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Abstract: The biparametric perturbation method is applied to solve the improved Föppl–von Kármán
equation, in which the improvements of equations come from two different aspects: the first aspect
concerns materials, and the other is from deformation. The material considered in this study has
bimodular functionally graded properties in comparison with the traditional materials commonly
used in classical Föppl–von Kármán equations. At the same time, the consideration for deformation
deals with not only the large deflection as indicated in classical Föppl–von Kármán equations, but
also the larger rotation angle, which is incorporated by adopting the precise curvature formulas but
not the simple second-order derivative term of the deflection. To fully demonstrate the effectiveness
of the biparametric perturbation method proposed, two sets of parameter combinations, one being a
material parameter with central defection and the other being a material parameter with load, are
used for the solution of the improved Föppl–von Kármán equations. Results indicate that not only
the two sets of solutions from different parameter combinations are consistent, but also they may be
reduced to the single-parameter perturbation solution obtained in our previous study. The successful
application of the biparametric perturbation method provides new ideas for solving similar nonlinear
differential equations.

Keywords: biparametric perturbation; Föppl–von Kármán equation; bimodular materials;
functionally graded materials; circular plate

MSC: 34E10; 74K20

1. Introduction

Poincaré’s perturbation method [1] is one of the standard analytical methods, which is
used for the solution of nonlinear problems in applied mechanics. This method consists of
the development of the solution of an initial or boundary value problem in an asymptotic se-
ries of a parameter. This parameter either appears explicitly in the problem or is introduced
artificially. In Poincaré’s earlier work and the subsequent development of his original ideas,
we may find some interesting progresses for conceivable further generalizations [2]. In
the singular perturbation scheme, one of the important developments, namely, strained
coordinates method [3], stems originally from Poincaré’s periodic solutions of nonlinear
ordinary differential equations by the straining of the independent coordinates. Another
interesting generalization from Poincaré’s original idea is the so-called multiparameter
perturbation technique. The ordinary perturbation technique with a single parameter
is extended to embrace the expansions of two or more parameters. These parameters
involved may be of different characters: some, for example, describing the properties of
materials, while others describing the dynamic or geometrical nature of the problem. In
this study, we focus on the application of a multiparameter perturbation technique in the
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field of solid mechanics. More explicitly, we try to use this method to analyze a large
deformation problem of thin plates with certain material properties, for example, with
bimodular functionally graded properties, that is, to use a multiparameter perturbation
method to solve improved Föppl–von Kármán equations.

In the perturbation problem, to conduct a linear analysis is the first step, and the
perturbation occurs in the neighborhood of the solution of linearized equations. Thus,
based on the known solution of a linear system, the solution of a perturbation system may
be obtained. Briefly speaking, the typical practice of the perturbation method is to expand
the solution in ascending powers of a known parameter, and the unknown functions in
the solution are gradually determined by decomposing the governing equation and the
corresponding boundary conditions; thus, the approximate solution is finally obtained
according to the required computational precision.

As suggested by Poincaré, the perturbation expansion should be regarded as an
asymptotic series in essence; thus, the convergence of a perturbation solution may not be
discussed. Subsequent studies also showed that the perturbation solution may not rely
on any small parameter [4]. Despite of this, the parameter selected plays an important
role during perturbation because the appropriate selection enables us to obtain asymptotic
solutions with better convergence. The early pioneer works on flexible thin plates may be
traced back to studies by Vincent [5] and Chien [6]. Selecting the external load as a perturba-
tion parameter, Vincent [5] obtained a perturbation solution of large-deflection thin plates
first. Considering that the perturbation parameter either appears explicitly or is introduced
artificially in the problem, Chien [6] obtained another perturbation solution by selecting
the central deflection as the perturbation parameter. In Chien’s solution, the important
relationship of load vs. central deflection is explicit due to the appropriate selection for a
parameter. For a long period of time, Chien’s solution has been cited as a classical work
in many subsequent studies. In addition to load and central deflection, there exist several
alternatives for perturbation parameters, for example, a generalized displacement [7], a
linear function of Poisson’s ratio [8], and an average angular deflection [9]. For these
possible perturbation parameters, Chen and Kuang [10] discussed differences of solution.

When encountering difficulties in parameter selection, usually, we will solve it via
two entirely different approaches. The first is the nonparametric perturbation method
suggested by Chen [11,12], in which the physical meaning of a parameter is uncertain in
advance, thus naturally eliminating the empirical factors in the parameter selection. That
is to say that the parameter selection is not restricted, and thus, it is “free”, so it is also
called a free parameter perturbation method. The basic idea of another approach is by
doing the opposite; that is, if in a real problem, there are two or more parameters that
may be selected as perturbation parameters, these available parameters may be included
in the perturbation together. The multiparameter perturbation method, thus, appears,
as mentioned at the very beginning. The earlier work may be traced back to a study by
Nowinski and Ismail [13], who solved the large deflection problem of elastic anisotropic
plates by selecting the anisotropy of materials and the load as two perturbation parameters.
The pioneering application of the multiparameter perturbation method to beam problems
was from Chien [14], who successfully solved the classical Euler–Bernoulli equation for the
first time by selecting the load and the height difference of end supports as two perturbation
parameters. Later, by simplifying the governing equation, He and Chen [15] derived a
biparametric perturbation solution for the same problem. To generalize the application of
the biparametric perturbation method to beam problems, He et al. [16] further obtained the
generalized perturbation solutions under various boundary conditions. Considering the
diversity of materials, He et al. [17,18] also used the biparametric perturbation method to
solve the large-deflection thin plate problem, in which the classical materials are extended to
modern materials with certain advanced features, for example, with bimodular functionally
graded properties. Totally speaking, the superiority of a multiparameter perturbation
method is that many factors that have influences on the final result can be considered into
the solution through perturbation. At the same time, with the advantage of the analytical
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solution itself, the influence of these factors can be easily seen in the solution, which greatly
strengthens the convenience of subsequent parameter analysis.

Bimodular material refers to such a material that has the different elastic moduli in
tension and compression. In fact, most materials [19,20], including graphite, concrete,
ceramics, rubber, and some biomedical materials, will present different tensile and com-
pressive strains when they are subjected to tensile and compressive stresses with the same
magnitude. These materials are called, by Jones [21], bimodular materials or multimodulus
materials. Basically, two material models are widely used in theoretical analysis in the field
of engineering. The first is the Bert model [22], which is established on the criterion of
positive–negative signs in the longitudinal strain of fibers. In the analysis of orthotropic
materials and laminated composites [23–25], the Bert model is widely adopted. The second
is the Ambartsumyan model [26], which is established on the criterion of principal stresses’
positive–negative signs, and this model is mainly applicable to isotropic materials. In struc-
tural analysis, the Ambartsumyan model is of particular significance since principal stresses’
positive–negative signs determine whether a certain point in a structure is in tension or in
compression. Our present study is based on the Ambartsumyan model. However, due to
the fact that principal stresses are generally obtained as a final result but not as a known
condition before solving, it is difficult to describe the stress state of a point in advance. Be-
sides, experimental results are also lacking in describing elastic coefficients in the complex
states of stress. In a few simple problems, analytical solutions are available, only concerning
beams and plates [27–29]. In some complex problems, we have to resort to the iterative
technique-based finite element method (FEM). In each iteration, the principal stress state
of each element needs to be judged in order to obtain a new elastic matrix used for the
next iteration. This is the direct iterative method with variable stiffness, which was widely
used in earlier studies, as indicated in the reviews from Ye et al. [30] and Sun et al. [31].
Thereafter, based on the improved constitutive model for different moduli and combined
with the arc-length method, Ma et al. [32] established a finite element iterative program to
determine buckling critical loads of rods with different moduli. Given that the traditional
iteration methods are often difficult in convergence for such kind of constitutive model,
Du et al. [33] established a new computational framework. Their numerical examples
showed that the computational framework proposed can be used to analyze the wrinkling
of thin plane membranes and explain some unusual cell mechanosensing phenomena.

