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Abstract: This paper elaborates the different methods to generate normalized weight vector in multi-
criteria decision-making where the given information of both criteria and inputs are uncertain and
can be expressed by basic uncertain information. Some general weight allocation paradigms are
proposed in view of their convenience in expression. In multi-criteria decision-making, the given
importance for each considered criterion may have different extents of uncertainty. Accordingly, we
propose some special induced weight-allocation methods. The inputs can be also associated with
varying uncertainty extents, and then we develop several induced weight-generation methods for
consideration. In addition, we present some suggested and prescriptive weight allocation rules and
analyze their reasonability.

Keywords: aggregation operators; basic uncertain information; bipolar preference; multi-criteria
decision-making; induced ordered weighted averaging; weight allocation

1. Introduction

The consideration of relative importance between the concerned criteria is of great
significance in most of the various decision environments and decision theories, including
bounded rationality [1], fuzzy group decision-making [2], order-based decision mod-
els [3], multi-criteria decision-making (MCDM) [4], non-additive-measure-based decision-
making [5,6], preference involved decision-making [7], random and stochastic decision-
making [8], and interactive decision-making [9], and the normalized weight function/vector
thus serves as the very suitable embodiment of the relative importance. There are numer-
ous methods to generate normalized weight function, such as the method considering the
roles of eigen things in the analytic hierarchy process (AHP) [10] with a myriad of applica-
tions [11,12], and the method used in ordered weighted averaging (OWA) operator [13]
with some of its extensions [14–17].

Both methods adopted in AHP and OWA contain subjectivity and objectivity. Note
that the involvement of subjectivity in general does not mean arbitrariness or lack of
seriousness; on the contrary, subjectivity ordinarily is directly linked to working experiences
or is indirectly derived from the expertise of decision makers [14].

Many different types of preferences are often embedded or embodied in numerous
decision-making and aggregation problems [18–22]. Yager proposed to generate weight
function by using inducing information and bi-polar preference [15,16]. Firstly, the inducing
information should be embodied by a function/vector that exactly corresponds to the input
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function/vector. For example, the inducing information can be different time points when
the input values are obtained, the certainty extents to which the input values are thought
to be convincing, or the magnitudes of the input values in their own right. Moreover,
the applied bipolar preference generally in its practical meaning should pertain to the
concerned inducing information. For example, if the inducing information is about time
points, then the involved bipolar preference could become newer–older preference; if it
is about certainty extents, then the bipolar preference should become more–less certainty
preference or indifference–certainty preference; and if it is about magnitudes, then the
bipolar preference should become optimism–pessimism preference. Lastly, the weight
allocation can be conducted by a number of techniques, and later we will use a quantifier-
based method that provides convenience in related discussions.

Uncertainties are pervasive in practical MCDM problems, and recently researchers
proposed an uncertainty paradigm called basic uncertain information (BUI) [23,24] to
effectively and conveniently tackle a wide variety of uncertainties involved in decision-
making and evaluation problems. Since there is a paucity of literature dealing with and
discussing information-fusion-based MCDM in a BUI environment, this work will mainly
focus on the certainty degree as the inducing information in MCDM in this new type of
generalized and formalized uncertain decision environment. When concerned with a mere
certainty inducing variable, the problem will not be complex; this is because once the
extent of indifference–certainty preference is determined, we can easily perform quantifier
based weight allocation. However, in MCDM problems frequently contain different factors
such as different experts consulted, the different extents of certainties involved for both
inputs and importance of criteria, the combination of different magnitudes and extents
of certainties for both inputs and importance of criteria, and the necessity of considering
those decision elements in a comprehensive or merging sense.

That is to say, in MCDM problems where much more complexities may arise, decision
makers in general should generate, consider, and handle multiple and complex inducing
information rather than some simple and single form. Hence, this article, in detail, will
discuss and provide some merging selections and special merging techniques of inducing
information, together with some paradigmatic or prescriptive decision-making suggestions
for decision makers to refer to.

