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Abstract: We consider the second-order impulsive differential equation with impulses in derivative
and without the damping term. Sufficient conditions that a nontrivial solution of the homogeneous
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the obtained results on differential inequalities, which can be considered as analogues of the Vallee–
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1. Introduction

Impulsive differential equations are used in mathematical models of many processes
in economical sciences, medicine, physics and biology [1–4]. Various concepts which can
be considered as the basis of our approach are presented in [5,6]. Their development for
the positivity of Green’s function for the initial value and periodic problems for first-order
functional differential equations can be found in [7] (see also [8] in this context) and for
nonlocal problems in [9]. For second-order impulsive equations, results on the positivity of
the solutions of one- and two-point boundary value problems can be found in [10–17].

In this paper, we consider the following delay differential equation

(£x)(t) ≡ x′′(t) +
m

∑
j=1

pj(t)xj(hj(t)) = f (t), t ∈ [0, ω], (1)

x(ξ) = 0 for ξ < 0, (2)

with impulses of the first derivative at the points ti : 0 = t0 < t1 < t2 <, . . . ,< tn < tn+1 = ω

x′(ti) = δix′(ti − 0), i = 1, . . . , n, (3)

where f , pj: [0, ω] → R are from the space L∞ of essentially bounded functions and
hj:[0, ω] → (−∞,+∞), hj(t) ≤ t is a measurable function for j = 1, 2, . . . , m, m and n are
natural numbers and δi is a real positive number for i = 1, 2, . . . , n.

Let D(t1, t2, . . . , tn) be a space of functions x: [0, ω] → R such that their derivative
x′(t) is absolutely continuous on every interval t ∈ [ti, ti+1), i = 0, 1, . . . , n, x′′ ∈ L∞; we
also assume that there exist the finite limits x′(ti − 0) = limt→t−i

x′(t) and condition (3)
is satisfied at points ti (i = 0, 1, . . . , n). As a solution x, we understand a function x ∈
D(t1, t2, . . . , tn) satisfying (1)–(3).
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In this paper, we study the case of pj(t) ≥ 0 for j = 1, . . . , m and δi > 1 for i =
1, . . . , n, which naturally appears in the use of control in the process of a plane’s takeoff
based on the feedback control of the height. The autopilot control can be of the form
u(t) = − ∑m

j=1 pj(t)xj(hj(t)). It is the so-called “slow” control. The direct (“fast”) control
is implemented by a pilot, which can be modeled by impulses. It is important to have
a sufficiently long length of time interval on which the solution, starting with the initial
condition x(0) = 0, is increasing, i.e., a semi-nonoscillation interval (focal interval in
another terminology) of the homogeneous equation

(£x)(t) ≡ x′′(t) +
m

∑
j=1

pj(t)xj(hj(t)) = 0, t ∈ [0, ω], (4)

x(ξ) = 0 for ξ < 0.

In this paper, estimates of the semi-nonoscillation interval are obtained. Our approach
to study the negativity of Green’s functions is based on the nonoscillation properties of
solutions. We define the so-called semi-nonoscillation interval in [12] as an interval where
a nontrivial solution of the homogeneous equation having a zero of its derivative does
not have a zero itself. It is clear that the semi-nonoscillation interval is a corresponding
development of the known definition of the focal interval. It is important to estimate the
solution x(t) of problem (1)–(3) with the boundary conditions x(0) = 0, x′(ω) = 0 by
corresponding test functions v(t) and w(t) satisfying the differential inequalities (£v)(t) ≤
f (t) ≤ (£w)(t) for t ∈ [0, ω]. This is the problem of the negativity of Green’s function
G(t, s). The sign-constancy of the Green’s function of one-point and two-point boundary
value problems for impulsive functional differential equations of the second order was
studied in [7,9–12,18,19].

We study problems with two-point boundary value conditions. The results on the
negativity of Green’s function for impulsive two-point problems for Equations (1)–(3) in
the case of pj(t) ≤ 0 and the case of pj(t) ≥ 0 for t ∈ [0, ω], j = 1, . . . , m, were obtained
in [11,18,20]. Those results assumed, in explicit or implicit forms, a corresponding smallness
of the interval [0, ω].

As an example of such results, we can note the following (see Corollary 4.6 in [20]):
If 0 < δi ≤ 1 and

m

∑
j=1

pj(t)(
1
4
+ n) <

2
ω2 (5)

then the Green’s function G(t, s) of a two-point boundary value problem, i.e., for problem (1)–(3)
with boundary condition (8) defined below, satisfies the inequality G(t, s) < 0 for t, s ∈ (0, ω).