Over the past few decades, functionally graded material (FGM) has become one of the
important research topics in the engineering and technical fields, such as civil engineering,
aerospace, acoustics, and microelectromechanical systems [34–37]. FGM is a new type
of composite materials, composed of two or more materials whose composition usually
presents continuously gradient changes, thus avoiding the interface effect. Most of the
existing studies on structural elements made of FGM focus on beams and plates, but few
consider the bimodular effect from FGM. However, as mentioned above, most materials
can exhibit some bimodular effect, and it is just a matter of whether it is obvious or not, so
FGM seems to be no exception.

Recently, more and more attention has been paid to the bimodular effect of materials in
the analysis field of FGM and corresponding structures, especially bimodular FGM beams
and plates. Aiming at the bimodular FGM plates, He et al. established the small deflection
simplified theory based on the concept of neutral layer [38] and, thereafter, derived the
equations governing the bimodular FGM thin circular plates with large deflections [39].
For a thin plate under large deformation, not only its deflection but also its rotation angle
presents a relatively big value. For this purpose, Li et al. [40] used a single-parameter
perturbation method to solve the Föppl–von Kármán equations without the small-rotation-
angle assumption. On the other hand, some satisfactory progress has also been made
in the application of the multiparameter perturbation method to similar problems. First,
He et al. [17,18] solved the Föppl–von Kármán equations of thin plates with bimodular
functionally graded properties by using the biparametric perturbation method. Thereafter,
Yang et al. [41] solved the bending problem of piezoelectric cantilever beams by using
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the multiparameter perturbation method; He et al. [42] used the same method to solve
the problem of functionally graded, thin, circular piezoelectric plates, in which three
piezoelectric parameters were selected as perturbation parameters. These works showed
that the study of the multiparameter perturbation method is continuously growing. For the
improved Föppl–von Kármán equation that considers the precise curvature formulas from
deformation and the bimodular functionally graded properties from materials, however,
the application of this method has not been reported.

In this study, the improved Föppl–von Kármán equation was solved by using the
biparametric perturbation method. The main aim of this paper is to investigate the appli-
cation of this method to the improved Föppl–von Kármán equations, while the precise
curvature and bimodular functionally graded effect on the mechanical performance of
thin plates do not fall within the scope of this study temporarily. For this purpose, the
whole paper is organized as follows: In the next Section 2, the establishment of improved
Föppl–von Kármán equations is briefly described. For the effective implementation of the
biparametric perturbation method, in Section 3, the relevant parameter variables in the
established equations are expanded into polynomials of the material parameters, and two
sets of perturbation parameter combinations are used for the perturbation. The comparison
of two sets of biparametric solutions and the comparison with a single-parameter solution,
as well as the regression verification, are presented in Section 4. The concluding remarks
are summarized in Section 5.

2. Improved Föppl–von Kármán Equations
2.1. Establishment of Governing Equations

As shown in Figure 1, a bimodular FGM thin circular plate with thickness t and radius
a is subjected to a transversely uniformly distributed load q, in which the location of an
unknown neutral layer of a plate, which will be determined later, is represented by a dotted
dash line at the peripheral of the plate. The neutral layer generally does not coincide with
the geometrical middle plane of the plate due to the introduction of bimodular functionally
graded materials. The origin o of a cylindrical coordinate system (r, φ, z) is placed at
the plate center on the neutral layer, and r, φ, and z are the radial, circumferential, and
transverse coordinates, respectively. Due to the axisymmetry, φ is ignored in Figure 1. The
heights of the tensile and compressive zones are denoted by t1 and t2, respectively, and the
corresponding modulus of the two zones is the tensile and compressive modulus, E+(z)
and E−(z), which are the function of z due to the functionally graded property along the
thickness direction. In order not to lose the generality, the edge constraint condition is
temporarily not given.

Considering the convenience of integral and differential operations, E+(z) and E−(z)
are defined as the following exponent type functions [38]:

E+(z) = E0eα1z/t, E−(z) = E0eα2z/t, (1)

where α1 and α2 are the two graded indices of tensile and compressive zones, and E0 stands
for Young’s modulus of elasticity of the neutral layer. From Equation (1), it is easy to find
that E+(z) = E−(z) = E0 when α1 = α2 = 0 or z = 0. At the same time, following the general
practice, Poisson’s ratio is assumed as two constants, υ+ and υ−, ignoring the variation
along the z direction.
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Figure 1. The bimodular FGM thin circular plate under a uniformly distributed load.

If we isolate a differential element body from the plate shown in Figure 1 and study
its equilibrium conditions, the following three equations of equilibrium may be obtained:

d
dr

(rNr)− Nθ = 0, (2)

d
dr

(rNr sin β) +
d
dr

(rQr)− qr = 0, (3)

and
d
dr

(rMr)−Mθ + rQr = 0, (4)

in which Nr and Nθ are the radial and circumferential force, respectively; Mr and Mθ are
the bending moment along the radial and circumferential direction, respectively; Qr is the
transverse shear force; and β denotes the rotation of the radial force.

If we let σ+/−
r and σ+/−

θ be the radial and circumferential stresses in tensile and
compressive zones, and εr and εθ be the radial and circumferential strain, respectively, the
strain–stress relations give 

σ+/−
r = E+/−(z)

1−(ν+/−)2 (εr + νεθ)

σ+/−
θ = E+/−(z)

1−(ν+/−)2 (εθ + νεr)
. (5)

In addition, the geometrical equations are εr =
du
dr + 1

2

(
dw
dr

)2
+ z

ρr

εθ = u
r + z

ρθ

, (6)
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in which u and w are the radial displacement and transverse displacement or deflection,
respectively, and the precise curvatures for 1/ρr and 1/ρθ are

1
ρr

= − d2w
dr2

[
1 +

(
− dw

dr

)2
]−3/2

1
ρθ

= 1
r sin β = − 1

r
dw
dr

[
1 +

(
− dw

dr

)2
]−1/2 , (7)

in which tan β = −dw/dr.
Substituting Equation (6) into Equation (5) yields

σ+/−
r = E+/−(z)

1−(ν+/−)2

[
du
dr + 1

2

(
dw
dr

)2
+ ν+/− u

r + z
(

1
ρr
+ ν+/− 1

ρθ

)]
σ+/−

θ = E+/−(z)
1−(ν+/−)2

[
u
r + ν+/− du

dr + ν+/−
2

(
dw
dr

)2
+ z
(

1
ρθ

+ ν+/− 1
ρr

)] . (8)

The radial and circumferential force, Nr and Nθ , are the sum of integrals in tensile
zone and compressive areas, that is,{

Nr =
∫ t1

0 σ+
r dz +

∫ 0
−t2

σ−r dz

Nθ =
∫ t1

0 σ+
θ dz +

∫ 0
−t2

σ−θ dz
. (9)

After substituting Equation (8) into Equation (9), Nr and Nθ may be computed as
Nr = A0

[
du
dr + 1

2

(
dw
dr

)2
+ ν+ u

r

]
Nθ = A0

[
u
r + ν+ du

dr + ν+ 1
2

(
dw
dr

)2
] , (10)

where

A0 =
∫ t1

−t2

E+(z)dz =
∫ t1

−t2

E0eα1z/tdz =
E0t
α1

(
eα1 − 1
eα1t2/t

)
. (11)

It should be pointed out that any point of the plate is stretched along the radial and
circumferential directions when the plate is under large deflection. Thus, all integrals along
the z direction should be calculated, based only on the tensile components E+(z). This is the
reason that the only integrand is E+(z). Besides, the integrals of the items containing z are
also equal to zero in Equation (9).

