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Abstract: The cross section is the basic data for building 3D geological models. It is inefficient to
draw a large number of cross sections to build an accurate model. This paper reports the use of multi-
source and heterogeneous geological data, such as geological maps, gravity and aeromagnetic data,
by a conditional generative adversarial network (CGAN) and implements an intelligent generation
method of cross sections to overcome the problem of inefficient modeling data based on CGAN.
Intelligent generation of cross sections and 3D geological modeling are carried out in three different
areas in Liaoning Province. The results show that: (a) the accuracy of the proposed method is higher
than the GAN and Variational AutoEncoder (VAE) models, achieving 87%, 45% and 68%, respectively;
(b) the 3D geological model constructed by the generated cross sections in our study is consistent
with manual creation in terms of stratum continuity and thickness. This study suggests that the
proposed method is significant for surmounting the difficulty in data processing involved in regional
3D geological modeling.

Keywords: generation of cross section; conditional generation adversarial network; 3D geological
model; arithmetic mean deviation of section; coincidence rate of point coordinates

MSC: 68T01

1. Introduction

Since its convenience as a three-dimensional system [1–3], 3D geological modeling has
been a hot issue for the prospecting and engineering fields [2–6]. The methods for establish-
ing 3D geological models differ based on the modeling data [4,5,7–9], such as GIS-based [6],
multi-source data-based [9], borehole-based [8,10], section-based [4,7,11,12] or geophysical
data-based [3]. Section maps, integrating the experience of geologists [11,12], are widely
used in the areas with sparse borehole data due to their relatively low-cost [13–15], playing
an important role in the modeling. However, the drawing of cross sections, heavily relies
on the experiences of geological expertise [13,16], limiting its quantity in the modeling
dataset [17,18], it is necessary to determine the stratum thickness or rock mass morphology
through gravity and aeromagnetic inversion [3,19,20]. This process is often inefficient and
imposes a heavy workload [21,22].

To improve the efficiency of drawing cross sections, Ming et al. [23] developed GSIS
software based on the core method of 3D geological multi-body modeling from netty cross
sections with topology to interpolate the cross sections and build a 3D geological model
automatically. Although this study can generate interpolated sections, the influence of
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geological factors is not considered, and the generated sections lack geological constraints.
Automatic section generation remains a challenge, despite considerable progress [24].

With the development of artificial intelligence (AI) [25,26], deep learning methods have
been demonstrated to be an effective path for inversing underground geological bodies
and thereby modeling [27–29]. Convolutional neural networks (CNNs), graph neural
networks, generative adversarial networks and other models are used in prospecting [30],
mapping [31] and modeling [32,33]. Thus far, it has not been possible to realize intelligent
generation of cross sections with AI technology.

Here, we report a method of intelligent generation of cross sections based on the CGAN
model using geological, gravity and aeromagnetic data. The method can automatically
generate cross sections at any position with few manual interventions. The results show
that: (a) the accuracy of the proposed method is higher than the GAN and Variational
AutoEncoder (VAE) models, achieving 87%, 45% and 68%, respectively. The 3D geological
model constructed by the generated cross sections in our study is consistent with manual
creation in terms of stratum continuity and thickness.

2. Conditional Generative Adversarial Network

The generative adversarial network (GAN) is a deep learning model that was first
proposed by Goodfellow [34]. It is primarily used for unsupervised learning of data
characteristics, and it can generate new data after training. The network has received
extensive attention since it was proposed, and it has been widely studied and applied in
the fields of image and vision. It can generate handwritten instances, natural landscape
transformation, facial expression generation, target map switching, and super resolution
images. In the fields of voice generation, virus sample generation and other applications, the
GAN neural network provides enough simulated sample data to improve the recognition
accuracy of the discriminator.

Different from AlexNet [35], VGG [36], GoogLeNet [37], and other single model neural
networks, GAN is a neural network model that can generate target data and includes two
modules: a generator (G) and a discriminator (D) (see Figure 1). Each module separately
constitutes a network. Generator G constantly generates samples that obey the distribution
of real data based on random noise, and the discriminator D is used to judge whether the
input data are real data. Therefore, the discriminator is essentially a binary classification
network. Through continuous iteration and optimization, the final generator G can produce
false target data.

Figure 1. Flow chart of the GAN model.

Generator G in the GAN network extracts the feature space of the input data by
using the convolution operation and then generates the specified size data by using the
deconvolution operation based on the feature space. Therefore, the network G is composed
of a series of convolution and deconvolution layers. The network model of the generator G
is shown in Figure 1.