We see that in the case of Equation (1) without impulses in its derivatives (i.e., n = 0
in (1)), we get the classical Vallee–Poussin inequality

m

∑
j=1

pj(t) <
8

ω2 (6)

for the unique solvability of the two-point problem and negativity of its Green’s function
G(t, s). It is known that inequality (6) cannot been improved in a general case. The
appearance of impulses, i.e., the case of n > 0, disproves this inequality.

Our development is in the study of the case of δi > 1. We demonstrate that the
impulses in the derivative of this sort can improve the estimates. The estimates of nonoscil-
lation and focal intervals can be essentially increased. For example, for a nonimpulsive
ordinary differential equation

x′′(t) + px(t) = 0, (7)

where p is a positive constant, the function sin(
√

pt) is a nontrivial solution which has focal
interval [0, π

2
√

p ] and nonoscillation interval [0, π√
p ]. In all sufficient conditions known to
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us, the impulses disprove the tests of nonoscillation, semi-nonoscillation and negativity of
Green’s functions. In contrast with it, in the following, in the examples of Section 5, we see
that impulses in the derivative (in the case when δi > 1) increase the focal and nonoscillation
intervals of the solution to impulsive equations. Our approach first demonstrates that
adding impulses of the derivative could “improve” the so-called non-oscillation properties
of solutions and consequently to increase the distances between adjacent zeros of the
derivative, adjacent zeros of the solution and the zones of Green’s function negativity. This
allows us essentially to improve the exactness of the intervals, where the test functions v(t)
and w(t) estimate the solution. It is important for building a control strategy in applications.

2. Preliminaries

For Equations (1)–(3), we consider the following variants of the boundary conditions:

x(0) = 0, x(ω) = 0, (8)

x(0) = 0, x′(ω) = 0, (9)

A general solution of Equations (1)–(3) can be represented in the form [7]:

x(t) = ν1(t)x(0) + C(t, 0)x′(0) +
∫ t

0
C(t, s) f (s)ds, (10)

where

• ν1(t) is a solution of the homogeneous Equation (4) with the initial conditions x(0) = 1,
x′(0) = 0.

• C(t, s), called the Cauchy function of Equation (4), is the solution of the equation

(Lsx)(t) ≡ x′′(t) +
m

∑
j=1

pj(t)xj(hj(t)) = 0, t ∈ [s, ω], (11)

x′(ti) = δix′(ti − 0), i = k, . . . , n,

0 = t0 < t1 < t2 <, . . . ,< tn < tn+1 = ω,
(12)

for every fixed s ≥ 0, where k is a number, such that tk−1 < s ≤ tk,

x(ζ) = 0, ζ < s, (13)

satisfying the initial conditions C(s, s) = 0, C′t(s, s) = 1 and C(t, s) = 0 for t < s.

If the boundary value problem (1)–(3), with boundary conditions (8) or (9) respectively,
is uniquely solvable, then its solution can be represented as

x(t) =
∫ ω

0
Gi(t, s) f (s)ds, i = 1, 2, (14)

where Gi(t, s) is the Green’s function of the problem (1)–(3), with boundary conditions (8)
or (9) respectively [11].

Using the general representation of solution (10), the following formulas for Green’s
functions can be obtained:

G1(t, s) = C(t, s)− C(t, 0)
C(ω, s)
C(ω, 0)

, (15)

G2(t, s) = C(t, s)− C(t, 0)
C′t(ω, s)
C′t(ω, 0)

, (16)
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3. Formulation of Main Results

Consider the auxiliary problem{
v′′(t) = z(t),
v(0) = 0, v′(ω) = 0.

(17)

Let us define the operator K : L∞[0, ω]→ L∞[0, ω], where L∞ is a space of essentially
bounded functions x : [0, ω]→ R, by the equality

(Kz)(t) = −
m

∑
j=1

pj(t)[
∫ ω

0
G0(hj(t), s)z(s)ds], (18)

where G0(t, s) is the Green’s function of problem (17). We assume that G0(hj(t), s) = 0 for
hj(t) < 0.