Note that in MCDM problems with BUI environment, there are many restrictions on
the selections of the methods to merge different inducing information and thus make the
problem more complex. For example, if the certainty is only associated with a normalized
weight vector as a whole, then it cannot be merged inward with any entry of the normalized
weight vector, but if the different certainties are specifically linked with the different entries
of a non-normalized weight vector in a pointwise way, then the certainty could be merged
with the entries of the non-normalized weight vector. Clearly, the existing few traditional
methods cannot work because none of them have adequately considered the involved
numerical uncertainties.

Some theoretical advantages and contributions of this study lie in that it will make
it clearer how to reasonably consider several different types of inducing information in
MCDM problems and selectively merge some of them in order to generate desirable weight
functions with bipolar preferences. The study will help decision makers to build and
select suitable, automatic and relatively objective weighted evaluation models with given
information and under their own preferences.

The remainder of this article is organized as follows. In Section 2, we majorly review
some basic concepts and propose a general weight allocation paradigm with some extended
instances. Section 3 discusses the differences in generating a normalized weight vector with
given importance information, which has two different uncertain forms, and then proposes
some detailed generating methods. In Section 4, we analyze some different methods and
orderings to generate normalized weight vector from inputs of BUI. Section 5 concludes
and comments on this study.
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2. Weight-Allocation Methods and Aggregation Based on Inducing Variable

Without loss of generality, the real number input with n individuals is represented as
a function/vector x : {1, . . . , n} → [0, 1] and the set of all such input functions is conven-
tionally denoted by [0, 1]n. Given an n-nary input function x, in order to carry out some
further aggregation we need to have a normalized weight function/vector of dimension
n w : {1, . . . , n} → [0, 1] (∑n

i=1 w(i) = 1), and each of the values w(i) will be associated
with the input value x(i). The space of all normalized weight functions of dimension n is
denoted byW (n).

In this study, we will often consider a set of n criteria, which can be used to compre-
hensively evaluate some alternatives or options under consideration in MCDM. Hence,
the relative importance of those n criteria will be expressed as a normalized weight func-
tion of dimension n, w ∈ W (n). However, we will also be faced with the concept of
“importance” of (each) criterion, and it will be expressed by a weight function/vector
W : {1, . . . , n} → [0, 1] , which is not necessarily normalized and should be distinguished
from the concept of “relative importance”.

With some given normalized weight vector w, we can use it to perform a preference-
involved aggregation such as weighted average (also known as weighted mean) and
geometrical weighted average (also known as geometrical weighted mean). Whether
or not the weight vector is derived from OWA aggregation, we can always express the
corresponding (geometrical) OWA operators by (geometrical) weighted mean [25].

Definition 1. The weighted average operator with weight function w : {1, . . . , n} → [0, 1] is
defined as the mapping WAw : [0, 1]n → [0, 1] , such that

WAw(x) =
n

∑
i=1

w(i)x(i), (1)

Definition 2. The geometrical weighted average operator with weight function w : {1, . . . , n} → [0, 1]
is defined as the mapping GWAw : [0, 1]n → [0, 1] , such that

GWAw(x) =
n

∏
i=1

x(i)w(i), (2)

The input can be also formed by m individuals, each of which is a normalized weight

function of dimension n. The space of all such input is denoted by
(
W (n)

)m
. With a

weight function w ∈ W (m), we can define the average of the collection of input functions

(uj)
m
j=1 ∈

(
W (n)

)m
by using a mapping WAWw :

(
W (n)

)m
→W (n) , called Weighted

Average for Weights (WAW), such that

WAWw

(
(uj)

m
j=1

)
=

m

∑
j=1

w(j)·uj, (3)