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (1)
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The GAN neural network uses Equation (1) to train generator G and discriminator
D [37]. In Equation (1), x represents the real sample, and D(x) represents the probability
that x judges it as a real sample through the discrimination network; z represents the noise
of the input-generated sample; G(z) represents the sample generated by the noise z of the
generated network, and D(G(z)) represents the probability of judging the generated sample
as a real sample after passing the discrimination network.

The original GAN neural network generates pseudo data based on random noise, and
has the disadvantages of instability, mode collapse, and non-convergence, it is often unable
to generate data with specific constraints. Therefore, many researchers have proposed
different GAN models with constraint information based on the original GAN neural
network, among which conditional generative adversarial network (CGAN) has been the
most successful [38]. CGAN uses a condition variable c in the generator G(z, c). When
training, x and z both add the condition c to participate in the training.

The objective function of CGAN after adding constraint data c on the basis of the
original GAN network can be shown in Equation (2):

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x|c)] + Ez∼Pz(z)[log(1− D(G(z|c)))] (2)

The structure of the CGAN model can be shown in Figure 2.

Figure 2. CGAN network structure.

2.1. Convolution Layer

The convolution layer extracts the features of the input image through convolution
calculation (Figure 3) and outputs the feature map. The convolution layer consists of a
series of fixed size filters (called convolution kernels) that are used to perform convolution
operations on image data to generate feature maps [39]. Generally, the calculation of a
characteristic diagram can be realized by Equation (3):

hk
ij = ∑i∈Mj

((wk × xij) + bk) (3)

In Equation (3), k represents the kth layer; h represents the eigenvalue; (i, j) represents
the coordinates of pixels in the image; wk represents the convolution kernel of the current
layer, and bk is the offset. Parameters in convolutional neural networks such as bias (bk)
and the convolution kernel (wk) are usually trained without supervision [40].
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2.2. Leaky-ReLU Activation

After the convolution operation, the Leaky-ReLU activation function is often added
to activate neurons by non-linear mapping the characteristic map of the convolution
layer output to avoid overfitting and improve the learning ability [41]. This function was
originally introduced in the AlexNet model [42]. The Leaky-ReLU activation function
(Equation (4)) is used for the output feature mapping of each convolution layer. Compared
with the RELU function, Leaky-ReLU keeps negative data in the feature map to activate
neurons for the next step of the calculation, and this can improve the robustness of the
noise value.

f (x) =
{

x x > 0
0.1x x ≤ 0

(4)

2.3. Deconvolution

Deconvolution is a special convolution operation. It first expands the size of the input
data by adding 0 according to certain rules, and then generates data with a larger size
according to the convolution operation. In fact, the deconvolution operation is implemented
by Equation (3) too.

3. Materials and Methods

The methodology of intelligent generation of cross sections is introduced in this section.
The architecture of the model, data preparation and data augmentation are described
in turn.

3.1. Intelligent Generation of Cross Sections Based on CGAN

In this paper, the intelligent generating algorithm for cross sections based on the CGAN
is studied by constructing a training dataset, training model, adjusting the parameters, and
other steps. When building the training dataset, the algorithm takes the existing sections as
the label data, employs the geological, gravity and aeromagnetic data as the input data to
build the dataset for network training. By adjusting the depth and super parameters of the
model through experiments, when the generated cross section matches the known section,
the model is considered to have converged and can be applied to intelligent generate the
cross sections in an unknown area.

Based on the CGAN model, an intelligent generation network model for cross sections
was designed (see Figure 4). The model, including two modules, namely, a generator G and
a discriminator D, uses Equation (2) to train. The G module is primarily used to generate
label samples, while the D module is used to judge whether the generated label samples
are real to continuously improve the authenticity of the generated label samples.
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In Figure 4, G is trained by continuous input of training data and labels, and can
generate false cross sections (Sf). The false cross section and the true cross section (St) are
input into D to judge whether Sf is true. After the iteration of the specified epochs, the
generated cross sections Sf and St will converge, and thus G can be used to generate the
cross section.

After training, the generator model can be used in the section generation task at the
specified location. The geological map, gravity and continuation data, aeromagnetic and
continuation data of the known sections are fed into the generator model to generate the
modeling sections.

3.2. Data Preparation

The training of the model depends on a large number of training data. To generate
sections intelligently, preparation and processing operations are necessary.

For regional 3D geological modeling, the data used for section generation are com-
posed of geological, gravity and aeromagnetic anomaly data for each location point
on the section.