Theorem 1. Let pj(t) ≥ 0 for t ∈ [0, ω], j = 1, . . . , m. Then, the following assertions are equivalent:

(1) There exists a function v(t) ∈ D(t1, t2, . . . , tn) such that

(£v)(t) = ψ(t) ≤ −ε < 0, v(t) > 0, v′(t) > 0, v′′(t) < 0,

t ∈ (0, t1) ∪ (t1, t2) ∪ . . . ∪ (tn−1, tn) ∪ (tn, ω),
(19)

where the differential operator £ is defined by (1).
(2) The spectral radius ρ(K) of the operator K : L∞[0, ω]→ L∞[0, ω] is less than one.
(3) The problem (1)–(3) with boundary condition (9) is uniquely solvable and its Green’s function

G2(t, s) satisfies the inequality G2(t, s) < 0 for (t, s) ∈ (0, ω)×(0, ω).

Remark 1. The following assertion can be also considered:

(4) Let ∑m
j=1 pj(t)σ(hj(t), 0) > 0 for t ∈ [0, ω], j = 1, . . . , m, and there exists a function

v(t) ∈ D(t1, t2, . . . , tn) such that

(£v)(t) = ψ(t) ≤ 0, v(t) > 0, v′(t) > 0, v′′(t) < 0,

t ∈ (0, t1) ∪ (t1, t2) ∪ . . . ∪ (tn−1, tn) ∪ (tn, ω), v(0) + v′(ω) > 0,
(20)

where the differential operator £ is defined by (1).

If we compare assertions (1) and (4), it is clear that we assume in (4) : v(0)+ v′(ω) > 0
instead of the condition of strict negativity of ψ(t).

It can be proven that assertions (2) and (3) follow from assertion (4).
It is clear now that the choice of the function v(t) in the condition of Theorem 1 allows

us to obtain tests of the negativity of the Green’s function G(t, s) of the problem (1)–(3)
with boundary condition (9).

Remark 2. The assertion (1)=>(3) can be considered as an analog of the Vallee–Poussin theorem
about the differential inequality for second-order impulsive equations.

Remark 3. In a general case the process of construction of the test function v(t) is complicated.
The calculations made below, before the proof of Theorem 4, explain how the test function v(t) can be
constructed and how the explicit conditions guaranteeing the condition ρ(K) < 1 can be obtained.
Of course, these conditions are more complicated than condition (5) and include restrictions on the
smallness of the distance between adjacent points of impulses.
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We propose a new idea to choose v(t), using a solution of the ordinary impulsive
differential equation

(Mx)(t) ≡ x′′(t) +

{
m

∑
j=1

pj(t)

}
x(t) = 0, t ∈ [0, ω] (21)

x(ξ) = 0 for ξ < 0, (22)

x′(ti) = δix′(ti − 0), i = 1, . . . , n. (23)

Let us define the function:

σ(t, s) =

{
1, t ≥ s,
0, t < s.

(24)

The influence of the fact that [0, ω] is a semi-nonoscillation interval on the negativity
of the Green’s function of problem (1)–(3) with boundary condition (9) can be explained by
the next assertion.

Theorem 2. If ∑m
j=1 pj(t)σ(hj(t), 0) > 0 for t ∈ [0, ω], and [0, ω] is a semi-nonoscillation

interval of the solution of (21)–(23), (9), then the Green’s function of problem (1)–(3) with boundary
condition (9) is negative for t, s ∈ (0, ω).

The clear relation between the negativity of Green’s function G1(t, s) and the negativity
of the Green’s functions of problems with the boundary conditions x(0) = 0, x′(a) = 0 for
every a : 0 < a < ω can be done by the following assertion.

Theorem 3. If the Green’s function of the problem consisting of Equations (1)–(3) and boundary
conditions x(0) = 0, x′(a) = 0 for every a : 0 < a < ω is negative for t, s ∈ (0, a), and
[0, a] is a semi-nonoscillation interval of the solution of (21)–(23), then the Green’s function of
problem (1)–(3), (8) is nonpositive for t, s ∈ (0, ω).

We propose the following test for the negativity of Green’s functions. Consider the
equation

(£x)(t) ≡ x′′(t) + px(h(t)) = 0, h(t) ≤ t, t ∈ [0, ω], (25)

where
x(ξ) = 0 f or ξ < 0,

and p is a positive constant.

Theorem 4. Let p be positive and the distance ti+1 − ti between two adjacent points of impulses
satisfy the inequalities

ti+1 − ti <
π

2
√

p
− 1
√

p
arctan(

1
δi

tan(
√

p(ti − ti−1 −
1
√

p
arctan(

1
δi−1

tan(
√

p(ti−1 − ti−2 − . . .