Note that since each uj is a normalized weight function of dimension n, then
m
∑

j=1
w(j)·uj

is still a normalized weight function of the same dimension n.
To determine a normalized weight function with certain inducing information, we

will use the method originally proposed by Yager in the induced ordered weighted average
(IOWA) operator [15,16]. The original method has not perfectly considered the effect of tied
values in inducing information in the actual weight allocation process. Jin et al. [26] have
further developed a three-set expression to accurately and strictly deal with the involved
weight allocation problem.
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In this study, a piece of inducing information (also called inducing function) with
dimension n is expressed by a function c : {1, . . . , n} → [0, 1] , which generally corresponds
to the considered n criteria in MCDM or the input function of dimension n. With a piece
of inducing information and a well-defined function called Regular Increasing Monotone
(RIM) quantifier [16], we can generate a normalized weight function. A RIM quanti-
fier Q : [0, 1]→ [0, 1] is non-decreasing and has the boundary conditions Q(0) = 0 and
Q(1) = 1. We denote by Q the space of all RIM quantifier. In addition, the orness of
any RIM quantifier Q is defined by orness(Q) =

∫ 1
0 Q(t)dt, whose value indicates the

preference extent in a general way [16].
The weight-generating method from the given inducing function c and RIM quantifier

Q to obtain a normalized weight function w ∈ W (n) can be rephrased and revamped by
the following formula:

w(i) =
Q((n− |Li|)/n)−Q(|Ui|/n)

|Ei|
, (4)

where Li = {q ∈ {1, . . . , n} : c(q) < c(i)}, Ui = {q ∈ {1, . . . , n} : c(q) > c(i)},
Ei = {q ∈ {1, . . . , n} : c(q) = c(i)}, and |S| represents the cardinality of any finite set S.

In this study, for the sake of convenience, we can use a straightforward and strict way
to express the weight allocation with given information, a function/vector of dimension n,
c : {1, . . . , n} → [0, 1] , and a RIM quantifier Q:

G(n) : [0, 1]n ×Q → W (n), (5)

and
w = G(n)(c, Q), (6)

The mapping G(n) in Equation (5) is called the general weight allocation formulation and
its value w = G(n)(c, Q) on given c and Q is called a weight allocation paradigm.

Recall that the basic uncertain information (BUI) [23,24] is a recently proposed uncer-
tainty concept that can generalize a lot of different types of uncertainties such as fuzzy
information [27], intuitionistic fuzzy information [28–31], probability information, interval
information, hesitant information [32–35], and some other types of uncertain informa-
tion [36]. From some methods or formulations, those different types of uncertain informa-
tion may be indirectly transformed into BUI (which will not be discussed further in this
work). Another feature of BUI lies in the fact that the certainty/uncertainty extents may also
be communicated or expressed directly by experts. BUI can conveniently express the extent
of uncertainty in decision-making, which helps one to make a reasonable evaluation and
make wise decisions in uncertainty environment. Recently, apart from the authors of this
work, other researchers also paid attention to BUI and developed its related theories, new
concepts, and applications [37–43]. For example, Chen et al. [37] proposed the Improved
Basic Uncertain Linguistic Information (IBULI) as a new extension of BUI, and Tao et al. [38]
proposed basic uncertain information soft set with its application.

A BUI is a pair < x, c > in which x ∈ [0, 1] is the mainly concerned data (also called
value element to distinguish it from the certainty element in this work), and c ∈ [0, 1]
is its associated certainty degree (or called certainty element), generally representing the
extent to which x takes exactly its value or the degree to which some involved decision
makers believe it takes that value. The originally defined BUI has a very simple pair
form, and actually it can also assume different types of extended forms. For example,
when x : {1, . . . , n} → [0, 1] (or W : {1, . . . , n} → [0, 1] ) and c : {1, . . . , n} → [0, 1] are two
functions, the form < x(i), c(i) > (or < W(i), c(i) >) (i ∈ {1, . . . , n}) can be also easily
recognized as a BUI pair. Sometimes, the value element wj in BUI < wj, cj > is a normalized
weight vector wj ∈ W (n), so then cj should be recognized as the certainty degree to the
whole vector wj rather than one of its entry wj(i).
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We can perform weight allocations according to Equations (5) and (6) with some
different types of BUI inputs, as discussed in the preceding paragraph. For example,
when we are given a collection of BUI pairs {< xi, ci >}n

i=1 (xi, ci ∈ [0, 1]), we can use
Equation (6) to obtain a normalized weight function for further information aggregation
w = G(n)(c, Q) in which c(i) = ci. When we are given < W(i), c′(i) > (i ∈ {1, . . . , n}), then
we have w = G(n)(c, Q), in which c(i) = W(i). When we are with