3.2.1. Geological Data

Geological data include mineral geological maps and borehole histograms. The strati-
graphic units and occurrences in the mineral geological map are used as input data. Strati-
graphic units are encoded in one-hot. For example, the stratigraphic sequence developed
in a region from top to bottom might be Gaixian (Pt1gx), Dashiqiao (Pt1d), Gaojiayu (Pt1g),
Lieryu (Pt1lr), and Langzishan (Pt1l). When the exposed stratum on the surface is the
Dashiqiao formation, the input stratigraphic unit code is 01000. The occurrence of the
stratigraphic unit only considers the dip angle during input, and the dip angle is expressed
in radians. Borehole histograms are used for stratum constraints and are encoded in the
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same way as the stratigraphic unit. If the area has no borehole data, the channel datum is
set to 0 for processing.

3.2.2. Geophysical Data

Generally, gravity and aeromagnetic anomaly data are the common geophysical data.
Geological surveys and geophysical exploration have been carried out in the area where 3D
geological modeling is to be performed. A number of geophysical sections can be collected,
or a certain number of geophysical comprehensive interpretation sections can be compiled
on the basis of the measured data. These sections should reflect various underground
geological conditions in a region. These geophysical data cannot be used in the networks,
unless a data gridding operation is performed.

3.2.3. Data Gridding

In order to grid the geophysical data, an interpolation algorithm is needed. In the
geology filed, Kriging interpolation is the most used algorithm. According to the sparse
degree of the geophysical data and the scale of the study area, a grid size needs to be
determined. For example, in the 1:250,000 area, a 300 m × 300 m grid interval can meet the
needs of geological research. After interpolation, the geophysical data are transformed into
regular data.

3.2.4. Construction of the Input Dataset

We assume that the data vectors of two adjacent sections are a1 and a2. The gravity
anomaly data corresponding to these two sections are g1 and g2. Anomaly data from the
aeromagnetic method are denoted by m1 and m2. The sections a1 and a2 contain multiple
section polylines, set as al1i and al2j, i 1, 2, . . . , n, j ∈ 1, 2, . . . , m. According to the
stratigraphic age of the polyline in the section, we take section polylines with the same
stratigraphic age P, that is, P1i==P2j, to form a section polyline pair (al1i, al2j) from top to
bottom. When there is a pinch out, the missing section polyline datum is set to 0.

Every section polyline pair (al1i, al2j) is interpolated to form 256 points, and then each
section polyline is copied 256 times to form a 256 × 256 matrix, recorded as AL1i and AL2j.

Then, the same operation is applied to g1, g2, m1 and m2, and a channel of a 256 × 256
matrix is formed, marked as G1, G2, M1 and M2.

While generating the modeling section with the input sections of a1 and a2, the distance
between the generated section and the two input sections will also affect the shape of the
section polylines in the modeling. Therefore, this method introduces the distance factor d
as a parameter. 

d = d1
d2

d1 =
√
(p1x − pmx)

2 + (p1y − pmy)
2

d2 =
√
(p1x − p2x)

2 + (p1y − p2y)
2

(5)

The parameter d is calculated as follows (Equation (5)).
The middle points p1 of section a1 and p2 of section a2 are calculated.
Points p1 and p2 are connected, where upon the line p1p2 intersects the generated

section am at pm.
Length d1 of p1pm and length d2 of p1p2 are calculated.
It is assumed that d = d1/d2.
A 256 × 256 matrix D is filled with the value of d as an input channel.
For the interpolated section, once the section line am (see Figure 5) is determined, the

gravity data gm corresponding to the section line and aeromagnetic data mm are known.
After the interpolation of gravity and aeromagnetic data formed as a 2 × 256 matrix, the
matrix is padded to form a 256 × 256 matrix, marked as Gm and Mm, where m × 1, 2, . . . ,
256. Therefore, Gm, Mm and the previously generated AL1i, AL2j, G1, G2, M1 M2 and D
are stacked as input matrices with the shape of 256 × 256 × 9 and recorded as input.
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3.2.5. Label Data

In the training stage, a label is required. Different with the classification model, the
generation model needs section data as a label. Similar to the preparation process of
input data, the section polyline almi, corresponding to stratigraphic age in section am, is
interpolated into 256 points, then padded into a 256 × 256 matrix forming the label data
and marked as label.

3.3. Data Augmentation

Since each section contains multiple section polylines, and the data used for training
in this method is a single section polyline, polylines of the section map can be extracted as
training data (see Figure 6), thus enhancing the data volume and avoiding overfitting.

