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Abstract: Due to the significant advantages of a high torque density, better fault tolerance and high
efficiency, the combined star–pentagon winding has recently gained researchers’ interest. In this
paper, a simple method to identify the sequence of phases of a five-phase machine with combined
star–pentagon winding was proposed. This was accomplished using resistance measurements
between adjacent and non-adjacent phases. The analysis was conducted to clarify the phase sequence
identification method. A case study of a 5.5 kW five-phase synchronous reluctance motor with
combined star–pentagon winding was considered to simply apply the proposed method using an
LCR meter for resistance measurements. The parasitic and wire resistances are dominant in the
studied case, and this did not influence the accuracy of this method.

Keywords: combined star–pentagon winding; five-phase machines; measurements; ohmmeter;
phase sequence

MSC: 00A71

1. Introduction

The current advances in the field of multiphase machines helped them to be one of the
topics of significant interest to researchers in the field of variable speed drive systems [1–5].
Multiphase machines are preferred in some applications due to their noteworthy advan-
tages compared to three-phase machines [6,7]. Five-phase machines have been favored
compared to other multiphase machines, e.g., six and seven-phase machines [8,9]. This is
largely because of the reduced size of the power converter. In the literature, it was found
that the five-phase Induction machine can maintain about 70% of the rated torque with
one-phase opened, while the asymmetrical six-phase machine works at only 66% of the
rated torque [10,11]. There has been much interest in improving the performance of the five-
phase machines. One of the key strategies that were used to improve the torque density of
the five-phase machines is increasing the fundamental winding factor and the magnitude of
the fundamental component of the magnetomotive force (MMF). This was achieved using
innovative winding configurations [12–15]. Several research activities were conducted to
improve the performance of five-phase machines using different types of winding con-
figurations [16–19]. A combined star–pentagon configuration is one of the possibilities
to obtain improved performance in five-phase machines. It was demonstrated that using
a dual five-phase winding configuration connected in a combined star–pentagon reduces
the losses of the induced eddy currents in the permanent magnets and in the rotor core while
maintaining the five-phase terminals as in the traditional five-phase connections. The com-
bined star–pentagon winding provides the required phase shift between the two windings
(18◦) to cancel all harmonics below the MMF component that generates the torque [20–24].
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In [20], it was found that the output power of the five-phase induction machine with the
combined star–pentagon winding with one phase opened was increased by about 16%
compared to the star-connected winding. A dynamic and a steady state model for the com-
bined star–pentagon winding were studied in [21,22]. In [23], a 20-slot/18-pole permanent
magnet (PM) machine was introduced with a combined star–pentagon configuration. The
torque density was increased by about 1.2% under healthy operating conditions compared
to the star-connected winding. In [25], the average torque of a five-phase synchronous re-
luctance motor (synchronous reluctance motor) was increased by about 17% with combined
star–pentagon winding compared to the three-phase star-connected winding.

The focus of this paper was electrical machines that are rewound with the combined
star–pentagon winding. The first step after rewinding the machine is to identify the
sequence of phases so that it can be correctly connected to the power converter. The
conventional and common method [26–28] is to couple the tested machine to a prime
mover and connect a capacitor bank in parallel with the tested machine to help the voltage
build up. In this method, the tested machine works as a generator. A multi-channel
oscilloscope is required to display the induced voltages of the tested machine, and hence
the sequence of phases is identified. It was noticed that the capacitor bank could be
removed in the case of a PM rotor or using a separate supply to magnetize the steel of
the machine, as in [27,28]. The authors of [29] presented an approach for automatically
detecting and correcting erroneous phase sequence connections. For the work in [29],
current controllers in the simultaneously revolving and stationary reference frames were
studied. The investigation was carried out for three-phase balanced and sinusoidal grid
voltage operating conditions. Smart meters have completely covered the low-voltage
distribution network in recent years. Data-driven single-phase meter phase identification
is a possibility because of the abundance of smart meter measurement data. Numerous
research successes have been achieved in this area, mostly using two methodologies based
on correlation analysis and clustering. References [30,31] used timing voltage correlation
analysis for phase identification of single-phase meters in distribution networks as part
of the correlation analysis-based technique. Despite the simplicity of this technique, the
recognition accuracy might still be increased. A technique of phase identification based on
gray correlation was presented in [32], and it is most suited to the case of limited datasets.
In terms of clustering-based approaches, references [33–35] all clustered voltage or power
curves for phase detection based on K-means or modified K-means algorithms, which were
implemented. A phase identification approach based on t-SNE dimensionality reduction
with Birch clustering was presented in reference [36]. In terms of accuracy, the clustering-
based strategy surpasses the correlation analysis-based approach, but the unsupervised
clustering method requires correct phase information of at least three meters to supply
labels for the clustering results. As was discussed, these methods [26–36] were used
for phase sequence identification; however, the sequence of phases was identified using
several components and/or different strategies. These components may not be readily
available. For example, the availability of a prime mover, capacitor bank and multi-channel
oscilloscope, and in some cases, these components might not be available, especially in
industrial locations.