{
< wj, cj >

}m
j=1 where

wj ∈ W (n), we consequently have w = G(m)(c, Q) in which c ∈ [0, 1]m and c(i) = ci.

3. Generating Relative Importance from Given Importance Information

In MCDM problems, probably the most essential task is to determine the relative
importance of the considered multiple criteria. In general, a widely accepted method
is to allocate and form a normalized weight function w ∈ W (n) to embody the relative
importance of n criteria. In general, it is much easier to assign each single importance
rate to each criterion than to assign a whole piece of normalized weight vector to those all
criteria altogether. Hence, the weight-allocation methods of this section will begin with
some simple form that involves a function/vector W : {1, . . . , n} → [0, 1] that is, in general,
not normalized. We assume W : {1, . . . , n} → [0, 1] corresponds well to n criteria {Ci}n

i=1,
so that W(i) ∈ [0, 1] is the importance extent of criterion Ci, i.e., the larger W(i) the more
important the criterion Ci in the comprehensive evaluation.

Next, in order to generate a normalized weight function, we consider two methods
that are simple but effective in some situations. We suppose in such methods the decision
maker carries out the whole weight allocation process by himself/herself so that it is
required that the importance of criteria W will be judged by the decision maker alone.

The first method is more direct and even somewhat simplistic. If ∑n
i=1 W(i) 6= 0,

then we can easily have a normalized weight function w by w(i) = W(i)
∑n

k=1 W(k) , and if

∑n
i=1 W(i) = 0, then set w(i) = 1/n by Laplace decision criterion. Alternatively, we may

preset a number r > 0 and generate w by w(i) = W(i)+r
nr+∑n

k=1 W(k) , in which case whether or not

∑n
i=1 W(i) 6= 0 will no longer matter.

The second method is to perform IOWA weight allocation with paradigm w = G(n)(W, Q),
where Q is a RIM quantifier. In this case, we need orness(Q) ≥ 0.5 because it can adequately
represent a preference over the criteria with higher importance values W(i) rather than
over those with lower importance values.

Next, we consider the other two situations where multiple experts will be invited
to join the determination of the relative importance of criteria. Assume that m experts{

Ej
}m

j=1 have been invited to offer or suggest their own different opinions about the impor-

tance of those n criteria that are represented by m weight function Wj : {1, . . . , n} → [0, 1]
(j ∈ {1, . . . , m}). With such initial importance functions, there exist two types of uncertainty
involvement about the opinions of those experts that can be represented by two different
extensions of BUI below.

The first one is to one-to-one assign individual certainty degree cj(i) to each weight
value Wj(i), and cj(i) may vary with respect to both i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
Thus, for different experts, he/she may offer different types of importance information
Wj : {1, . . . , n} → [0, 1] and different certainty functions cj : {1, . . . , n} → [0, 1] . The above
initial information provided by those m experts thus can be formulated by (Wj, cj)

m
j=1, seen

as a collection of m extended BUI called Varying Certainties for Weight Values (VCWV).
The second one is to assign a same certainty degree dj to the importance information

Wj as a whole. The formulation for this type of uncertainty is by (Wj, dj)
m
j=1, with dj ∈ [0, 1]

being certainty degrees (real values) and called Constant Certainty for Weight Function
(CCWF). Note that dj does not vary according to i ∈ {1, . . . , n} but may vary according to
j ∈ {1, . . . , m}.