According to a bimodular theory, Mr and Mθ may be computed as, in the form of a
subarea integral: {

Mr =
∫ t1

0 σ+
r zdz +

∫ 0
−t2

σ−r zdz

Mθ =
∫ t1

0 σ+
θ zdz +

∫ 0
−t2

σ−θ zdz
. (12)

Substituting Equation (8) into Equation (12), also considering Equation (1), will yield

Mr = A+
1

[
du
dr + 1

2

(
dw
dr

)2
+ ν+ u

r

]
+ A+

2

(
1
ρr
+ ν+

ρθ

)
+A−1

[
du
dr + 1

2

(
dw
dr

)2
+ ν− u

r

]
+ A−2

(
1
ρr
+ ν−

ρθ

)
Mθ = A+

1

[
u
r + ν+ du

dr + ν+ 1
2

(
dw
dr

)2
]
+ A+

2

(
1
ρθ

+ ν+ 1
ρr

)
+A−1

[
u
r + ν+ du

dr + ν− 1
2

(
dw
dr

)2
]
+ A−2

(
1
ρθ

+ ν− 1
ρr

)
, (13)
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where

A+
1 =

∫ t1
0 zE0eα1z/tdz

1−(ν+)2 = 1
1−(ν+)2

[
E0t2

α2
1
+

(
t1t
α1
− t2

α2
1

)
E0eα1t1/t

]
A−1 =

∫ 0
−t2

zE0eα2z/tdz

1−(ν−)2 = 1
1−(ν−)2

[
− E0t2

α2
2
+

(
t2t
α2

+ t2

α2
2

)
E0e−α2t2/t

]
A+

2 =
∫ t1

0 z2E0eα1z/tdz
1−(ν+)2 = 1

1−(ν+)2

[(
2t3

α3
1
+

t2
1t

α1
− 2t2t1

α2
1

)
E0eα1t1/t − 2E0t3

α3
1

]
A−2 =

∫ 0
−t2

z2E0eα2z/tdz

1−(ν−)2 = 1
1−(ν−)2

[
−
(

2t3

α3
2
+

t2
2t

α2
+ 2t2t2

α2
2

)
E0e−α2t2/t + 2E0t3

α3
2

]
. (14)

Note that the integral of the items containing z in Equation (12) has been determined
as zero, that is, A+

1 + A−1 = 0, since it is exactly the condition used for determining the
unknown neutral layer, according to our previous study [38]. Thus, Mr and Mθ can be
further rewritten as  Mr = A+

2

(
1
ρr
+ ν+

ρθ

)
+ A−2

(
1
ρr
+ ν−

ρθ

)
Mθ = A+

2

(
1
ρθ

+ ν+

ρr

)
+ A−2

(
1
ρθ

+ ν−
ρr

) . (15)

Now, Equations (2)–(4), (10), and (15), seven in total, may be used for u, w, Nr, Nθ , Mr, Mθ ,
and Qr, and the problem is solvable.

First, eliminating the term Qr via Equations (3) and (4), and then substituting Equations
(10) and (15) into the derived equation and also considering the precise curvature formulas
shown in Equation (7), we may obtain the equilibrium equation of the improved Föppl–von
Kármán equations as follows:

D∗ d2

dr2

{
r d2w

dr2

[
1 +

(
− dw

dr

)2
]−3/2

+ν+/− dw
dr

[
1 +

(
− dw

dr

)2
]−1/2

}

−D∗ d
dr

{
1
r

dw
dr

[
1 +

(
− dw

dr

)2
]−1/2

+ν+/− d2w
dr2

[
1 +

(
− dw

dr

)2
]−3/2

}

+ d
dr

{
−rNr

dw
dr

[
1 +

(
− dw

dr

)2
]−1/2

}
− qr = 0

(16)

where
D∗ = A+

2 + A−2 . (17)

Note if we neglect the bending stiffness D*, Equation (16) will be reduced to the out-plane
equation of the equilibrium of a circular membrane problem without the small-rotation-
angle assumption, as shown in Equation (3) in our previous study [43,44].

At the same time, from Equations (2) and (10), we have

u
r
=

1

1− (ν+)2
1

A0
(Nθ − ν+Nr) =

1

1− (ν+)2
1

A0

[
d
dr

(rNr)− ν+Nr

]
. (18)

Substituting u in Equation (18) into the first formula of Equation (10) yields

r
d
dr

[
1
r

d
dr

(
r2Nr

)]
+

A0

2

(
dw
dr

)2
= 0. (19)

which is the compatible equation of the improved Föppl–von Kármán equations.
Lastly, Equations (16) and (19) constitute the improved Föppl–von Kármán equations,

which consider the precise curvature formulas from deformation and the bimodular func-
tionally graded effect from materials. Specifically, when the bimodular functionally graded
properties of the materials disappear, A0 in Equation (19) is reduced to E0t, and D* in
Equation (16) is reduced to the familiar expression, D = E0t3/[12(1 − ν2)]. At the same time,
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the term 1 + (−dw/dr)2 in Equation (16) is approximated as 1 under the small-rotation-angle
assumption. Eventually, Equations (16) and (19) are reduced to the classical Föppl–von
Kármán equations as follows: D

(
d4w
dr4 + 2

r
d3w
dr3 − 1

r2
d2w
dr2 + 1

r3
dw
dr

)
− 1

r
d
dr

(
rNr

dw
dr

)
= q

r d
dr

[
1
r

d
dr
(
r2Nr

)]
+ E0t

2

(
dw
dr

)2
= 0

, (20)

which verifies the correctness of the equations established.

2.2. Equation Simplification and Boundary Conditions

Note that in Equation (16), there are many nonlinear items concerning 1 + (−dw/dr)2,
and their presence will hinder solving the equations; therefore, it is necessary to make a
moderate simplification. To this end, the negative exponential terms in Equation (16) are
expanded in the form of the power series of (−dw/dr)2, that is,

[
1 +

(
− dw

dr

)2
]−3/2

= 1− 3
2

(
− dw

dr

)2
+ . . .[

1 +
(
− dw

dr

)2
]−1/2

= 1− 1
2

(
− dw

dr

)2
+ . . .

(21)

Substituting them into Equation (16), we have

D∗ d2

dr2

{
r d2w

dr2

[
1− 3

2

(
− dw

dr

)2
]
+ν+/− dw

dr

[
1− 1

2

(
− dw

dr

)2
]}

−D∗ d
dr

{
1
r

dw
dr

[
1− 1

2

(
− dw

dr

)2
]
+ν+/− d2w

dr2

[
1− 3

2

(
− dw

dr

)2
]}

+ d
dr

{
−rNr

dw
dr

[
1− 1

2

(
− dw

dr

)2
]}
− qr = 0

(22)

Integrating Equation (22) and also considering the symmetry conditions, dw/dr = 0 and
Nr = 0 at r = 0, will yield

D∗
[

r d3w
dr3 + d2w

dr2 − 1
r

dw
dr − 3r

(
d2w
dr2

)2 dw
dr −

3
2 r d3w

dr3

(
dw
dr

)2
− 3

2
d2w
dr2

(
dw
dr

)2
+ 1

2r

(
dw
dr

)3
]

= 1
2 qr2 + rNr

dw
dr −

1
2 rNr

(
dw
dr

)3 (23)

while the counterpart in the classical Föppl–von Kármán equation is

D
(

r
d3w
dr3 +

d2w
dr2 −

1
r

dw
dr

)
− rNr

dw
dr

=
1
2

qr2. (24)

Obviously, there are many nonlinear items generated in the equation due to the introduction
of precise curvature formulas.

