0 otherwise;

and

µT Σn
i=1λi

p
(e)(w2) =

{
∨{µT(w1) : w1 ∈ ∪n

i=1λi(e)w2}, if ∪n
i=1 λi(e)w2 6= ∅;

0 otherwise;
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γT Σn
i=1λi

p
(e)(w2) =

{
∧{γT(w1) : w1 ∈ ∩n

i=1λi(e)w2}, if ∩n
i=1 λi(e)w2 6= ∅;

1 otherwise.

where λ1(e)w2 = {w1 ∈W1 : (w1, w2) ∈ λi(e)} are called the foresets of w2 for w2 ∈ W2 and
e ∈ A. Obviously, (TΣn

i=1λi p
, A) and (TΣn

i=1λi
p
, A) are two IFS soft sets over W2.

Moreover, Σn
i=1λi

T
p

: A → IF(W1),p Σn
i=1λi

T
: A → IF(W1) and TΣn

i=1λi p
: A →

IF(W2),T Σn
i=1λi

p
: A→ IF(W2).

Proposition 7. Let (W1, W2, φ) be the multigranulation generalized soft approximation space over
two universes W1 and W2 and T = 〈µT , γT〉 be an IFS in W2. Then, the following properties for
Σn

i=1λi
T
p

,p Σn
i=1λi

T
hold.

(1) Σn
i=1λi

T
p
⊇ ∧n

i=1λi
T ;

(2) pΣn
i=1λi

T
= ∨n

i=1λi
T .

Proof. The proof is similar to the proof of Proposition 1.

Proposition 8. Let (W1, W2, φ) be the multigranulation generalized soft approximation space over
two universes W1 and W2 and T = 〈µT , γT〉 be an IFS in W1. Then, the following properties for
TΣn

i=1λi p
,T Σn

i=1λi
p

hold.

(1) TΣn
i=1λi p

⊇ ∧n
i=1

Tλi;

(2) TΣn
i=1λi

p
=n

i=1 ∨ Tλi.

Proof. The proof is similar to the proof of Proposition 2.

Proposition 9. Let (W1, W2, φ) be the multigranulation generalized soft approximation space over
two universes W1 and W2. Then, the following properties with respect to the aftersets hold.

(1) Σn
i=1λi

1W2
p

= 1W1 for all e ∈ A;

(2) pΣn
i=1λi

1W2 = 1W1 if ∪n
i=1w1λi(e) 6= ∅, and ∩n

i=1w1λi(e) 6= ∅ for some i ≤ n;
(3) Σn

i=1λi
0W2
p

= 0W1 if ∩n
i=1w1λi(e) 6= ∅ and ∪n

i=1w1λi(e) 6= ∅, for some i ≤ n;

pΣn
i=1λi

0W2 = 0W1 for all e ∈ A.

Proof. The proof is similar to the proof of Proposition 3.

Proposition 10. Let (W1, W2, φ) be the multigranulation generalized soft approximation space
over two universes W1 and W2. Then, the following properties with respect to the foresets hold.

(1) 1W1 Σn
i=1λi p

= 1W2 for all e ∈ A;

(2) 1W1 Σn
i=1λi

p
= 1W2 if ∪n

i=1λi(e)w2 6= ∅ and ∩n
i=1λi(e)w2 6= ∅ for some i ≤ n;

(3) 0W1 Σn
i=1λi p

= 0W2 if ∩n
i=1λi(e)w2 6= ∅ and ∪n

i=1λi(e)w2 6= ∅, for some i ≤ n;

(4) 0W1 Σn
i=1λi

p
= 0W2 for all e ∈ A.

Proof. The proof is similar to the proof of Proposition 4.

Proposition 11. Let (W1, W2, φ) be the multigranulation generalized soft approximation space
over two universes W1 and W2 and T, T1, T2 ∈ IF(W2). Then, the following properties for
Σn

i=1λi
T
p

,p Σn
i=1λi

T
with respect to the aftersets hold.
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(1) If T1 ⊆ T2, then Σn
i=1λi

T1
p
⊆ Σn

i=1λi
T2
p

;

(2) If T1 ⊆ T2, then pΣn
i=1λi

T1 ⊆p Σn
i=1λi

T2 ;
(3) Σn

i=1λi
T1∩T2
p

= Σn
i=1λi

T1
p
∩ Σn

i=1λi
T2
p

;

(4) Σn
i=1λi

T1∪T2
p

⊇ Σn
i=1λi

T1
p
∪ Σn

i=1λi
T2
p

;

(5) pΣn
i=1λi

T1∪T2 =p Σn
i=1λi

T1 ∪p Σn
i=1λi

T2 ;

(6) pΣn
i=1λi

T1∩T2 ⊆p Σn
i=1λi

T1 ∩p Σn
i=1λi

T2 .