Figure 6 shows the method of data augment in this study. In each section, the interface
of two different geological bodies decides the top or the bottom. So, section polylines are
the objects of this method. Every interface in the section is used for the training process,
thus augmenting the dataset.
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4. Results and Discussion

To verify the generating ability of the proposed method, we conducted experiments
in the Benxi–Huanren area in eastern Liaoning Province, China (see Figure 7). This area
has been surveyed by certain geological survey projects. The geological, gravity and
aeromagnetic data are available.

In this section, the data of training is described firstly, and then the environment of the
experiment is listed. Finally, the results are discussed.
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Figure 7. Simplified geological map of the study area (after the 1:500,000 geological map pro-
duced by the Geological Survey of China, modified from [43]). 1. Archean. 2. Paleoproterozoic.
3. Mesoproterozoic- Neoproterozoic. 4. Paleozoic. 5. Mesozoic. 6. Archean granitic gneiss. 7. Paleo-
proterozoic granite. 8. Early Triassic basic-ultrabasic complex. 9. Triassic granite. 10. Late Triassic
granite. 11. Yanshanian granite. 12. Other geological units. 13. Fault. 14. Location of test area.
15. Location of dataset. (a) The Benxi–Huanren area in eastern Liaoning Province, China; (b) the
close-up of the area in (a).

4.1. Data and Data Processing

In the study area, we collected 1650 section pairs, including 467 simple stratum
sections, 332 complex stratum sections, 420 rock mass sections and 431 fault sections
(see Table 1) in the location of dataset area (see Figure 7). According to the data augment
method, the section polylines are extracted from the section pairs. Finally, 6804 samples
are prepared. Correspondently, the gravity data, aeromagnetic data, and other data for the
6804 samples are calculated with the instruction of Section 3.2.

Table 1. The amount of collected data for training.

Type Section Pairs Samples

Simple strata 467 4281
Complex strata 332 1672

Rock masses 420 420
Faults 431 431
Total 1650 6804

In order to evaluate the proposed method, we divided the samples into training,
validating and testing datasets with the proportion of 8:2. Here, 20% of the training dataset
are used for validation during the training process. Thus, 5443 samples are used for training,
1088 samples of the training dataset are used for validating, and 1361 samples are used
for testing.

4.2. Experiments and Results

In order to quantify the difference between the generated section and the real section,
this study used the arithmetic mean deviation of section (AMDoS, Equation (6)) as the
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evaluation standard, where (xi, yi) is the coordinates of the ith point on the label section
polyline, and (xi’, yi’) are the coordinates of the ith point in the generated section polyline.

AMDoS = ∑11
i=1 (

√
(xi − x′i)

2 + (yi − y′i)
2 (6)

Since the number of points in the real section is inconsistent with the number of points
in the generated section, when calculating the error value, we calculate the length of the
curve, divide the curve into 10 equal parts on average from the starting point of the curve,
and calculate the end point of each curve as the error calculation point, including the
starting point of the overall curve for 11 points (Equation (6)).

Simultaneously, the coincidence rate of point coordinates (CRoPC, Equation (7)) is
calculated, where TP is the point number with the deviation being less than AMDoS, and
on the other hand, FP is the deviation more than AMDoS.

CRoPC =
TP

TP + FP
(7)

If the CRoPC value is more than 0.5, the generated section polyline is considered a
positive sample, otherwise a negative sample. So, with this method, we can obtain an
accuracy of the proposed model.

The experiments described here run on a computer with the configuration listed
in Table 2.

Table 2. Hardware and software configurations used in the experiment.

Configuration Value

CPU Intel Core i5-7300HQ 2.5 GHz
GPU NVIDIA GeForce GTX 1050Ti with 4GB RAM

Memory 8 GB
Hard disk 1 TB

Operating System Windows 10
Python Version 3.6.5

Tensorflow Version Tensorflow-GPU 1.5.0

Different super parameters, such as epochs, initial learning rate (ILR), decay rate and
batch size, play an important role in the learning effect. Therefore, it is necessary to test the
impact of different super parameters on the generator to obtain a relative optimal solution
(see Discussion for specific experiments). Finally, with an initial learning rate of 10−4, two
samples in a batch, 10−3 decay of learning rate, the model ran 18,000 epochs of training
and validating, and achieved a validating accuracy of 92%. The correspondent curves of
cross-entropy losses are shown in Figure 8.

Figure 8 shows that at the beginning of training, the loss curve of the discriminator
fluctuated, indicating that the training parameters were being adjusted frequently and
that this had a significant impact on the generator. When the number of training steps
reached 6000, the loss of the discriminator decreased steadily. After a large shock with
10,000 training steps, the loss value of the D dropped to the lowest point after 14,000 steps,
and the loss curve of G was relatively stable at this time. Then, the curves of the generator
and discriminator began to fluctuate again. Therefore, the trained model after 14,000 steps
can be taken for generating modeling sections.