The rewound combined star–pentagon introduced in [5] is a new winding that resulted
in higher average torque and lower torque ripple compared to the star-connected winding.
Moreover, this winding is important as it gives the old machine a second life with better
performance. However, after refurbishing the old machine, the first step is identifying the
sequence of phases so that the machine can be correctly connected to the inverter. This
sequence could be identified using the conventional method, which is to run the machine
as a generator and observe the waveforms of the induced voltages using a scope; then, the
user can identify the sequence. However, some of the equipment needed for this method
might not be available, e.g., a capacitor bank, etc. Therefore, the focus of this paper was
to propose a simple method to identify the sequence of phases in a five-phase machine
with combined star–pentagon winding. This method is cost and time efficient. This is
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performed using resistance measurements between adjacent and non-adjacent phases with
the means of an LCR meter [37,38]. A case study of a 5.5 kW five-phase synchronous
reluctance motor with combined star–pentagon winding was studied to clarify the steps to
identify the sequence of phases. The proposed practical technique has not been previously
introduced or published. Furthermore, the simplicity of this technique might be viewed as
an advantage for the combined star–pentagon winding arrangements.

2. Proposed Method to Identify the Phase Sequence

This section introduces the steps of implementation of a combined star–pentagon
winding and the required steps to identify the sequence of phases. In a five-phase machine
of the stator of S-slots and 2P-poles, the number of slots per pole per phase (q) can be
calculated from (1). In order to implement the combined star–pentagon winding, these slots
per pole per phase (q) were divided into two groups, i.e., red and green colored inFigure 1.
It is recommended to divide them into two equal parts as much as possible to obtain
a maximum winding factor and an improved torque density [5]. The coils of each group are
connected in series. The first group in each phase was star-connected, and the second group
was pentagon-connected; then, the whole system was connected, as shown in Figure 2, to
obtain the combined star–pentagon configuration. In (2), qs and qp represent the number of
stator-slots occupied by coils that are star and pentagon-connected, respectively.

q =
S

2P × 5
(1)

q = qs + qp (2)
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The relation between the current in the star-connected winding and in the pentagon-
connected winding can be given as follows:

Is = Ip × 2 sin
π

5
= 1.1756 × Ip (3)

where Is and Ip represent the current in the star and in the pentagon winding, respectively.
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In order to obtain the same MMF from the two windings, the relation between the
number of turns in the two windings was calculated as in (4) [20]. Hence, the copper
volume and the copper losses were the same as in the conventional star-connected five-
phase machine.

Ncp = Ncs × 1.1756 (4)

where Ncs and Ncp represent the number of turs in the star and in the pentagon
winding, respectively.

The phase shift between the two windings is 18◦, as shown in Figure 3. Figure 4 shows
that the combined star–pentagon synchronous reluctance motor (5ph-SP) outperforms
the star-connected three-phase synchronous reluctance motor (3ph-S) and also the star-
connected five-phase synchronous reluctance motor (5ph-S). The results of Figure 4 were
obtained using 2D Ansys Maxwell transient simulations. The average torque and the torque
ripples were recorded at different line currents and also at different current angles. It was
proved that the combined star–pentagon synchronous reluctance motor achieves 13.35%
higher torque compared to the three-phase one and 6.37% higher torque compared to the
star-connected five-phase synchronous reluctance motor.
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The method of identification of the sequence of phases is based on measuring the
equivalent resistance between different terminals of the machine. In order to identify
the sequence of phases in a combined star–pentagon winding, the equivalent circuit was
analyzed in two cases, i.e., between two adjacent terminals and between two nonadjacent
terminals. This is shown in Figure 5.
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The per-phase resistance of the star-connected winding is given by (5), and the per-
phase resistance in the pentagon winding is given by (6). Based on the relation between the
current in the star winding and the current in the pentagon winding, the relation between
the conductor’s cross-sectional area can be described as in (7).