− 1
√

p
arctan(

1
δ1

tan(
√

p(t1 − α0) . . . ), i = 0, 1, 2, . . . , n, (26)

where t0 = 0, tn+1 = ω.
Then, [0, ω] is a semi-nonoscillation interval of the solution of Equation (25) and the Green’s

functions of the impulsive problems

(£x)(t) = f (t), t ∈ [0, ω], x(0) = 0, x′(ω) = 0 (27)

and
(£x)(t) = f (t), t ∈ [0, ω], x(0) = 0, x(ω) = 0 (28)
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with impulses defined by (3) are negative for (t, s) ∈ (0, ω)×(0, ω).

4. Proofs

Proof of Theorem 1.
(1)=>(2)
In (1) we have the function v ∈ D(t1, t2, . . . , tn) satisfying the inequality

(£v)(t) = ψ(t) ≤ −ε < 0. (29)

The function v(t) can be written in the form

v(t) =
∫ ω

0
G0(t, s)z(s)ds + u(t), (30)

where G0(t, s) is the Green’s function of (17) and u(t) is a solution of{
u′′(t) = 0, t ∈ [0, ω],
u(0) = v(0) ≥ 0, u′(ω) = v′(ω) ≥ 0.

(31)

It follows from (17) that the condition v′′(t) < 0 implies that z(t) < 0 for t ∈ (0, ω).
Substituting the presentation of solution (30) into (29), we get

z(t) +
m

∑
j=1

pj(t)[
∫ ω

0
G0(hj(t), s)z(s)ds] = η(t), t ∈ [0, ω], (32)

where η(t) = ψ(t)−∑m
j=1 pj(t)u(hj(t)).

Let us denote

z̃(t) = −z(t), η̃(t) = −η(t), ψ̃(t) = −ψ(t) (33)

and rewrite (32) in the form

z̃(t)−
m

∑
j=1

pj(t)[
∫ ω

0
|G0(hj(t), s)|z̃(s)ds] = η̃(t), t ∈ [0, ω], (34)

It is clear that η̃(t) = ∑m
j=1 pj(t)u(hj(t)) + ψ̃(t) > 0. Thus, from [21] (p. 86) we can

conclude that the spectral radius ρ(K) of the operator K is less than one.
(2)=>(3)
Consider the problem consisting of the equation

(£x)(t) = f (t), t ∈ [0, ω] (35)

with impulses (3) and boundary condition (9).
Assume that f ∈ L∞[0, ω] is nonpositive for t ∈ [0, ω].
After the substitution

x(t) =
∫ ω

0
G0(t, s)z(s)ds, (36)

we have

z(t) +
m

∑
j=1

pj(t)[
∫ ω

0
G0(t, s)z(s)ds] = f (t). (37)

If the spectral radius ρ(K) of the positive operator K : L∞[0, ω]→ L∞[0, ω] is less than
one, then there exists a bounded operator (I − K)−1 = I + K + K2 + K3+ . . . : L∞[0, ω]→
L∞[0, ω] which is positive. This implies that z(t) = (I − K)−1 f is nonpositive for every
nonpositive f (t), t ∈ [0, ω].



Mathematics 2022, 10, 3683 7 of 12

According to representation (14), we have

x(t) =
∫ ω

0
G2(t, s) f (s)ds, (38)

and on the other hand,

x(t) =
∫ ω

0
G0(t, s)(I − K)−1 f (s)ds. (39)

Thus,

x(t) =
∫ ω

0
G2(t, s) f (s)ds =

∫ ω

0
G0(t, s)(I − K)−1 f (s)ds =

∫ ω

0
G0(t, s)[I + K + K2 + K3 + . . . ] f (s)ds ≥ 0 (40)

It is clear now that G2(t, s) < G0(t, s) < 0 for (t, s) ∈ (0, ω)×(0, ω).
(3)=>(1)

In order to prove this, we set v(t) = −
∫ t

0
G2(t, s)ds in the assertion (1).

This completes the proof of Theorem 1.

The proof of the assertion in Remark 1 is obvious. It can be made by repeating the proof
of the implication (1)=>(2). Note that u(t) > 0 and ∑m

j=1 pj(t)u(hj(t)) > 0 for t ∈ (0, ω].

Proof of Theorem 2.
Let us take the solution x(t) of Equations (1)–(3) satisfying the initial conditions

x(0) = 0, x′(0) = 1 as a function v(t) in the assertion 1) of Theorem 1. This function
v(t) is positive and its derivative v′(t) is positive in every one of the intervals (ti, ti+1),
since [0, ω] is a semi-nonoscillation interval of the solution of Equations (1)–(3), and its
second derivative v′′(t) is negative since v′′(t) = −∑m

j=1 pj(t)v(hj(t)) < 0. The reference
to Remark 1 completes the proof.