Part of the cross sections generated by the trained CGAN model are shown in Figure 9.
It can be seen from the comparison of label section polylines that those generated using the
proposed method (Figure 9b,d) are smoother than the label section polylines (Figure 9a,c).
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4.3. Influence of Different Super Parameters on the Results

The super parameters affect the performance and accuracy of the proposed model.
Table 3 compares the accuracy when using different super parameter settings to train
the model.

Table 3. Performance on different super parameter settings of the proposed method.

Experiments Epochs ILR Batch Decay Validation
Accuracy

1 18,000 10−3 2 10−3 86%
2 18,000 10−3 2 10−4 87.2%
3 18,000 10−3 2 10−5 85%
4 18,000 10−4 2 10−3 92%
5 18,000 10−4 2 10−4 88%
6 18,000 10−4 2 10−5 89%
7 18,000 10−5 2 10−3 91%
8 18,000 10−5 2 10−4 86%
9 18,000 10−5 2 10−5 85%

The experimental results show that different super parameters will exhibit different
validation accuracies. Due to the limits of the configuration of the executing computer, the
batch size is set to 2, and in consideration of the run time, the epoch value is set to 18,000.
When the ILR is 10−4, and decay is 10−3, the proposed model achieved an overall accuracy
of 92%.

4.4. Comparison with Other Deep Learning Algorithms

In order to test the superiority of the proposed method, the VAE model and the
common GAN model are also used for generating cross sections, and the sections generated
by the three models are compared (see Figure 10).

AutoEncoder is a generative model [25]. It is suitable for image editing using concept
vectors. It maps the input data to a potential vector space through an encoder module, and
then decodes it to an output with the same size as the original input through a decoder.

By adding statistical operations to the AutoEncoder network, VAE [44] enables the
AutoEncoder network to learn a continuous and highly structured potential space, thus
becoming a powerful tool in the field of image generation. The traditional VAE includes
two parts: the encoder and decoder. The encoder module is used to collect and train the
features of the input data and generate the feature distribution of the training data, and
then the decoder module is used to generate the section data to be interpolated based on
the feature distribution.

The encoder module is implemented through a convolution operation. After three
consecutive convolution operations, a dropout operation is added to discard some data,
improve the generalization ability of the model, and finally produce a full connection layer
as the output of the encoder module.

The decoder module was created through a four-layer deconvolution operation.
Through the deconvolution operation, the potential feature space data extracted by the
encoder module is dimensionally restored to finally achieve the purpose of generating
the data.

Using the same training and validating dataset, we trained the VAE and GAN mod-
els. The statistics of AMDoS, CRoPC and validation accuracy are calculated (see Table 4).
A generated section by the three models is compared (see Figure 10).
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Table 4. Effect evaluation of different models.

Methods VAE GAN Our Work

Max AMDoS 1568.49 3351.65 1021.61
Min AMDoS 352.84 2015.68 154.23
Max CRoPC 83% 65% 92%
Min CRoPC 37% 32% 44%

Validation accuracy 68% 45% 87%

Table 4 gives the statistical information of the three models’ training processes. The
AMDoS value and CRoPC are quite different with the VAE, GAN and our model. The
deviations of the GAN model are bigger than those of the other two models. Consequently,
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the GAN model has the worst performance and 45% validation accuracy. In contrast, our
work performs well, both in the deviation value and the validation accuracy of 87%, and
the VAE model performs better than the GAN model, but worse than our work.

It can be seen from Figure 10 that the section generated by the GAN model is quite dif-
ferent from the labeled section, seriously deviating from the label. The polylines generated
by the VAE and our model are consistent with the label.

5. 3D Geological Modeling and Application

After the training is completed, the network parameters are frozen. Three different
application tests (see Figure 7), Yangjiabao, Shuangtaling and Huanren, are carried out in
the study area.

The geological, gravity and aeromagnetic data, and few main sections [13] of the test
areas are provided. Using the frozen network parameters, cross sections are generated
every 50 m from left to right in the test areas, and finally 29 horizontal cross sections in each
test area are obtained. Similarly, 24 vertical cross sections in each test area are obtained
from top to bottom. The 3D geological models are established on the basis of the generated
sections using the modeling method based on cross sections (see Figure 11).
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The test results show that, the 3D geological models as illustrated in Figure 11 basically
conforms to the geological principles of the study areas, and the model is relatively smooth.
Compared with the Yangjiabao area, the geology of the Huanren and Shuangtaling areas
are more complex, with structures such fold and fault growing in these two areas. These
3D models also prove that the proposed method can generate section data intelligently,
with good stability and practicality.