Proof. The proof is similar to the proof of Proposition 5.

Proposition 12. Let (W1, W2, φ) be the multigranulation generalized soft approximation space
over two universes W1 and W2 and T, T1, T2 ∈ IF(W1). Then, the following properties for
TΣn

i=1λi p
,T Σn

i=1λi
p

with respect to the foresets hold.

(1) If T1 ⊆ T2, then T1 Σn
i=1λi p

⊆T2 Σn
i=1λi p

;

(2) If T1 ⊆ T2, then T1 Σn
i=1λi

p ⊆T2 Σn
i=1λi

p
;

(3) T1∩T2 Σn
i=1λi p

=T1 Σn
i=1λi p

∩T2 Σn
i=1λi p

;

(4) T1∪T2 Σn
i=1λi p

⊇T1 Σn
i=1λi p

∪T2 Σn
i=1λi p

;

(5)
T1∪T2 Σn

i=1λi
p
=

T1 Σn
i=1λi

p ∪T2 Σn
i=1λi

p
;

(6) T1∩T2 Σn
i=1λi

p ⊆T1 Σn
i=1λi

p ∩T2 Σn
i=1λi

p
.

Proof. The proof is similar to the proof of Proposition 6.

Proposition 13. Let (W1, W2, φ) be the multigranulation generalized soft approximation space
over two universes W1 and W2 and T1, T2, T3, ....Tm ∈ IF(W2), and T1 ⊆ T2 ⊆ T3 ⊆ .... ⊆ Tm.
Then, the following properties with respect to the aftersets hold.

(1) Σn
i=1λi

T1
p
⊆ Σn

i=1λi
T2
p
⊆ Σn

i=1λi
T3
p
⊆ ..... ⊆ Σn

i=1λi
Tm
p

;

(2) pΣn
i=1λi

T1 ⊆p Σn
i=1λi

T2 ⊆p Σn
i=1λi

T3 ⊆ ..... ⊆p Σn
i=1λi

Tn .

Proof. The proof is similar to the proof of Proposition 5.

Proposition 14. Let (W1, W2, φ) be the multigranulation generalized soft approximation space
over two universes W1 and W2 and T1, T2, T3, ....Tm ∈ IF(W1), and T1 ⊆ T2 ⊆ T3 ⊆ .... ⊆ Tm.
Then, the following properties with respect to the foresets hold.

(1) T1 Σn
i=1λi p

⊆T2 Σn
i=1λi p

⊆T3 Σn
i=1λi p

⊆ ..... ⊆Tm Σn
i=1λi p

;

(2) T1 Σn
i=1λi

p ⊆T2 Σn
i=1λi

p ⊆T1 Σn
i=1λi

p ⊆ ..... ⊆Tm Σn
i=1λi

p
.

Proof. The proof is similar to the proof of Proposition 6.

5. Application in Decision-Making Problem

Data analysis is always needed to make a perception about any decision. Decision
making is a good technique to study data analysis. Decision making is the process used to
choose better alternatives from aspirants. A single expert’s opinion is no longer preferable
because a collective decision based on multiple expert’ opinions is more effective. Shabir
et al. [40] presented a decision-making algorithm using crisp sets. Jamal and Shabir [50]
proposed a useful decision-making algorithm with the help of an OMGFRS model in terms
of soft relations. The OMGIFRS model [41] is the extension of Jamal’s OMGFRS model and
corresponds to the decision-making method in terms of multi soft relations. In this paper,
we present a suitable decision-making algorithm based on our proposed PMGIFRS model.
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The lower and upper approximations are the two subsets of a universe most close to being

approximated. We obtain two corresponding values Σn
i=1λi

T
p
(ej)(xk) and pΣn

i=1λi
T
(ej)(xk)

with respect to the afterset of the decision alternative xk ∈W1 by the IF soft lower and upper
approximations of an IF T ∈ IF(W2).

We present two algorithms for our proposed model here.
Algorithm 1 is presented with respect to the aftersets for the decision-making problem

in the following.