Rs =
ρLmt × Ncs

acs × a
(5)

Rp =
ρLmt × Ncp

acp × a
= 1.382Rs (6)

acp =
acs

1.1756
(7)

where a is the number of parallel circuits, ρ is the copper resistivity and Lmt is the mean
length of coil turn. acs and acp are the conductor cross-sectional area for the star and
pentagon winding, respectively.

Figure 5a analyzes the equivalent resistance between two adjacent phases. The ob-
tained equivalent resistance, in this case, can be described as in (8). The equivalent resistance
between two nonadjacent phases is shown in Figure 5b and can be given by (9). Hence, the
measured resistance in the case of the non-adjacent phases is higher than the measured
resistance between the adjacent phases.

Radj = 2Rs +
4Rp × Rp

5Rp
= 2Rs + 0.8Rp (8)

RNadj = 2Rs +
2Rp × 3Rp

5Rp
= 2Rs + 1.2Rp (9)

In order to identify the sequence of five phases, six readings must be recorded. This
can be simply described in the following steps:

i. The first terminal of the machine (consider it phase A) is connected to the positive
terminal of the ohmmeter, and the negative terminal is connected to the other four
terminals. The four readings of the ohmmeter will have two equal high values and
two equal low values. The terminals that give the lower reading are the adjacent
terminals (phases B and E) to the machine’s first terminal. Hence, the sequence of
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the three terminals of the five-phase machine (phases A, B and E) is known after
performing the first step;

ii. In the second step, one of the adjacent terminals (select phase B) of the machine’s
first terminal (phase A) is connected to the positive terminal of the ohmmeter, and
the other terminal of the ohmmeter is connected to the other two terminals of the
machine (nonadjacent terminals to the machine first terminal) (phases C and D).
The terminal that gives the lower reading is the adjacent terminal (phase C) to the
connected one (phase B) to the ohmmeter positive terminal. Hence, the sequence of
phases is identified.

3. Case Study

In this section, a case study of a 5.5 kW five-phase synchronous reluctance motor with
a combined star–pentagon winding, shown in Figure 6, was implemented to validate the
introduced method to identify the phase sequence. This machine has low resistance values
(around 0.2 ohm per phase) to check the validity and accuracy of the proposed method in
terms of the determination of the phase sequence. The specification of the synchronous
reluctance motor is summarized in Table 1 and Figure 7. As shown in Figure 6, there
are five terminals for the five-phase synchronous reluctance motor with the combined
star–pentagon configuration. The five terminals’ colors are red (r), black (k), green (g),
yellow (y) and blue (b). An LCR meter was used to measure the winding resistance. As
this is simply shown in Figure 8, the previously described steps to identify the sequence of
phases were applied as follows:

i. The red terminal can be considered as phase A as indicated in Figures 9a and 10a.
The question mark (?) in Figure 9a,b means that the sequence order of this terminal
is not identified yet;

ii. This terminal (red terminal or terminal that is considered as phase A) is connected
to the positive terminal of the LCR meter, and the other terminal of the LCR meter
is consecutively connected to the other four terminals of the machine (terminals k,
g, y and b), as shown in Figure 10. The red terminal has two adjacent terminals and
two nonadjacent terminals. Hence there are two higher values of resistance, and
two lower values of resistance measured relative to the red terminal;

iii. The green and the blue terminals give lower resistance relative to the red terminal
compared to the yellow and black terminals, as shown in Table 2 and Figure 10e;

iv. The green and blue terminals are the adjacent terminals to the red terminal. The
green terminal can be considered as phase B, and the blue terminal can be considered
as phase E as described in Figures 9b and 10;