Mathematics 2022, 10, 4677 15 of 17

6. Conclusions

In this study, we considered the key problem of inefficiency of drawing cross sections,
and an intelligent method for generating cross sections based on the CGAN model using
multi-source and heterogeneous geological data, such as geological, gravity and aero-
magnetic anomaly data. After the proposed model was trained, this method achieved an
overall accuracy of 87%. Cross sections at the specified location can be generated using the
trained model. We tested the method via the establishment of three different 3D geological
models in the areas of Yangjiabao, Shuangtaling and Huanren, Liaoning Province. The
experimental results show the proposed method can improve the drawing efficiency of the
cross sections significantly.

At present, the problem remains that the generated cross sections may not conform
to the actual situation when the trained model is used to build a complex section, which
has multiple structures and intrusions. To solve this problem, we will try improving the
method from two aspects in the following research. First, we can increase the size of the
training dataset. The more training data there are, the better the model can update the
corresponding model parameters so when applied to new areas, it can generate relatively
more accurate sections. Second, the super parameters in the model (such as batch size and
the gradient descent algorithm) can be tested to find the optimal network parameters in
order to train a more accurate network model.

Author Contributions: Conceptualization, X.R. and L.X.; data curation, L.X.; formal analysis, L.X.;
funding acquisition, L.X.; investigation, Y.P.; methodology, X.R.; project administration, L.X.; re-
sources, L.X.; software, X.R.; supervision, L.X.; validation, X.R., X.S. and Y.Z.; writing—original draft,
X.R.; writing—review and editing, X.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by “Deep Geological Survey in Benxi–Linjiang Area”, a pilot
project set up by the China Geological Survey, China, grant number 1212011220247.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their gratitude to LetPub (https://www.
letpub.com.cn/, accessed on 28 October 2022) for their expert linguistic services provided. The
authors would like to thank the anonymous referees and the editor for their valuable suggestions
and comments, which helped to improve the content of the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pan, M.; Li, Z.; Gao, Z.; Yang, Y.; Wu, G. 3-D geological modeling-concept, methods and key techniques. Acta Geol. Sin. (Engl. Ed.)

2012, 86, 1031–1036.
2. Wang, G.; Li, R.; Carranza, E.J.M.; Zhang, S.; Yan, C.; Zhu, Y.; Qu, J.; Hong, D.; Song, Y.; Han, J.; et al. 3D geological modeling for

prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geol. Rev. 2015, 71, 592–610. [CrossRef]
3. Wang, G.; Zhu, Y.; Zhang, S.; Yan, C.; Song, Y.; Ma, Z.; Hong, D.; Chen, T. 3D geological modeling based on gravitational and

magnetic data inversion in the Luanchuan ore region, Henan Province, China. J. Appl. Geophys. 2012, 80, 1–11. [CrossRef]
4. Ming, J.; Pan, M.; Qu, H.; Ge, Z. GSIS: A 3D geological multi-body modeling system from netty cross-sections with topology.

Comput. Geosci. 2010, 36, 756–767. [CrossRef]
5. Bistacchi, A.; Massironi, M.; Dal Piaz, G.V.; Dal Piaz, G.; Monopoli, B.; Schiavo, A.; Toffolon, G. 3D fold and fault reconstruction

with an uncertainty model: An example from an Alpine tunnel case study. Comput. Geosci. 2008, 34, 351–372. [CrossRef]
6. Whiteaker, T.L.; Jones, N.; Strassberg, G.; Lemon, A.; Gallup, D. GIS-based data model and tools for creating and managing

two-dimensional cross sections. Comput. Geosci. 2012, 39, 42–49. [CrossRef]
7. Lemon, A.M.; Jones, N.L. Building solid models from boreholes and user-defined cross-sections. Comput. Geosci. 2003, 29, 547–555.