Proof of Theorem 3.
Let us assume, on the contrary, that the Green’s function G1(t, s) of problem (1)–(3)

with boundary condition (8) changes its sign on the interval (0, ω). Then, for a correspond-
ing f (t) ≥ 0 the solution x(t) of (1)–(3) with boundary condition (8) changes it sign at some
point b ∈ (0, ω).

It follows from our assumption that there exists a point a : 0 < b < a < ω such
that the solution x(t) satisfies the boundary value problem consisting of Equations (1)–(3)
and boundary conditions x(0) = 0, x′(a) = 0. Its Green’s function is negative for (t, s) ∈
(0, a)×(0, a).

This implies that x(t) < 0 for t ∈ (0, a], and we have a contradiction with the assump-
tion about the change of sign of the solution x(t).

Consider the ordinary differential equation of second order with constant positive p
and the impulses

x′′(t) + px(t) = 0, t ∈ [0, ω], (41)

x′(ti) = δix′(ti − 0), i = 1, 2, . . . , n,

with the initial conditions
x(0) = 0, x′(0) =

√
p.

Let us construct its solution and this is the basis of the proof of Theorem 4 which is
given below.

On the interval [0, t1), we have

x(t) = sin(
√

p(t− α0)), (42)

x′(t) =
√

p cos(
√

p(t− α0)), (43)



Mathematics 2022, 10, 3683 8 of 12

where α0 = 0. Let us assume that t1 < π
2
√

p . On the next interval [t1, t2), we search for a
solution of the form

x(t) = A1 sin(
√

p(t1 − α1)). (44)

Taking into account that x(t) has to be continuous but x′(t) has an impulse at the point
t1, we come to the equalities

sin(
√

p(t1 − α0)) = A1 sin(
√

p(t1 − α1)), (45)

δ1
√

p cos(
√

p(t1 − α0)) = A1
√

p cos(
√

p(t1 − α1)). (46)

Using (45) and (46), we obtain

tan(
√

p(t1 − α1)) =
1
δ1

tan(
√

p(t1 − α0)) (47)

and
t1 − α1 =

1
√

p
arctan(

1
δ1

tan(
√

p(t1 − α0))). (48)

Assuming

α1 +
π

2
√

p
> t2, (49)

one can derive that

t2 − t1 <
π

2
√

p
− 1
√

p
arctan(

1
δ1

tan(
√

p(t1 − α0))). (50)

Thus, on the interval [t1, t2) we have:

x(t) = sin(
√

p(t− α1)), (51)

x′(t) =
√

p cos(
√

p(t− α1)). (52)

Then, we obtain at the point t2

x(t2) = sin(
√

p(t2 − α1)), (53)

x′(t2) = δ2
√

p cos(
√

p(t2 − α1)), (54)

and consequently
sin(
√

p(t2 − α1)) = A1 sin(
√

p(t2 − α2)), (55)

δ2
√

p cos(
√

p(t2 − α1)) = A1
√

p cos(
√

p(t2 − α2)). (56)

Using (55) and (56), we obtain

tan(
√

p(t2 − α2)) =
1
δ2

tan(
√

p(t2 − α1)) (57)

and
t2 − α2 =

1
√

p
arctan(

1
δ2

tan(
√

p(t2 − α1))). (58)

Assuming

α2 +
π

2
√

p
> t3, (59)

one can derive that

t3 − t2 <
π

2
√

p
− 1
√

p
arctan(

1
δ2

tan(
√

p(t2 − t1 −
1
√

p
arctan(

1
δ1

tan(
√

p(t1 − α0)))))). (60)

Eventually, such iterations lead us to the following inequality
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ti+1 − ti <
π

2
√

p
− 1
√

p
arctan(

1
δi

tan(
√

p(ti − ti−1 −
1
√

p
arctan(

1
δi−1

tan(
√

p(ti−1 − ti−2 − . . .