The above-mentioned two types of uncertainty involved importance information
and contain significant differences in weight allocation. For the first type, we can use
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an aggregation operator [26,44] f : [0, 1]2 → [0, 1] to melt Wj(i) with cj(i) and obtain the
intermediate index f (Wj(i), cj(i)) (j ∈ {1, . . . , m}, i ∈ {1, . . . , n}) as the intermediate
information to help further determine weight allocation; in addition, for a fixed i, cj(i)
can be used as inducing information because generally the values of Wj(i) assigned with
some higher certainties cj(i) will be more convincing to the decision maker. For the second
type, however, we cannot consider any forms of melting Wj(i) with dj, and we will allocate
weights merely according to the certainty information (dj)

m
j=1 ∈ [0, 1]m as the inducing

information; in addition, note that dj cannot be used as inducing information for any single
Wj(i) with any fixed i. This is because we have regarded Wj as an independent whole,
which has as its certainty dj.

The major difference as mentioned above will then lead to differences in the detailed
weights allocating processes. We next present two weight-allocation methods for VCWV
and one method for CCWF.

3.1. Weight Allocation for VCWV—Method 1

First, select a binary aggregation operator f : [0, 1]2 → [0, 1] to obtain mn values
f (Wj(i), cj(i)) (j ∈ {1, . . . , m}, i ∈ {1, . . . , n}). Since any aggregation operator is non-
decreasing, this monotonicity ensures that both larger importance, Wj(i), and larger cer-
tainty of it, cj(i), will contribute to a larger relative importance of criterion Ci, and vice
versa. Then, a final normalized weight function w ∈ W (n) can be obtained by

w = G(n)(c, Q)

where c(i) = 1
m ∑m

j=1 f (Wj(i), cj(i)) and Q is a RIM quantifier with orness(Q) ≥ 0.5.

3.2. Weight Allocation for VCWV—Method 2

First, for each i ∈ {1, . . . , n} obtain a normalized weight function vi ∈ W (m) by
vi = G(m)(bi, Q), where bi(j) = cj(i) and Q a RIM quantifier with orness(Q) ≥ 0.5. Then,
for each i ∈ {1, . . . , n}, generate a BUI pair < ∑m

j=1 vi(j)Wj(i), ∑m
j=1 vi(j)cj(i) >. Finally,

obtain a normalized weight function w ∈ W (n) by

w = G(n)(c, Q)

where c(i) = ∑m
j=1 vi(j)cj(i) and Q is a RIM quantifier with orness(Q) ≥ 0.5. Note that

the obtained w will be used (if necessary) to weight and aggregate values ∑m
j=1 vi(j)Wj(i)

(i ∈ {1, . . . , n}).

Example 1. We show a simple numerical example to generate a weight function with respect to the
above weight allocation for VCWV—Method 2. The example is also representative, so after seeing
this the other different methods introduced in this work will not be difficult to understand.

Assume n = 4 and m = 3, and
W1 = (0.5, 0.7, 0.3, 0.9), W2 = (0.8, 0.2, 0.6, 1), W3 = (0.9, 0.7, 0.4, 0.8),
c1 = (0.7, 0.9, 0.6, 0.4), c2 = (0.5, 1, 0.5, 0.8), c3 = (1, 0.9, 0.8, 0.3).
Moreover, suppose Q satisfies Q(t) = 1− (1− t)2 with orness(Q) =

∫ 1
0 Q(t)dt =

2/3 ≥ 0.5.
Firstly, we calculate
v1 = G(3)(b1, Q) = G(3)((0.7, 0.5, 1), Q) = (3/9, 1/9, 5/9),
v2 = G(3)(b2, Q) = G(3)((0.9, 1, 0.9), Q) = (2/9, 5/9, 2/9),
v3 = G(3)(b3, Q) = G(3)((0.6, 0.5, 0.8), Q) = (3/9, 1/9, 5/9),
v4 = G(3)(b4, Q) = G(3)((0.4, 0.8, 0.3), Q) = (3/9, 5/9, 1/9).
Then, by taking weighted averages, we obtain, respectively,
c(1) = ∑3

j=1 v1(j)cj(1) = (0.7)(3/9) + (0.5)(1/9) + (1)(5/9) = 0.844,
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c(2) = ∑3
j=1 v2(j)cj(2) = 0.956,

c(3) = ∑3
j=1 v3(j)cj(3) = 0.7,

c(4) = ∑3
j=1 v4(j)cj(4) = 0.611.