We consider the following four edge constraints, that is, at r = a:

(i) Rigidly clamped,

w = 0,
dw
dr

= 0, u = 0 (25a)

(ii) Movably clamped,

w = 0,
dw
dr

= 0, Nr = 0 (25b)

(iii) Simply hinged,
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w = 0, Mr = 0, u = 0 (25c)

(iv) Simply supported,

w = 0, Mr = 0, Nr = 0. (25d)

Via Equation (18), the condition of u = 0 may be expressed in terms of Nr, that is,

r
dNr

dr
+ (1− ν+)Nr = 0. (26)

Via the first formula of Equation (15), the condition of Mr = 0 may be expressed in terms of
w, that is,

A+
2

(
d2w
dr2 +

ν+

r
dw
dr

)
+ A−2

(
d2w
dr2 +

ν−

r
dw
dr

)
= 0, (27)

in which 1 + (−dw/dr)2 ≈ 1 is adopted to simplify the derivation.

3. Application of Biparametric Perturbation Method
3.1. Nondimensionalization and Perturbation Preparation

We first introduce the dimensionless quantities as follows:

P =
qa4

E0t4 , η = 1− r2

a2 , W =
w
t

, T =
t
a

, S =
Nra2

E0t3 , (28)

and

K =
D∗

E0t3 =
K+ + K−

E0t3 =
A+

2 + A−2
E0t3 , V =

[1− (ν+)
2
]A0

E0t
. (29)

Equations (19) and (23) are transformed into

d2

dη2 [(1− η)S] +
V
2

(
dW
dη

)2
= 0 (30)

and

d2

dη2

[
(1− η)

dW
dη
− 2T2(1− η)2

(
dW
dη

)3
]
= − P

16K
+

S
4K

dW
dη
− T2S

2K

(
dW
dη

)3
. (31)

Considering Equations (10) and (27)–(29), the third of the boundary conditions, that is,
Equation (25c), may be changed as

W = 0, λ1
d2W
dη2 −

dW
dη

= 0, λ2
dS
dη
− S = 0 at η = 0, (32)

where λ1 and λ2 are two parameters newly introduced, and they are [29]

λ1 =
2K

K+(1 + ν+) + K−(1 + ν−)
, λ2 =

2
1− ν+

. (33)

According to our previous study [29], other three boundary conditions (25a,b,d) may
be obtained simply by prescribing λ1 and λ2 as zero, for example, for rigidly clamped,
λ1 = 0; for movably clamped, λ1 = λ2 = 0; and for simply supported, λ2 = 0. Thus, in the
next solving, what we need to do is to seek the solution of Equations (30) and (31) under
the general boundary conditions, that is, Equation (32).
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Besides, at the plate center, the axisymmetric conditions give

dW
dη

= 0( 6= ∞) and S 6= ∞, at η = 1. (34)

Note that there are two important physical quantities, V and K, in Equations (30) and
(31). Among the parameters that constitute V and K, there could be parameters that we
prefer to select, for example, the graded index in the tensile zone, α1. Therefore, according
to our perturbation experiences, V and K need to be expanded as, with respect to α1, [18]{

1
K = E0t3

D++D− = l
(
1 + m1α1 + m2α2

1 + m3α3
1 + · · ·

)
V = eα1−1

α1eα1T2
= 1 + n1α1 + n2α2

1 + n3α3
1 + · · ·

, (35)

where 
l = 3[1−(µ+)

2
]

T1
2 , m1 = −T1

2+kT2
2

2 ,

m2 = (−T1
2+kT2

2)
2

4 − T1
3+k2T2

3

2 , m3 = (T1
2−kT2

2)(T1
3+k2T2

3)
2 − (T1

2−kT2
2)

3

8 ,
n1 = 1

2 − T2, n2 = 1
6 −

T2
2 + T2

2

2 , n3 = 1
24 −

T2
6 + T2

2

4 −
T2

3

6

(36)

where k = α1/α2, and k 6= 1. Now, Equations (30) and (31) are further modified as

d2

dη2 [(1− η)S] +
1
2

(
1 + n1α1 + n2α1

2 + n3α1
3 + · · ·

)(dW
dη

)2
= 0 (37)

and
d2

dη2

[
(1− η) dW

dη − 2T2(1− η)2
(

dW
dη

)3
]

= l
(
1 + m1α1 + m2α1

2 + m3α1
3 + · · ·

)[ S
4

dW
dη −

P
16 −

T2S
2

(
dW
dη

)3
] (38)

3.2. Biparametric Perturbation on α1 with Wm

The two parameters, α1 and Wm, are selected as the perturbation parameters, in which
α1 is the graded index in the tensile zone and Wm is the dimensionless central deflection,
that is,

Wm = (W)η=1 =
(w

t

)
r=0

=
w0

t
. (39)

P, S, and W in Equations (30) and (31) are expressed in the perturbation parameter,

P = P(α1, Wm), W = W(α1, Wm, η), S = S(α1, Wm, η). (40)

Thus, P, S, and W are expanded in the power series of α1 and Wm,

P
16 = P1α1 + P2Wm + P3α1

2 + P4α1Wm + P5Wm
2 + P6α1

3 + P7α1
2Wm + P8α1Wm

2 + P9Wm
3

+P10α1
4 + P11α1

3Wm + P12α1
2Wm

2 + P13α1Wm
3 + P14Wm

4 + P15α1
5 + P16α1

4Wm
+P17α1

3Wm
2 + P18α1

2Wm
3 + P19α1Wm

4 + P20Wm
5 + · · ·

(41)

W = W1α1 + W2Wm + W3α1
2 + W4α1Wm + W5Wm

2 + W6α1
3 + W7α1

2Wm + W8α1Wm
2

+W9Wm
3 + W10α1

4 + W11α1
3Wm + W12α1

2Wm
2 + W13α1Wm

3 + W14Wm
4 + W15α1

5

+W16α1
4Wm + W17α1

3Wm
2 + W18α1

2Wm
3 + W19α1Wm

4 + W20Wm
5 + · · ·

(42)

and

S = S1α1 + S2Wm + S3α1
2 + S4α1Wm + S5Wm

2 + S6α1
3 + S7α1

2Wm + S8α1Wm
2

+S9Wm
3 + S10α1

4 + S11α1
3Wm + S12α1

2Wm
2 + S13α1Wm

3 + S14Wm
4 + S15α1

5

+S16α1
4Wm + S17α1

3Wm
2 + S18α1

2Wm
3 + S19α1Wm

4 + S20Wm
5 + · · ·

(43)
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where Pi (i = 1, 2, 3 . . . ) are undetermined constants, and Wi(η) and Si(η) (i = 1, 2,
3 . . . ) are unknown functions with respect to η. In the expansion of P, the introduc-
tion of 1/16 can make the next calculation easier. Substituting Equations (41)–(43) into
Equations (37) and (38), and also into Equations (32) and (34), a series of decomposed dif-
ferential equations and the corresponding conditions used for solving Pi, Wi(η), and Si(η)
may be obtained.