Algorithm 1 Respect to the aftersets for the decision-making problem

(1) Compute the pessimistic multigranulation lower IF soft set approximation Σn
i=1λi

T
p

and pessimistic multigranulation upper IF soft set approximation pΣn
i=1λi

T
of an IF set

T = 〈µT , γT〉 with respect to the aftersets.

(2) Compute the score values for each of the entries of the Σn
i=1λi

T
p

and pΣn
i=1λi

T
and

denote them by Sij(xi, ej) and Sij(xi, ej) for all i, j.

(3) Compute the aggregated score S(xi) =
m
∑

j=1
Sij(xi, ej) and S(xi) =

m
∑

j=1
Sij(xi, ej).

(4) Compute S(xi) = S(xi) + S(xi).
(5) The best decision is xk = maxi S(xi).
(6) If k has more than one value, say, k1, k2, then we calculate the accuracy values Hij(xi, ej)

and Hij(xi, ej) for only those xk for which S(xk) are equal.

(7) Compute H(xk) =
m
∑

j=1
Hkj(xk, ej) +

m
∑

j=1
Hkj(xk, ej) for k = k1, k2.

(8) If H(xk1) > H(xk2), then we select xk1.
(9) If H(xk1) = H(xk2), then select any one of xk1 and xk2 .

Algorithm 2 is presented with respect to the foresets for the decision-making problem
in the following.

Now, the following example shows the decision-making approach step by step. This
example discusses the decision-making algorithm to make wiser decisions for a coach.

Algorithm 2 Respect to the foresets for the decision-making problem

(1) Compute the pessimistic multigranulation lower IF soft set approximation TΣn
i=1λi

T
p

and upper multigranulation IF soft set approximation TΣn
i=1λi

p
of an IF set T = 〈µT , γT〉

with respect to the foresets.
(2) Compute the score values for each of the entries of the TΣn

i=1λi
T
p

and TΣn
i=1λi

p
and

denote them by Sij(xi, ej) and Sij(xi, ej) for all i, j.

(3) Compute the aggregated score S(xi) =
m
∑

j=1
Sij(xi, ej) and S(xi) =

m
∑

j=1
Sij(xi, ej).

(4) Compute S(xi) = S(xi) + S(xi).
(5) The best decision is xk = maxi S(xi).
(6) If k has more than one value, say, k1, k2, then we calculate the accuracy values Hij(xi, ej)

and Hij(xi, ej) for only those xk for which S(xk) are equal.

(7) Compute H(xk) =
n
∑

j=1
Hkj(xk, ej) +

n
∑

j=1
Hkj(xk, ej) for k = k1, k2.

(8) If H(xk1) > H(xk2), then we select xk1.
(9) If H(xk1) = H(xk2), then select any one of xk1 and xk2 .
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Example 4. Suppose that the Pakistan Cricket Board (PCB) wants to select a head coach and
that there are 10 short-listed applicants, who are categorized in two groups: domestic and foreign.
The set W1 = {d1, d2, d3, d4, d5, d6} represents the applicants of the domestic group and W2 =
{ f1, f2, f3, f4} represents the applicants of the foreign group. Let A = {e1, e2, e3}, where {e1 =
batting experience, e2 = bowling experience, e3 = managerial expertise} be the set of parameters. Let
two different teams of interviewers analyze and compare these applicants for their competence.

We have λ1 : A→ P(W1×W2), which represents a comparison of the first-interviewer
team defined by

λ1(e1) = {(d1, f1), (d1, f2), (d2, f2), (d2, f3), (d4, f2), (d4, f3), (d5, f3), (d6, f1)};
λ1(e2) = {(d1, f1), (d2, f3), (d4, f1), (d5, f1), (d6, f2), (d6, f3)};

and λ1(e3) = {(d1, f1), (d2, f3), (d3, f1), (d3, f3), (d4, f1), (d5, f3), (d6, f1)}.

where λ1(e1) compares the batting experience of applicants, λ1(e2) compares the bowling
experience of applicants and λ1(e3) compares the managerial expertise of applicants.

Similarly, λ2 : A → P(W1 ×W2) represents a comparison of the second-interviewer
team defined by

λ2(e1) = {(d1, f1), (d1, f2), (d2, f3), (d3, f3), (d4, f2), (d5, f2), (d6, f3)};
λ2(e2) = {(d1, f1), (d3, f2), (d4, f1), (d6, f2)};

and λ2(e3) = {(d1, f1), (d1, f3), (d2, f2), (d2, f3), (d4, f1), (d5, f3), (d6, f1)}.

where λ2(e1) compares the batting experience of applicants, λ2(e2) compares the bowling
experience of applicants and λ2(e3) compares the managerial expertise of applicants.