Consequently,
w = G(4)(c, Q) = G(4)((0.844, 0.956, 0.7, 0.611), Q) = (5/16, 7/16, 3/16, 1/16)
We next present a weight-allocation method for CCWF that is relatively simpler.
First, obtain a normalized weight function v ∈ W (m) by v = G(m)(c, Q) with c(j) = dj.

Then, take the weighted average of Wj, j ∈ {1, . . . , m}, by using v, and obtain
W : [0, 1]n → [0, 1] such that W(i) = ∑m

j=1 v(j)Wj(i). Finally, normalize W and obtain

a final normalized weight function w ∈ W (n) by w(i) = W(i)+r
nr+∑n

k=1 W(k) , where r > 0 is a
preset real value.

4. Generating Relative Importance from Inputs of BUI

In this section, we discuss some methods to generate normalized weight function from
BUI inputs in MCDM.

We still consider the same decision environment involving n criteria and m experts.
For any alternative under evaluation and comparison with others, we assume for the
sake of argument that it has been evaluated for each criterion Ci (i ∈ {1, . . . , n}) by
BUI (< xij, cij >)m

j=1, where < xij, cij > is provided by Expert j and xij is the evalua-
tion value regarding the criterion Ci, while cij is the certainty extent for xij. Suppose
the relative importance of those m experts invited is represented as a normalized weight
vector u ∈ W (m), then we can firstly obtain an intermediate aggregation result from
BUI (< xij, cij >)m

j=1. In detail, for each criterion Ci (i ∈ {1, . . . , n}), we take < xi, ci >=

< ∑m
j=1 u(j)xij, ∑m

j=1 u(j)cij >. (Actually, the weights function u can be further generalized
as a fuzzy measure µ, and we can take the corresponding fuzzy integrals [45,46] as the
intermediate BUI results, which, though more general, will not be detailed in this work).

Then, with such obtained BUI vector (< xi, ci >)n
i=1 we will next propose some differ-

ent methods to generate a normalized weight function w ∈ W (n) for the n criteria.

4.1. Method 1 Value Induced Approach

With (< xi, ci >)n
i=1, we directly obtain the desired normalized weights function

w ∈ W (n) by
w = G(n)(x, Q)

where x(i) = xi and Q is a RIM quantifier with orness(Q) ∈ [0, 1]. We note that here
the RIM quantifier Q is allowed to take any value between 0 and 1, the two extreme
preferences. This is because for the input data, decision maker’s optimism–pessimism
bipolar preference should be able to cover all the values of preference from the extreme
optimism to the extreme pessimism.

4.2. Method 2 Certainty Induced Approach

With (< xi, ci >)n
i=1, we directly obtain the desired normalized weights function

w ∈ W (n) by
w = G(n)(c, Q)

where c(i) = ci and Q is a RIM quantifier with orness(Q) ≥ 0.5. We emphasize that here
the RIM quantifier is restricted so that it has its orness not less than 0.5 because, in general,
we always prefer some data with higher certainties to those with lower certainties. Note
that this is different from the situation in Method 1, and the preference here is represented
by indifference–certainty-inclined bipolar preference.
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4.3. Method 3 Value and Certainty Induced Approach

Actually, the bipolar preferences of optimism–pessimism and indifference–certainty
can be melted together and form some new single inducing information. Below, we consider
three methods. The first two methods concern the convex combination with the general
form A(x, c) = λx + (1− λ)c. It can be considered as part of the effect of data elements and
part of the effect of certainty elements according to a given extent λ ∈ [0, 1] associated with
data elements. The last method will use aggregation function to merge data and certainty
to generate a new inducing formation.