(I) First-order approximation

(i) The differential equation used for the solution of Si(η) (i = 1, 2) can be obtained
from the coefficient of α1 and Wm in Equation (37):

d2

dη2 [(1− η)Si] = 0, (44)

which should satisfy the boundary conditions (i = 1, 2){
λ2

dSi
dη − Si = 0 at η = 0

Si 6= ∞ at η = 1
; (45)

Thus, the solution give
S1 = S2 = 0. (46)

(ii) The differential equation used for the solution of Pi and Wi(η) (i = 1, 2) can be
obtained from the coefficient of α1 and Wm in Equation (38):

d2

dη2

[
(1− η)

dWi
dη

]
= −lPi (47)

which should be solved under (i = 1, 2) Wi = 0, λ1
d2Wi
dη2 − dWi

dη = 0 at η = 0

W1 = 0, W2 = 1, dWi
dη 6= ∞ at η = 1

; (48)

Thus, we obtain {
P1 = 0, P2 = 4

l(2λ1+1)

W1 = 0, W2 = η2+2λ1η
2λ1+1

. (49)

(II) Second-order approximation

(i) The differential equation used for the solution of Si(η) (i = 3, 4, 5) can be obtained
from the coefficient of α2

1, α1Wm, W2
m in Equation (37):

d2

dη2 [(1− η)S3] +
1
2

(
dW1
dη

)2
= 0

d2

dη2 [(1− η)S4] +
dW1
dη

dW2
dη = 0

d2

dη2 [(1− η)S5] +
1
2

(
dW2
dη

)2
= 0

, (50)

which should satisfy the boundary conditions, that is, Equation (45), in which (i = 3, 4, 5);
thus, the solution gives{

S3 = S4 = 0
S5 = 1

6(2λ1+1)2 [η
3 + (4λ1 + 1)η2 + (6λ1

2 + 4λ1 + 1)η + λ2(6λ1
2 + 4λ1 + 1)] . (51)
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(ii) The differential equation used for the solution of Pi and Wi(η) (i = 3, 4, 5) can be
obtained from the coefficient of α2

1, α1Wm, W2
m in Equation (38):

d2

dη2

[
(1− η) dW3

dη

]
= l S1

4
dW1
dη − l(P3 + P1m1)

d2

dη2

[
(1− η) dW4

dη

]
= l
(

S1
4

dW2
dη + S2

4
dW1
dη

)
− l(P4 + P2m1)

d2

dη2

[
(1− η) dW5

dη

]
= l S2

4
dW2
dη − lP5

(52)

which should be solved under (i = 3, 4, 5) Wi = 0, λ1
d2Wi
dη2 − dWi

dη = 0 at η = 0

Wi = 0, dWi
dη 6= ∞ at η = 1

; (53)

Thus, we obtain {
P3 = P5 = 0, P4 = −4m1

l(2λ1+1)
W3 = W4 = W5 = 0

. (54)

(III) Third-order approximation

(i) The differential equation used for the solution of Si(η) (i = 6, 7, 8, 9) can be obtained
from the coefficient of α3

1, α2
1Wm, α1W2

m, W3
m in Equation (37):

d2

dη2 [(1− η)S6] +
1
2 n1

(
dW1
dη

)2
+ dW1

dη
dW3
dη = 0

d2

dη2 [(1− η)S7] +
dW1
dη

dW4
dη + dW3

dη
dW2
dη + n1

dW1
dη

dW2
dη = 0

d2

dη2 [(1− η)S8] +
dW1
dη

dW5
dη + dW2

dη
dW4
dη + 1

2 n1

(
dW2
dη

)2
= 0

d2

dη2 [(1− η)S9] +
dW2
dη

dW5
dη = 0

, (55)

which should satisfy the boundary conditions, that is, Equation (45), in which (i = 6, 7, 8, 9);
thus, the solution gives{

S6 = S7 = S9 = 0
S8 = n1

6(2λ1+1)2 [η
3 + (4λ1 + 1)η2 + (6λ1

2 + 4λ1 + 1)η + λ2(6λ1
2 + 4λ1 + 1)] . (56)

(ii) The differential equation used for the solution of Pi and Wi(η) (i = 6, 7, 8, 9) can be
obtained from the coefficient of α3

1, α2
1Wm, α1W2

m, W3
m in Equation (38):

d2

dη2

[
(1− η) dW6

dη

]
= l
(

S1
4

dW3
dη + S3

4
dW1
dη + m1

S1
4

dW1
dη

)
− l(P6 + P3m1 + P1m2)

d2

dη2

[
(1− η) dW7

dη − 6T2(1− η)2
(

dW1
dη

)2 dW2
dη

]
= l
(

S1
4

dW4
dη + S2

4
dW3
dη + m1

S2
4

dW1
dη

)
− l(P7 + P4m1 + P2m2)

d2

dη2

[
(1− η) dW8

dη − 6T2(1− η)2 dW1
dη

(
dW2
dη

)2
]

= l
(

S1
4

dW5
dη + S4

4
dW2
dη + m1

S2
4

dW2
dη

)
− l(P8 + P5m1)

d2

dη2

[
(1− η) dW9

dη − 2T2(1− η)2
(

dW2
dη

)3
]
= l
(

S2
4

dW5
dη + m1

S5
4

dW2
dη

)
− lP9

(57)

which should be solved under Equation (53), in which (i = 6, 7, 8, 9); thus, we obtain
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
P6 = P8 = 0, P7 =

4(m2
1−m2)

l(2λ1+1)

P9 = 1
1080l(2λ1+1)4


(69120T2 + 1080lλ2 + 360l)λ1

4+
(−172800T2 + 1620lλ2 + 840l)λ1

3+
(−34560T2 + 1080lλ2 + 825l)λ1

2+
(−17280T2 + 350lλ2 + 388l)λ1 − 3456T2 + 50lλ2 + 73l

 . (58a)



W6 = W7 = W8 = 0

W9 = − 1
4320(2λ1+1)4



(4λ1l + 2l)η6+(
27648T2λ1 + 36λ1

2l + 13824T2 + 30λ1l + 6l
)

η5+(
103680T2λ1

2 + 150λ1
3l + 17280T2λ1

+195λ1
2l − 17280T2 + 90λ1l + 15l

)
η4+ 138240T2λ1

3 + 240lλ1
4 + 240λ1

3lλ2 − 69120T2λ1
2

+480λ1
3l + 280λ1

2lλ2 − 69120T2λ1 + 380λ1
2l

+120λ1lλ2 + 140λ1l + 20lλ2 + 20l

η3+(
−69120T2λ1

2 − 120λ1
3l − 120λ1

2lλ2 + 17280T2λ1
−255λ1

2l − 80λ1lλ2 + 3456T2 − 178λ1l − 20lλ2 − 43l

)
η2+(

−138240T2λ1
3 − 240lλ1

4 − 240λ1
3lλ2 + 34560T2λ1

2

−510λ1
3l − 160λ1

2lλ2 + 6912T2λ1 − 356λ1
2l − 40λ1lλ2 − 86λ1l

)
η



. (58b)

(IV) Fourth-order approximation

(i) The differential equation used for the solution of Si(η) (i = 10, 11, 12, 13, 14) can be
obtained from the coefficient of α4

1, α3
1Wm, α2

1W2
m, α1W3

m, W4
m in Equation (37):

d2

dη2 [(1− η)S10] + dW1
dη

dW6
dη + 1

2

(
dW3
dη

)2
+ n1

dW1
dη

dW3
dη + 1

2 n2

(
dW1
dη

)2
= 0

d2

dη2 [(1− η)S11] + dW1
dη

dW7
dη + dW3

dη
dW4
dη + dW6

dη
dW2
dη

+n1

(
dW1
dη

dW4
dη + dW3

dη
dW2
dη

)
+ n2

dW1
dη

dW2
dη = 0

d2

dη2 [(1− η)S12] + 1
2

(
dW4
dη

)2
+ dW3

dη
dW5
dη + dW1

dη
dW8
dη + dW2

dη
dW7
dη

+n1

(
dW1
dη

dW5
dη + dW4

dη
dW2
dη

)
+ 1

2 n2

(
dW2
dη

)2
= 0

d2

dη2 [(1− η)S13] + dW1
dη

dW9
dη + dW4

dη
dW5
dη + dW8

dη
dW2
dη + n1

dW2
dη

dW5
dη = 0

d2

dη2 [(1− η)S14] + dW2
dη

dW9
dη + 1

2

(
dW5
dη

)2
= 0

(59)

which should satisfy the boundary conditions, that is, Equation (45), in which (i = 10, 11, 12,
13, 14); thus, the solution gives{