v. However, it is not obvious which one of the yellow and the black terminals is phase
C or D. In order to specify which one is phase C or D, the green terminal (phase B)
is connected to the positive terminal of the LCR meter, and the other terminal of the
LCR meter is connected once to the black terminal and once to the yellow terminal
as shown in Figure 10. The terminal that gives the lower reading is the adjacent
terminal to the green terminal (phase B);

vi. As shown in Table 2, the black terminal gives a lower resistance relative to the green
terminal (phase B). Hence, it is the adjacent terminal (phase C), and the yellow
terminal is phase D, as indicated in Figures 9c and 10;

vii. Table 3, Figures 9c and 10 show the obtained sequence of phases.
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two setps. The question mark (?) means that the sequence order of this terminal is not identified yet.

Table 1. The five-phase SynRM geometrical parameters.

Parameter Value Parameter Value

Stator bore diameter (D1O) 110 mm Air gap length (Lg) 0.3 mm

Stator inner diameter (D) 180 mm Number of slots (S) 36

Rotor outer diameter (Dro) 109.4 mm Pole pairs (P) 2

Rotor inner diameter (Dri) 35 mm Rated frequency (F) 100 Hz

Axial length (L) 140 mm Rated power (Pr) 5.5 kW

Number of turns of star coil per phase 24 Number of turns of pentagon coil per phase 29

Stator/Rotor steel M270-50A/M330-50A Rated current (Is) 12.3 A

Rotor flux barriers per pole (Nfb) 3 Number of phases (m) 5

Phase resistance
(

Rph ) 0.25 Star coil resistance (Rs ) 0.125
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Table 2. The obtained measured resistances.

Parameter Value Parameter Value

Rrg 0.365 Ω Rry 0.588 Ω

Rrb 0.394 Ω Rgk 0.352 Ω

Rrk 0.552 Ω Rgy 0.566 Ω

Table 3. The obtained sequence of phases.

Terminal Phase Terminal Phase

Red terminal A Yellow terminal D

Green terminal B
Blue terminal E

Black terminal C

4. Comparative Analysis of the Proposed and Conventional Methods

This section analyses and compares the proposed method to identify the sequence of
phases in five-phase combined star–pentagon machines with the conventional methods. As
shown in Figure 11 and Table 4, there are many components required in the conventional
method, such as a prime mover, capacitor bank and scope by which the researcher can
observe the waveforms of the generated voltage of the examined machine (five-phase
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combined star–pentagon machine). Note that the examined machine works as a generator in
this method, so the conventional method is considered a dynamic test approach. However,
the proposed approach in this paper only uses the LCR meter for measuring the resistance
between different terminals. Therefore, this method is considered more economical than
conventional methods. In addition, there is no dynamic operation during the application of
this method. Hence it is considered a static test. Moreover, the proposed method is cheaper
than the conventional methods.
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Figure 11. (a) the conventional and (b) the proposed method to identify phase sequence in five-phase
combined star–pentagon machine.

Table 4. Comparison between the proposed and the conventional method of identification of
phase sequence.

Conventional Method Proposed Method

Prime mover Yes No

Scope Yes No

Capacitor bank Yes No

LCR meter No Yes

Cost High Low

Time much Few

Type Dynamic test Static test

During the practical validation of this method, the errors in measurements and the par-
asitic inputs, which indeed existed, did not affect the correctness of the obtained sequence,
and the performance of the motor with the identified phase sequence was tested under
both speed and torque control mode with great agreements with its simulated performance.
For the shortcuts, which did not exist in our case, if there is a shortcut, the obtained mea-
surements will be totally different from what was expected, and the user will realize that
there is a problem with the machine. Hence, this method can be considered as a checker for
the status of the machine as well.
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5. Conclusions

This paper proposed a simple, cost- and time-efficient method to identify the sequence
of phases in a five-phase machine with a combined star–pentagon configuration. This
method depends on measuring the resistance between the adjacent and the non-adjacent
phases. The phases are identified using only six measurements. The effectiveness of the
proposed method was proved in determining the sequence of the phases even at low
resistance values. The parasitic and wire resistances are dominant in the studied case, and
this does not influence the accuracy of the proposed method.
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