4.4. Method 3.1 Combination-Inducing

With (< xi, ci >)n
i=1, we generate a normalized weights function w ∈ W (n) by firstly

performing combination and secondly taking weight allocation:

G(n)((λxi + (1− λ)ci)
n
i=1, Q

)
, (7)

where Q is a given RIM quantifier with orness(Q) ∈ [0, 1] λ is the extent to which we
consider the effect of data elements in BUI, and 1− λ is the complement extent for us to
consider the effect of certainty elements.

4.5. Method 3.2 Inducing-Combination

With (< xi, ci >)n
i=1, we generate a normalized weights function w ∈ W (n) by firstly

taking weight allocations and secondly performing combination:

λG(n)(x, Q1) + (1− λ)G(n)(c, Q2), (8)

where Q1 is a given RIM quantifier with orness(Q1) ∈ [0, 1], Q2 another given RIM quanti-
fier with orness(Q2) ∈ [0.5, 1], and λ has the same meaning as in Method 3.1.

4.6. Method 3.3 Aggregation-Function-Induced Method

With (< xi, ci >)n
i=1, we generate a normalized weight function w ∈ W (n) by firstly

using some binary aggregation functions that are unnecessarily symmetrical and then
considering the aggregated values as the inducing information. By a binary aggregation
function, here we mean the mapping A : [0, 1]2 → [0, 1] such that (i) A(0, 0) = 0 and
A(1, 1) = 1, (ii) A(x1, c1) ≤ A(x2, c2) whenever x1 ≤ x2 and c1 ≤ c2. If it is symmetrical,
we mean A(x, c) = A(c, x) for any x, c ∈ [0, 1]. Since the x is the value element and
c certainty element in BUI, then we do not require the aggregation function to satisfy
symmetricity. Hence, we can adopt many different types of binary non-symmetrical
aggregation functions. For example, we could select

A(x, c) = x1/c, (9)

Or take the convex combination form (as in Method 3.1)

A(x, c) = λx + (1− λ)c, (10)

Alternatively, we can take the geometrical form of combination

A(x, c) = xλc1−λ, (11)

Then, we can obtain a final normalized weight function w ∈ W (n), such that

w = G(n)(c, Q)

where Q is a given RIM quantifier with orness(Q) ∈ [0, 1] and c satisfies c(i) = A(xi, ci)
(i ∈ {1, . . . , n}).
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5. Conclusions

In multi-criteria decision-making, the relative importance among the involved criteria
can be represented by a normalized weight vector. This work firstly proposed a general
weight allocation paradigm for the sake of its convenience in expression and then some
suggested extensions and weight-determination methods were clearly expressed and
formulated. The basic tool for use was mainly based on the three-set expression of Yager’s
inducing-weight-allocation method.

In uncertainty environments, when each of the criteria has been offered a single
evaluation for its absolute importance, we provided two types of weight-allocation methods
accordingly. This is because the uncertainties can be either attached to each individual
criterion, or to all the criteria as a whole provided by experts.

When the inputs have uncertainties, multiple experts’ involvement will add more
complexity to the whole weight-allocation problem. Then, we proposed several different
weight-determination methods by proposing different orderings and melting approaches
for data and certainty to be handled. The proposed weight-determination methods provide
some reasonable and conducive suggestions for practitioners and decision makers in
multi-criteria decision-making.

The main limitation of the proposed methods is that the determination methods of
those numerical uncertainties should be further studied and devised if we do not want to
use descriptive statistics, which in general is costly in terms of resources. Together with the
proposed analytic evaluation models, in future studies we will try to devise some automatic
methods and mechanisms to heuristically derive numerical certainties information from
the few involved human decision makers.
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