S10 = S11 = S13 = 0
S12 = n2

6(2λ1+1)2 [η
3 + (4λ1 + 1)η2 + (6λ1

2 + 4λ1 + 1)η + λ2(6λ1
2 + 4λ1 + 1)] . (60a)
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S14 = − 1

90720(2λ1 + 1)5×

(18lλ1 + 9l)η7 +
(

138240T2λ1 + 204lλ1
2 + 69120T2 + 180lλ1 + 39l

)
η6+(

774144T2λ1
2 + 1092lλ1

3 + 331776T2λ1 + 1506lλ1
2 − 27648T2 + 726lλ1 + 123l

)
η5+(

1741824T2λ1
3 + 2772lλ1

4 + 1512lλ1
3λ2 + 483840T2λ1

2 + 5754lλ1
3 + 1764lλ1

2λ2
−248832T2λ1 + 4656lλ1

2 + 756lλ1λ2 − 27648T2 + 1734lλ1 + 126lλ2 + 249l

)
η4+ 1451520T2λ1

4 + 2520lλ1
5 + 2520lλ1

4λ2 + 1016064T2λ1
3 + 7812lλ1

4

+4452lλ1
3λ2 − 725760T2λ1

2 + 8904lλ1
3 + 2184lλ1

2λ2 − 127872T2λ1 + 4341lλ1
2

+406lλ1λ2 − 3456T2 + 698lλ1 − 14lλ2 − 52l

η3+

 1451520T2λ1
4 + 2520lλ1

5 + 2520lλ1
4λ2 − 919296T2λ1

3 + 4452lλ1
4 + 1092lλ1

3λ2
−241920T2λ1

2 + 1764lλ1
3 − 56lλ1

2λ2 − 31104T2λ1 − 643lλ1
2

−154lλ1λ2 − 3456T2 − 506lλ1 − 14lλ2 − 52l

η2+

 −1451520T2λ1
4 − 2520lλ1

5 − 2520lλ1
4λ2 − 193536T2λ1

3 − 6258lλ1
4

−2268lλ1
3λ2 − 96768T2λ1

2 − 5712lλ1
3 − 896lλ1

2λ2 − 31104T2λ1 − 2449lλ1
2

−154lλ1λ2 − 3456T2 − 506lλ1 − 14lλ2 − 52l

(η + λ2)



(60b)

(ii) The differential equation used for the solution of Pi and Wi(η) (i = 10, 11, 12, 13, 14)
can be obtained from the coefficient of α4

1, α3
1Wm, α2

1W2
m, α1W3

m, W4
m in Equation (38):

d2

dη2

[
(1− η) dW10

dη − 6T2(1− η)2 dW3
dη

(
dW1
dη

)2
]

= l

 S1
4

dW6
dη + S3

4
dW3
dη + S6

4
dW1
dη +

m1

(
S1
4

dW3
dη + S3

4
dW1
dη

)
+ m2

S1
4

dW1
dη

− T2l
2 S1

(
dW1
dη

)3
− l(P10 + P6m1 + P3m2 + P1m3)

(61a)

d2

dη2

[
(1− η) dW11

dη − 6T2(1− η)2
(

dW1
dη

)2 dW4
dη

]
= l

 S1
4

dW7
dη + S3

4
dW4
dη + S6

4
dW2
dη + S4

4
dW3
dη + S7

4
dW1
dη + S2

4
dW6
dη +

m1

(
S1
4

dW4
dη + S2

4
dW3
dη + S3

4
dW2
dη + S4

4
dW1
dη

)
+ m2

(
S1
4

dW2
dη + S2

4
dW1
dη

) 
− T2l

2

[
S2

(
dW1
dη

)3
+ 3S1

dW2
dη

(
dW1
dη

)2
]
− l(P11 + P7m1 + P4m2 + P2m3)

(61b)

d2

dη2

{
(1− η) dW12

dη − 6T2(1− η)2
[

dW3
dη

(
dW2
dη

)2
+ dW5

dη

(
dW1
dη

)2
]}

= l

 S1
4

dW8
dη + S2

4
dW7
dη + S3

4
dW5
dη + S4

4
dW4
dη + S5

4
dW3
dη + S7

4
dW2
dη + S8

4
dW1
dη +

m1

(
S1
4

dW5
dη + S4

4
dW2
dη + S2

4
dW4
dη + S5

4
dW1
dη

)
+ m2

S2
4

dW2
dη


− 3T2l

2

[
S1

dW1
dη

(
dW2
dη

)2
+ S2

dW2
dη

(
dW1
dη

)2
]
− l(P12 + P8m1 + P5m2)

(61c)

d2

dη2

[
(1− η) dW13

dη − 6T2(1− η)2
(

dW2
dη

)2 dW4
dη

]
= l

 S1
4

dW9
dη + S4

4
dW5
dη + S8

4
dW2
dη + S2

4
dW8
dη +

S5
4

dW4
dη + S9

4
dW1
dη + m1

(
S2
4

dW5
dη + S5

4
dW2
dη

) − T2l
2 S1

(
dW2
dη

)3
− l(P13 + P9m1)

(61d)

d2

dη2

[
(1− η)

dW14

dη

]
= l
(

S2

4
dW9

dη
+

S5

4
dW5

dη
+

S9

4
dW2

dη

)
− T2l

2
S2

(
dW2

dη

)3
− lP14 (61e)
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which should be solved under Equation (53), in which (i = 10, 11, 12, 13, 14); thus, we obtain

P10 = P12 = P14 = 0, P11 = − 4(m3
1−2m2m1+m3)

l(2λ1+1)

P13 = 1
1080l(2λ1+1)4


(
−69120m1T2 + (1080λ2 + 360)n1l

)
λ1

4+(
172800m1T2 + (1620λ2 + 840)n1l

)
λ1

3+(
34560m1T2 + (1080λ2 + 825)n1l

)
λ1

2+(
17280m1T2 + (350λ2 + 388)n1l

)
λ1+

3456m1T2 + (50λ2 + 73)n1l


. (62a)



W10 = W11 = W12 = W14 = 0

W13 = − (n1 + m1)

4320(2λ1 + 1)4 ×



(4λ1l + 2l)η6+(
27648T2λ1 + 36λ1

2l + 13824T2 + 30λ1l + 6l
)

η5+(
103680T2λ1

2 + 150λ1
3l + 17280T2λ1+

195λ1
2l − 17280T2 + 90λ1l + 15l

)
η4+ 138240T2λ1

3 + 240lλ1
4 + 240λ1

3lλ2 − 69120T2λ1
2+

480λ1
3l + 280λ1

2lλ2 − 69120T2λ1 + 380λ1
2l+

120λ1lλ2 + 140λ1l + 20lλ2 + 20l

η3+(
−69120T2λ1

2 − 120λ1
3l − 120λ1

2lλ2 + 17280T2λ1
−255λ1

2l − 80λ1lλ2 + 3456T2 − 178λ1l − 20lλ2 − 43l

)
η2+(

−138240T2λ1
3 − 240lλ1

4 − 240λ1
3lλ2 + 34560T2λ1

2 − 510λ1
3l

−160λ1
2lλ2 + 6912T2λ1 − 356λ1

2l − 40λ1lλ2 − 86λ1l

)
η



(62b)