[CrossRef]
8. Zhu, L.F.; Wu, X.C.; Liu, X.G.; Shang, J.G. Reconstruction of 3D strata model based on borehole data. Geogr. Geo-Inf. Sci. 2004, 20, 26–30.
9. Wu, Q.; Xu, H.; Zou, X. An effective method for 3D geological modeling with multi-source data integration. Comput. Geosci. 2005,

31, 35–43. [CrossRef]
10. Ming, J. Quick construction and update of three-dimensional geological models based on boreholes. Geogr. Geo-Inf. Sci. 2012, 28,

55–59, 113.

https://www.letpub.com.cn/
https://www.letpub.com.cn/
http://doi.org/10.1016/j.oregeorev.2015.03.002
http://doi.org/10.1016/j.jappgeo.2012.01.006
http://doi.org/10.1016/j.cageo.2009.11.003
http://doi.org/10.1016/j.cageo.2007.04.002
http://doi.org/10.1016/j.cageo.2011.06.008
http://doi.org/10.1016/S0098-3004(03)00051-7
http://doi.org/10.1016/j.cageo.2004.09.005


Mathematics 2022, 10, 4677 16 of 17

11. Chen, G.L.; Liu, X.G.; Sheng, Q.; Zhang, Y.H. A modeling method based on intersected geological sections. Rock Soil Mech. 2011,
32, 2409–2415.

12. Guo, Y.J.; Pan, M.; Wang, Z.; Wang, Y.; Wu, Z.X.; Qu, H.G.; Ming, J. Research on three-dimensional geological modeling method
based on drilling data and constraints of intersected folded cross-sections. Geogr. Geo-Inf. Sci. 2009, 25, 23–26.

13. Xue, L.F.; Li, W.Q.; Zhang, W.; Chai, S.L.; Liu, Z.H. A method of block-divided 3D geologic modeling in regional scale. J. Jilin
Univ. Earth Sci. Ed. 2014, 44, 2051–2058.

14. Zhang, W.; Xue, L.F.; Peng, C.; Chai, Y.; Cheng, W. The 3D modeling method based on profiles and its application in Benxi,
Liaoning province. Geol. Resour. 2013, 22, 403–408.

15. Qu, H.G.; Pan, M.; Ming, J.; Wu, Z.X.; Sun, Z.D. An efficient method for high-precision 3D geological modeling from intersected
folded cross-sections. Acta Sci. Nat. Univ. Pekin. 2008, 44, 84–89.

16. Pan, M.; Fang, Y.; Qu, H.G. Discussion on several foundational issues in three-dimensional geological modeling. Geogr. Geo-Inf.
Sci. 2007, 23, 1–5.

17. Wang, G.; Huang, L. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province,
China. Geosci. Front. 2012, 3, 483–491. [CrossRef]

18. Qi, G.; Lv, Q.T.; Yan, J.Y.; Wu, M.A.; Liu, Y. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit-A case study.
Chin. J. Geophys. 2012, 55, 4194–4206.

19. Jia, R.; Wang, H.R.; Wang, G.W.; Wang, H.; Xu, R.D.; Feng, Z.K.; Song, Y.W.; Wang, X.L.; Pang, Z. Three-dimensional geological
modeling and deep prospectivity of the Xigou Pb-Zn-Ag-Au deposit, Henan Province. Earth Sci. Front. 2021, 28, 156–169.

20. Wang, G.W.; Zhang, T.S.; Yan, C.H.; Song, Y.W.; Chen, T.Z.; Li, D.; Ma, Z.B. 3D geological modeling based on geological and
gravity-magnetic data integration in the Luanchuan Molybdenum Polymetallic deposit, China. Earth Sci. -J. China Univ. Geosci.
2011, 36, 360–366.

21. Zhu, L.F.; Pan, X. Reconstruction of 3D stratigraphic model for fluvial erosion and aggrading action. Rock Soil Mech. 2005, 26
(Suppl. S1), 65–68.

22. Zhong, D.H.; Li, M.C.; Song, L.G.; Wang, G. Enhanced NURBS modeling and visualization for large 3D geoengineering
applications: An example from the Jinping first-level hydropower engineering project, China. Comput. Geosci. 2006, 32, 1270–1282.
[CrossRef]

23. Ming, J.; Yan, M. Three-dimensional geological surface creation based on morphing. Geogr. Geo-Inf. Sci. 2014, 30, 37–40.
24. Wu, Z.C.; Guo, F.S.; Zhang, W.L.; Ying, Y.G.; Zhou, W.P.; Li, C. 3D geological modeling based on multi-source data merging of

Xiangshan volcanic basin in Le’an of Jiangxi. J. Guilin Univ. Technol. 2020, 40, 310–322.
25. Ackley, D.H.; Hinton, G.E.; Sejnowski, T.J. A learning algorithm for Boltzmann machines. Cogn. Sci. 1985, 9, 147–169. [CrossRef]
26. Yang, M.L.; Xue, L.F.; Ran, X.J.; Sang, X.J.; Yan, Q.; Dai, J.H. Intelligent mineral geological survey method: Daqiao-Yawan area in