From these comparisons, we obtain two soft relations from W1 to W2. Now, the aftersets

d1λ1(e1) = { f1, f2}, d2λ1(e1) = { f2, f3}, d3λ1(e1) = ∅,

d4λ1(e1) = { f2, f3}, d5λ1(e1) = { f3}, d6λ1(e1) = { f1} and

d1λ1(e2) = { f1}, d2λ1(e2) = { f3}, d3λ1(e2) = ∅,

d4λ1(e2) = { f1}, d5λ1(e2) = { f1}, d6λ1(e2) = { f2, f3}, and

d1λ1(e3) = { f1}, d2λ1(e3) = { f3}, d3λ1(e3) = { f1, f3},
d4λ1(e3) = { f1}, d5λ1(e3) = { f3}, d6λ1(e3) = { f1}, and

d1λ2(e1) = { f1, f2}, d2λ2(e1) = { f3}, d3λ2(e1) = { f3},
d4λ2(e1) = { f2}, d5λ2(e1) = { f2}, d6λ2(e1) = { f3} and

d1λ2(e2) = { f1}, d2λ2(e2) = ∅, d3λ2(e2) = { f2},
d4λ2(e2) = { f1}, d5λ2(e2) = ∅, d6λ2(e2) = { f2}, and

d1λ2(e3) = { f1, f3}, d2λ2(e3) = { f2, f3}, d3λ2(e3) = ∅,

d4λ2(e3) = { f1}, d5λ2(e3) = { f3}, d6λ2(e3) = { f1},

where diλj(e1) represents all those applicants of the domestic group whose batting expe-
rience is equal to di, diλj(e2) represents all those applicants of the domestic group whose
bowling experience is equal to di and diλj(e3) represents all those applicants of the domestic
group whose managerial expertise is equal to mi. In addition, foresets

λ1(e1) f1 = {d1, d6}, λ1(e1) f2 = {d1, d2, d4}, λ1(e1) f3 = {d2, d4, d5}, and

λ1(e2) f1 = {d1, d4, d5}, λ1(e2) f2 = {d6}, λ1(e2) f3 = {d2, d6}, and

λ1(e3) f1 = {d1, d3, d4, d6}, λ1(e3) f2 = ∅, λ1(e3) f3 = {d2, d3, d5}.
λ2(e1) f1 = {d1}, λ2(e1) f2 = {d1, d4, d5}, λ2(e1) f3 = {d2, d3, d6}, and

λ2(e2) f1 = {d1, d4}, λ2(e2) f2 = {d3, d6}, λ2(e2) f3 = ∅, and

λ2(e3) f1 = {d1, d4, d6}, λ2(e3) f2 = {d2}, λ1(e3) f3 = {d1, d2, d5}.
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where λj(e1) fi represents all those applicants of the foreign group whose batting experience
is equal to fi, λj(e2) fi represents all those applicants of the foreign group whose bowling
experience is equal to fi and λj(e3) fi represents all those applicants of the foreign group
whose managerial expertise is equal to fi.

Define T = 〈µT , γT〉 : W2 → [0, 1], which represents the preference of applicants given by PCB such that

µT( f1) = 0.2, µT( f2) = 0.1, µT( f3) = 0.5, and

γT( f1) = 0.7, γT( f2) = 0.9, γT( f3) = 0.4.

Define T1 =
〈
µT1 , γT1

〉
: W1 → [0, 1], which represents the preference of applicants given by PCB such that

µT1(d1) = 0.9, µT1(d2) = 0.6, µT1(d3) = 0.8, µT1(d4) = 0.3,

µT1(d5) = 0.9, µT1(d6) = 0.7 and

γT1(d1) = 0, γT1(d2) = 0.3, γT1(d3) = 0.1, γT1(d4) = 0.6,

γT1(d5) = 0.1, γT1(d6) = 0.2.

Therefore, the pessimistic multigranulation lower and upper approximations (with
respect to the aftersets, as well as with respect to the foresets) are

λ1 + λ2
T
p = (λ1 + λ2

µT
p , λ1 + λ2

γT
o ) (given in Table 10)

pλ1 + λ2
T

= (pλ1 + λ2
µT ,p λ1 + λ2

γT ) (given in Table 11), where

Table 10. Pessimistic multigranulation lower approximations of T.