(V) Fifth-order approximation

The differential equation used for the solution of Si(η) (i = 15, 16, 17, 18, 19, 20) can be
obtained from the coefficient of α5

1, α4
1Wm, α3

1W2
m, α2

1W3
m, α1W4

m, W5
m in Equation (37):

d2

dη2 [(1− η)S15] + dW1
dη

dW10
dη + dW3

dη
dW6
dη + 1

2 n1

(
dW3
dη

)2

+n1
dW1
dη

dW6
dη + n2

dW1
dη

dW3
dη + 1

2 n3

(
dW1
dη

)2
= 0

(63a)

d2

dη2 [(1− η)S16] + dW1
dη

dW11
dη + dW2

dη
dW10

dη + dW3
dη

dW7
dη + dW4

dη
dW6
dη

+n1

(
dW1
dη

dW7
dη + dW2

dη
dW6
dη + dW3

dη
dW4
dη

)
+ n2

(
dW1
dη

dW4
dη + dW2

dη
dW3
dη

)
+n3

dW1
dη

dW2
dη = 0

(63b)

d2

dη2 [(1− η)S17] + dW1
dη

dW12
dη + dW2

dη
dW11

dη + dW3
dη

dW8
dη + dW4

dη
dW7
dη + dW5

dη
dW6
dη

+n1

(
dW1
dη

dW8
dη + dW2

dη
dW7
dη + dW3

dη
dW5
dη

)
+ 1

2 n1

(
dW4
dη

)2

+n2

(
dW1
dη

dW5
dη + dW2

dη
dW4
dη

)
+ 1

2 n3

(
dW2
dη

)2
= 0

(63c)

d2

dη2 [(1− η)S18] + dW1
dη

dW13
dη + dW2

dη
dW12

dη + dW3
dη

dW9
dη + dW4

dη
dW8
dη + dW5

dη
dW7
dη

+n1

(
dW1
dη

dW9
dη + dW2

dη
dW8
dη + dW4

dη
dW5
dη

)
+ n2

dW2
dη

dW5
dη = 0

(63d)

d2

dη2 [(1− η)S19] + dW1
dη

dW14
dη + dW2

dη
dW13

dη + dW4
dη

dW9
dη + dW5

dη
dW8
dη

+n1
dW2
dη

dW9
dη + 1

2 n1

(
dW5
dη

)2
= 0

(63e)

d2

dη2 [(1− η)S20] +
dW2

dη

dW14

dη
+

dW5

dη

dW9

dη
= 0 (63f)
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which should satisfy the boundary conditions, that is, Equation (45), in which (i = 15, 16, 17,
18, 19, 20); thus, the solution gives

S15 = S16 = S18 = S20 = 0

S17 = n3
6(2λ1+1)2

[
η3 + (4λ1 + 1)η2+
(6λ1

2 + 4λ1 + 1)η + λ2(6λ1
2 + 4λ1 + 1)

]
(64a)

S19 = − n1+m1
90720(2λ1+1)5×

(18lλ1 + 9l)η7 +
(

138240T2λ1 + 204lλ1
2 + 69120T2 + 180lλ1 + 39l

)
η6+(

774144T2λ1
2 + 1092lλ1

3 + 331776T2λ1 + 1506lλ1
2 − 27648T2 + 726lλ1 + 123l

)
η5+(

1741824T2λ1
3 + 2772lλ1

4 + 1512lλ1
3λ2 + 483840T2λ1

2 + 5754lλ1
3 + 1764lλ1

2λ2−
248832T2λ1 + 4656lλ1

2 + 756lλ1λ2 − 27648T2 + 1734lλ1 + 126lλ2 + 249l

)
η4+ 1451520T2λ1

4 + 2520lλ1
5 + 2520lλ1

4λ2 + 1016064T2λ1
3+

7812lλ1
4 + 4452lλ1

3λ2 − 725760T2λ1
2 + 8904lλ1

3 + 2184lλ1
2λ2−

127872T2λ1 + 4341lλ1
2 + 406lλ1λ2 − 3456T2 + 698lλ1 − 14lλ2 − 52l

η3+

 1451520T2λ1
4 + 2520lλ1

5 + 2520lλ1
4λ2 − 919296T2λ1

3 + 4452lλ1
4+

1092lλ1
3λ2 − 241920T2λ1

2 + 1764lλ1
3 − 56lλ1

2λ2 − 31104T2λ1−
643lλ1

2 − 154lλ1λ2 − 3456T2 − 506lλ1 − 14lλ2 − 52l

η2+

 −1451520T2λ1
4 − 2520lλ1

5 − 2520lλ1
4λ2 − 193536T2λ1

3 − 6258lλ1
4−

2268lλ1
3λ2 − 96768T2λ1

2 − 5712lλ1
3 − 896lλ1

2λ2 − 31104T2λ1−
2449lλ1

2 − 154lλ1λ2 − 3456T2 − 506lλ1 − 14lλ2 − 52l

(η + λ2)



(64b)

Given that the next solving process becomes more complex and the calculation ac-
curacy has been satisfied, we end the computation here. After summarizing the results,
we have

P
16 = 4[1−m1α1−(m2−m1

2)α1
2−(m3−2m1m2+m1

3)α1
3]

l(2λ1+1) Wm

+[1 + (n1 + m1)α1]P9W3
m

(65)

W =
η2 + 2λ1η

2λ1 + 1
Wm + [1 + (n1 + m1)α1]W9W3

m (66)

S = (1 + n1α1 + n2α1
2 + n3α1

3)S5W2
m + [1 + (2n1 + m1)α1]S14W4

m (67)

in which S5, P9, and W9, as well as S14, are shown in Equations (51), (58a), (58b), and (60b),
respectively.

3.3. Biparametric Perturbation on α1 with Pm

Another group of parameter combination, α1 and Pm, is selected as the perturba-
tion parameters, in which α1 is still the graded index in the tensile zone and Pm is the
dimensionless load, that is,

Pm =
qa4

16E0t4 =
P
16

. (68)

W and S in Equations (30) and (31) are expressed in the perturbation parameters,

W = W(α1, Pm, η), S = S(α1, Pm, η). (69)

Thus, W and S are expanded in the form of the power series of α1 and Pm,

W = W1α1 + W2Pm + W3α1
2 + W4α1Pm + W5Pm

2 + W6α1
3 + W7α1

2Pm + W8α1Pm
2 + W9Pm

3

+W10α1
4 + W11α1

3Pm + W12α1
2Pm

2 + W13α1Pm
3 + W14Pm

4 + W15α1
5 + W16α1

4Pm
+W17α1

3Pm
2 + W18α1

2Pm
3 + W19α1Pm

4 + W20Pm
5 + ···

(70)

and
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S = S1α1 + S2Pm + S3α1
2 + S4α1Pm + S5Pm

2 + S6α1
3 + S7α1

2Pm + S8α1Pm
2 + S9Pm

3

+S10α1
4 + S11α1

3Pm + S12α1
2Pm

2 + S13α1Pm
3 + S14Pm

4 + S15α1
5 + S16α1

4Pm
+S17α1

3Pm
2 + S18α1

2Pm
3 + S19α1Pm

4 + S20Pm
5 + ···

(71)

In addition, in the governing equations, Equation (37) remains unchanged, while
Equation (38) needs to be slightly adjusted due to diffident perturbation parameters we
select here. For this purpose, substituting Equation (68) into Equation (38) yields

d2

dη2

[
(1− η) dW

dη − 2T2(1− η)2
(

dW
dη

)3
]

= l
(
1 + m1α1 + m2α1

2 + m3α1
3 + · · ·

)[ S
4

dW
dη − Pm − T2S

2

(
dW
dη

)3
] (72)

The next perturbation steps may follow the process of Section 3.2.