− 1
√

p
arctan(

1
δ1

tan(
√

p(t1 − α0) . . . ), i = 0, 1, 2, . . . , n. (61)

Proof of Theorem 4.
Let us set the solution of ordinary Equation (41) constructed above instead of v(t) in

assertion (1) of Theorem 1. The function v(t) increases and this allows us to write

(£v)(t) ≡ v′′(t) + p(t)v(h(t)) ≤ v′′(t) + p(t)v(t) = 0, t ∈ [0, ω], (62)

since h(t) ≤ t.
It is clear now that this function v(t) satisfies the assertion 1) of Theorem 1 from which

all the assertions of Theorem 4 follow.

5. Computation Results

In this section, we construct the function v(t) in condition (1) of Theorem 1 as a
solution of the ordinary impulsive differential equation

v′′(t) + pv(t) = 0, t ∈ [0, ω], (63)

v′(ti) = δiv′(ti − 0), i = 1, 2, . . . , n,

where p is a real positive constant, v(0) = 0, v′(ω) = 0 and ti are points at which the
derivative v′(t) has impulses. If we assume that

√
p(t− αi) <

π
2 , then the solution of (63)

on the interval [ti, ti+1) can be written in the form

v(t) = Ai sin(
√

p(t− αi)). (64)

Let us assume, for simplicity, that the distances between impulses are equal to each
other (i.e., ti = iτ, where τ is the distance between the points of impulses). The following
equalities are fulfilled at the points ti:

Ai+1 sin(
√

p((i + 1)τ − αi+1)) = Ai sin(
√

p((i + 1)τ − αi)), (65)

Ai+1 cos(
√

p((i + 1)τ − αi+1)) = δi Ai cos(
√

p((i + 1)τ − αi)). (66)

Denoting ai = sin(
√

p((i + 1)τ − αi)), bi = δi cos(
√

p((i + 1)τ − αi)), we obtain the
formula for finding the amplitudes Ai:

Ai+1 = Ai

√
a2

i + b2
i , i = 1, 2, 3, . . . , n. (67)

From (65) and (66), we obtain

sin(
√

p((i + 1)τ − αi+1)) =
Ai sin(

√
p((i + 1)τ − αi))

Ai+1
=

ai√
a2

i + b2
i

, (68)

cos(
√

p((i + 1)τ − αi+1)) =
δi Ai cos(

√
p((i + 1)τ − αi))

Ai+1
=

bi√
a2

i + b2
i

. (69)

Thus, using (68) we have

αi+1 =

 (i + 1)τ − 1√
p arcsin ai√

a2
i +b2

i
, i f bi cos(arcsin ai√

a2
i +b2

i
) ≥ 0,

(i + 1)τ − 1√
p (π − arcsin ai√

a2
i +b2

i
), otherwise.

(70)
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The program based on this algorithm (we took p = 1 and the maximal amplitude of
v(t) was Amax = 10,500) gives the connection between impulse constant of the derivative
δi = δ (i = 1, . . . , n) and the maximal possible distance τ between every two adjacent
points of impulses, which provides the required amplitude Amax. The maximal amplitude
Amax describes in the application the cruising altitude of the plane after completing the
takeoff process (see Figure 1).

Figure 1. Connection between impulse of derivative δ and the maximal possible distance between
points of impulses τ.

We see that in the nonimpulsive case (Figure 2), the length of the interval where the
function x(t) stays positive and increasing is π

2 , while in the impulsive case (Figure 3), the
length of this interval is more than 9.8 (≈3.12 π).

Figure 2. Solution without impulses of the derivative of x(t).
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Figure 3. Solution with impulses of the derivative of x(t) (δ = 2, τ = 0.3544).

Thus, it is possible to enlarge the interval where solution x(t) is positive, using the
impulses of the derivative x′(t). In the application of a plane’s takeoff, the cruising altitude
Amax and limited takeoff angle are given. Then, the problem of the enlargement of the
interval, on which the solution x(t) is increasing, becomes important. We proposed an
approach to this enlargement using impulses in the derivative of x(t).

6. Conclusions

In this paper, we obtained sufficient conditions of the semi-nonoscillation of the
solution of the homogeneous Equation (4) with initial function defined by (2) and impulses
of the first derivative at the points ti : 0 = t0 < t1 < t2 <, . . . ,< tn < tn+1 = ω defined
by (3).

We demonstrated that adding impulses in the derivative could significantly enlarge
the length of the interval where a positive solution increased. It should be stressed that
our results are the first ones of this type. Using these results, we formulated theorems on
differential inequalities and the sign-constancy of Green’s functions for two-point boundary
value problems.

The future developments of these results could be in their generalization to systems
of impulsive equations and to nonlinear impulsive equations. The negativity of Green’s
functions presents the basis for these developments.
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