λ1 + λ2
µT
p , λ1 + λ2

γT
p d1 d2 d3 d4 d5 d6

λ1 + λ2
µT
p (e1), λ1 + λ2

γT
p (e1) (0.1, 0.9) (1, 0.4) (0.1, 0.9) (0.1, 0.9) (1, 0.9) (1, 0.7)

λ1 + λ2
µT
p (e2), λ1 + λ2

γT
p (e2) (0.2, 0.7) (1, 0.4) (1, 0.9) (0.2, 0.7) (1, 0.4) (0.1, 0.4)

λ1 + λ2
µT
p (e3), λ1 + λ2

γT
p (e3) (0.2, 0.7) (0.5, 0.9) (1, 0.7) (0.2, 0.7) (0.5, 0.4) (0.2, 0.7)

Table 10 shows the exact degree of the competency of the applicant di to T in their
batting experience, bowling experience and managerial expertise.

Table 11. Pessimistic multigranulation upper approximations of T.

pλ1 + λ2
µT ,p λ1 + λ2

γT d1 d2 d3 d4 d5 d6

pλ1 + λ2
µT (e1),p λ1 + λ2

γT (e1) (0.2, 0.7) (0.5, 0.4) (0.5, 1) (0.5, 0.9) (0.5, 1) (0.5, 1)

pλ1 + λ2
µT (e2),p λ1 + λ2

γT (e2) (0.2, 0.7) (0.5, 1) (0.1, 1) (0.2, 0.7) (0.2, 1) (0.5, 0.9)

pλ1 + λ2
µT (e3),p λ1 + λ2

γT (e3) (0.5, 0.7) (0.5, 0.4) (0.5, 1) (0.2, 0.7) (0.5, 0.4) (0.2, 0.7)

Table 11 shows the possible degree of competency of applicant di to T in their batting
experience, bowling experience and managerial expertise.

It is shown in Table 12 that S(d5) = 3.1 is the maximum, so PCB will select applicant d5.
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Table 12. Values of score function of applicants.

Sij(e1) Sij(e2) Sij(e3) Sij(e1) Sij(e2) Sij(e3) S(xi) S(xi) S(xi)

d1 −0.8 −0.5 −0.5 −0.5 −0.5 −0.2 −1.8 −1.2 −3.0

d2 0.6 0.6 −0.4 0.1 −0.5 0.1 0.8 −0.3 0.5

d3 −0.8 0.1 0.3 0.4 −0.9 0.4 −0.4 −0.1 −0.5

d4 −0.8 −0.5 −0.5 −0.4 −0.5 −0.5 −1.8 −1.4 −3.2

d5 0.8 0.6 0.5 −0.5 −0.8 0.1 1.9 1.2 3.1

d6 0.3 −0.3 −0.5 −0.5 −0.4 −0.5 −0.5 −1.4 −1.9

T1 λ1 + λ2 p = (µT1 λ1 + λ2 p,γT1 λ1 + λ2 p) (given in Table 13)

T1 λ1 + λ2
p

= (µT1 λ1 + λ2
p
,γT1 λ1 + λ2

p
) (given in Table 14), where

Table 13. Pessimistic multigranulation lower approximations of T1.

µT1 λ1 + λ2 p,γT1 λ1 + λ2 p f1 f2 f3

µT1 λ1 + λ2 p(e1),
γT1 λ1 + λ2 p(e1) (0.9, 0.0) (0.9, 0.0) (0.9, 0.3)

µT1 λ1 + λ2 p(e2),γT1 λ1 + λ2 p(e2) (0.9, 0.0) (0.8, 0.2) (0.7, 1)

µT1 λ1 + λ2 p(e3),γT1 λ1 + λ2 p(e3) (0.9, 0.0) (0.6, 1) (0.9, 0.1)

Table 13 shows the exact degree of the competency of the applicant fi to T1 in their
batting experience, bowling experience and managerial expertise.

Table 14. Pessimistic multigranulation upper approximations of T1.

µT1 λ1 + λ2
p
,γT1 λ1 + λ2

p
f1 f2 f3

µT1 λ1 + λ2
p
(e1),

γT1 λ1 + λ2
p
(e1) (0.9, 0.2) (0.3, 0.6) (0.6, 0.6)

µT1 λ1 + λ2
p
(e2),γT1 λ1 + λ2

p
(e2) (0.3, 0.6) (0.7, 0.2) (0.0, 0.3)

µT1 λ1 + λ2
p
(e3),γT1 λ1 + λ2

p
(e3) (0.3, 0.6) (0.0, 0.3) (0.6, 0.3)

Table 14 shows the possible degree of competency of applicant fi to T1 in their batting
experience, bowling experience and managerial expertise.