Gansu Province as an example. Acta Petrol. Sin. 2021, 37, 3880–3892.
27. Guo, J.; Li, Y.; Jessell, M.W.; Giraud, J.; Li, C.; Wu, L.; Li, F.; Liu, S. 3D geological structure inversion from Noddy-generated

magnetic data using deep learning methods. Comput. Geosci. 2021, 149, 104701. [CrossRef]
28. Hillier, M.; Wellmann, F.; Brodaric, B.; de Kemp, E.; Schetselaar, E. Three-dimensional structural geological modeling using graph

neural networks. Math. Geosci. 2021, 53, 1725–1749. [CrossRef]
29. Liu, Q.; Liu, W.; Yao, J.; Liu, Y.; Pan, M. An improved method of reservoir facies modeling based on generative adversarial

networks. Energies 2021, 14, 3873. [CrossRef]
30. Li, S.; Chen, J.; Liu, C.; Wang, Y. Mineral prospectivity prediction via convolutional neural networks based on geological big data.

J. Earth Sci. 2021, 32, 327–347. [CrossRef]
31. Guo, M.; Bei, W.; Huang, Y.; Chen, Z.; Zhao, X. Deep learning framework for geological symbol detection on geological maps.

Comput. Geosci. 2021, 157, 104943. [CrossRef]
32. Tang, M.; Liu, Y.; Durlofsky, L.J. Deep-learning-based surrogate flow modeling and geological parameterization for data

assimilation in 3D subsurface flow. Comput. Methods Appl. Mech. Eng. 2020, 376, 113636. [CrossRef]
33. Zhang, T.F.; Tilke, P.; Dupont, E.; Zhu, L.; Liang, L.; Bailey, W. Generating geologically realistic 3D reservoir facies models using

deep learning of sedimentary architecture with generative adversarial networks. Pet. Sci. 2019, 16, 541–549. [CrossRef]
34. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
pp. 2672–2680.

35. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012;
pp. 1097–1105.

36. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 8–10 June 2015; pp. 1–9.
38. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.
39. Ferreira, A.; Giraldi, G. Convolutional neural network approaches to granite tiles classification. Expert Syst. Appl. 2017, 84, 1–11.

[CrossRef]

http://doi.org/10.1016/j.gsf.2011.12.012
http://doi.org/10.1016/j.cageo.2005.11.007
http://doi.org/10.1207/s15516709cog0901_7
http://doi.org/10.1016/j.cageo.2021.104701
http://doi.org/10.1007/s11004-021-09945-x
http://doi.org/10.3390/en14133873
http://doi.org/10.1007/s12583-020-1365-z
http://doi.org/10.1016/j.cageo.2021.104943
http://doi.org/10.1016/j.cma.2020.113636
http://doi.org/10.1007/s12182-019-0328-4
http://doi.org/10.1016/j.eswa.2017.04.053


Mathematics 2022, 10, 4677 17 of 17

40. Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 2017,
10, 11. [CrossRef]

41. Ran, X.J.; Xue, L.F.; Zhang, Y.Y.; Liu, Z.Y.; Sang, X.J.; He, J.X. Rock classification from field image patches analyzed using a deep
convolutional neural network. Mathematics 2019, 7, 755. [CrossRef]

42. Zhang, Y.Y.; Ran, X.J. A step-based deep learning approach for network intrusion detection. Comput. Model. Eng. Sci. 2021, 128,
1231–1245. [CrossRef]

43. Peng, C.; Xue, L.F.; Liu, Z.H.; Liu, H.Y. Application of the Non-seismic Geophysical method in the Deep Geological Structure
Study of Benxi-Huanren Area. Arab. J. Geosci. 2016, 9, 1–15. [CrossRef]

44. Diederik, P.K.; Max, W. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.

http://doi.org/10.3390/sym10010011
http://doi.org/10.3390/math7080755
http://doi.org/10.32604/cmes.2021.016866
http://doi.org/10.1007/s12517-016-2306-0

	Introduction 
	Conditional Generative Adversarial Network 
	Convolution Layer 
	Leaky-ReLU Activation 
	Deconvolution 

	Materials and Methods 
	Intelligent Generation of Cross Sections Based on CGAN 
	Data Preparation 
	Geological Data 
	Geophysical Data 
	Data Gridding 
	Construction of the Input Dataset 
	Label Data 

	Data Augmentation 

	Results and Discussion 
	Data and Data Processing 
	Experiments and Results 
	Influence of Different Super Parameters on the Results 
	Comparison with Other Deep Learning Algorithms 

	3D Geological Modeling and Application 
	Conclusions 
	References