It is shown in Table 15 that S( f1) = 2.8 is the maximum, so PCB will select applicant f1.

Table 15. Values of score function of applicants.

Sij(e1) Sij(e2) Sij(e3) Sij(e1) Sij(e2) Sij(e3) S(xi) S(xi) S(xi)

f1 0.9 0.9 0.9 0.7 −0.3 −0.3 2.7 0.1 2.8

f2 0.9 0.9 −0.4 −0.3 0.5 −0.3 1.4 −0.1 1.3

f3 0.6 −0.3 0.8 0.0 −0.3 0.3 1.1 0.0 1.4

6. Comparison

The MGRS of IFS based on multi soft relations is needed in many real world problems
because it is an admired reality that a collective decision based on multiple experts’ opinions
is wiser than a single expert’s opinion. If we discuss the probability RS model [51], it is
clear that there are three problems needs to be managed. Firstly, the interpretations and
calculations of the thresholds are very poor. Secondly, there is a lack of an estimation of the
conditional probability. Thirdly, there is no valid interpretation of the positive, negative and
boundary region with probability thresholds. To solve these problems, a decision theoretic
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RS model [52] has been proposed. Then, a MGRS model in terms of equivalence relations
has been proposed, which is a better model to deal with incompleteness and vagueness.
However, we still had problems due to the equivalence relation. It was necessary to relax
the conditions of the equivalence relation. Shabir et al. [40] introduced a MGRS model
with crisp sets in terms of soft relations. After that, they proposed the OMGFRS using a FS
instead of a crisp set [50]. Recently, Shabir et al. [41] gave the extension of the OMGFRS
model of an IFS and presented the OMGIFRS model in terms of soft relations to prepare
a wiser decision in decision-making problems. An IFS is better than a crisp set or a FS
to discuss the uncertainty. In this paper, we investigate the pessimistic MGRS of the IFS
in terms of soft binary relations. Our proposed model, the PMGIFRS, is more capable in
dealing with uncertainty because of the presence of the non-membership degree in the
IFS. Furthermore, soft relations have more applications than crisp relations in managing
uncertainty due to its parameterization of binary relations. In our proposed PMGIFRS
model, we used an IFS instead of a crisp set. A crisp set does not discuss the uncertainty
and incompleteness in our daily life problems. However, the IFS discusses the uncertainty,
vagueness and incompleteness with the concept of the degree of membership, degree of
non-membership and degree of hesitance. In comparison with IF formalism and non-
IF formalism, we can see in our proposed model that IF formalism is better than non
IF formalism.

7. Conclusions

This article presents the PMGRS model of an IFS in terms of a soft relation over
dual universes. Firstly, we described the MGRS in terms of two soft relations using IFSs
regarding the aftersets and foresets, and the resulting sets are two IFSSs regarding the
aftersets and foresets. After that, we studied some algebraic properties fo the proposed
PMGRS model. Then, we generalized this MGRS model to the granulation roughness of
an IFS in terms of multi soft relations and discussed some of its properties. At the end,
an example is presented that illustrates the importance and significance of the proposed
decision algorithm. In future, the OMGRIFS and PMGRIFS will be discussed in terms of
extended forms of a FS and IFS. Our proposed model, the PMGIFRS, has an advantage
over other existing models, which is that we can make an approximation of an IFS of a
universe in some other universe and can make decisions based on each parameter. These
models may be studied in terms of pythagorean FSs, basic uncertain information SSs and
liguistic Z-number FSSs.
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Abbreviations

Acronyms Representations
FSs Fuzzy sets
IFSs Intuitionistic fuzzy sets
RSs Rough sets
SSs Soft sets
FSSs Fuzzy soft sets
IFSSs Intuitionistic fuzzy soft sets
SRSs Soft rough sets
IFRSs Intuitionistic fuzzy rough sets
FRSs Fuzzy rough sets
RFSs Rough fuzzy sets
MGRS Multigranulation rough set
OMGRS Optimistic multigranulation rough set
PMGRS Pessimistic multigranulation rough set
IFMGRS Intuitionistic fuzzy multigranulation rough set
MCGDM Multi-criteria group decision making
OMGFRS Optimistic multigranulation fuzzy rough set
OMGIFRS Optimistic multigranulation intuitionistic fuzzy rough set
IFN Intuitionistic fuzzy number
IFV Intuitionistic fuzzy value
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