(I) First-order approximation

(i) The differential equation used for the solution of Si(η)(i = 1, 2) can be obtained
from the coefficient of α1 and Pm in Equation (37):

d2

dη2 [(1− η)Si] = 0, (73)

which should satisfy the boundary conditions (i = 1, 2){
λ2

dSi
dη − Si = 0 at η = 0

Si 6= ∞ at η = 1
; (74)

thus, the solution gives
S1 = S2 = 0. (75)

(ii) The differential equation used for the solution of Wi(η) (i = 1, 2) can be obtained
from the coefficient of α1 and Pm in Equation (72):

d2

dη2

[
(1− η) dW1

dη

]
= 0

d2

dη2

[
(1− η) dW2

dη

]
= −l

(76)

which should be solved under (i = 1, 2) Wi = 0, λ1
d2Wi
dη2 − dWi

dη = 0 at η = 0
dWi
dη 6= ∞ at η = 1

; (77)

Thus, we obtain

W1 = 0, W2 =
l(η2 + 2λ1η)

4
. (78)

(II) Second-order approximation

(i) The differential equation used for the solution of Si(η)(i = 3, 4, 5) can be obtained
from the coefficient of α2

1, α1Pm, P2
m in Equation (37):

d2

dη2

[
(1− η)S3

]
+ 1

2

(
dW1
dη

)2
= 0

d2

dη2

[
(1− η)S4

]
+ dW1

dη
dW2
dη = 0

d2

dη2

[
(1− η)S5

]
+ 1

2

(
dW2
dη

)2
= 0

, (79)
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which should satisfy the boundary conditions, that is, Equation (74), in which (i = 3, 4, 5);
thus, the solution gives{

S3 = S4 = 0
S5 = l2

96 [η
3 + (4λ1 + 1)η2 + (6λ2

1 + 4λ1 + 1)η + λ2(6λ2
1 + 4λ1 + 1)]

. (80)

(ii) The differential equation used for the solution of Wi(η) (i = 3, 4, 5) can be obtained
from the coefficient of α2

1, α1Pm, P2
m in Equation (72):

d2

dη2

[
(1− η) dW3

dη

]
= l S1

4
dW1
dη

d2

dη2

[
(1− η) dW4

dη

]
= l
(

S1
4

dW2
dη + S2

4
dW1
dη

)
− lm1

d2

dη2

[
(1− η) dW5

dη

]
= l S2

4
dW2
dη

(81)

which should be solved under Equation (77), in which (i = 3, 4, 5); thus, we obtain

W3 = W5 = 0, W4 =
lm1(η

2 + 2λ1η)

4
. (82)

(III) Third-order approximation

(i) The differential equation used for the solution of Si(η)(i = 6, 7, 8, 9) can be obtained
from the coefficient of α3

1, α2
1Pm, α1P2

m, P3
m in Equation (37):

d2

dη2

[
(1− η)S6

]
+ dW1

dη
dW3
dη + 1

2 n1

(
dW1
dη

)2
= 0

d2

dη2

[
(1− η)S7]

]
+ dW1

dη
dW4
dη + dW3

dη
dW2
dη + n1

dW1
dη

dW2
dη = 0

d2

dη2

[
(1− η)S8

]
+ dW1

dη
dW5
dη + dW4

dη
dW2
dη + 1

2 n1

(
dW2
dη

)2
= 0

d2

dη2

[
(1− η)S9

]
+ dW2

dη
dW5
dη = 0

(83)

which should satisfy the boundary conditions, that is, Equation (74), in which (i = 6, 7, 8, 9);
thus, the solution gives{

S6 = S7 = S9 = 0

S8 = n1S5 = n1l2

96 [η3 + (4λ1 + 1)η2 + (6λ2
1 + 4λ1 + 1)η + λ2(6λ2

1 + 4λ1 + 1)]
. (84)

(ii) The differential equation used for the solution of Wi(η) (i = 6, 7, 8, 9) can be
obtained from the coefficient of α3

1, α2
1Pm, α1P2

m, P3
m in Equation (72):

d2

dη2

(1− η)
dW6

dη
− 2T2(1− η)2

(
dW1

dη

)3
 = l

(
S1

4
dW3

dη
+

S3

4
dW1

dη
+ m1

S1

4
dW1

dη

)
(85a)

d2

dη2

[
(1− η) dW7

dη − 6T2(1− η)2 dW2
dη

(
dW1
dη

)2
]

= l
[

S1
4

dW4
dη + S2

4
dW3
dη + S3

4
dW2
dη + S4

4
dW1
dη + m1

(
S1
4

dW2
dη + S2

4
dW1
dη

)]
− lm2

(85b)

d2

dη2

[
(1− η) dW8

dη − 6T2(1− η)2 dW1
dη

(
dW2
dη

)2
]

= l
(

S1
4

dW5
dη + S2

4
dW4
dη + S4

4
dW2
dη + S5

4
dW1
dη + m1

S2
4

dW2
dη

) (85c)

d2

dη2

(1− η)
dW9

dη
− 2T2(1− η)2

(
dW2

dη

)3
 = l

(
S2

4
dW5

dη
+

S5

4
dW2

dη

)
(85d)

which should be solved under Equation (77), in which (i = 6, 7, 8, 9); thus, we obtain
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

W6 = W8 = 0, W7 =
lm2(η2+2λ1η)

4

W9 = −l4

276840



2η6 +
[
13824T2/l + 6(3λ1 + 1)

]
η5+[

51840T2λ1/l − 17280T2/l + 15
(

5λ1
2 + 4λ1 + 1

)]
η4+[

69120(λ1 − 1)T2λ1/l + 20
(

6λ1
3 + 9λ1

2 + 5λ1 + 1 + λ2

(
6λ1

2 + 4λ1 + 1
))]

η3+[
34560(3λ1 − 1)T2λ1

3/l+
30
(

6λ1
3 + 9λ1

2 + 5λ1 + 1 + λ2

(
18λ1

3 + 18λ1
2 + 7λ1 + 1

)) ](η2 + 2λ1η
)


(86)

(IV) Fourth-order approximation

(i) The differential equation used for the solution of Si(η)(i = 10, 11, 12, 13, 14) can be
obtained from the coefficient of α4

1, α3
1Pm, α2

2P2
m, α1P3

m, P4
m in Equation (37):

d2

dη2

[
(1− η)S10

]
+

dW1

dη

dW6

dη
+

1
2

(
dW3

dη

)2

+ n1
dW1

dη

dW3

dη
+

1
2

n2

(
dW1

dη

)2

= 0, (87a)

d2

dη2

[
(1− η)S11

]
+ dW1

dη
dW7
dη + dW2

dη
dW6
dη + dW3

dη
dW4
dη

+n1

(
dW1
dη

dW4
dη + dW2

dη
dW3
dη

)
+ n2

dW1
dη

dW2
dη = 0

(87b)

d2

dη2

[
(1− η)S12

]
+ dW1

dη
dW8
dη + dW2

dη
dW7
dη + dW3

dη
dW5
dη + 1

2

(
dW4
dη

)2

+n1

(
dW1
dη

dW5
dη + dW2

dη
dW4
dη

)
+ 1

2 n2

(
dW2
dη

)2
= 0

(87c)

d2

dη2

[
(1− η)S13

]
+

dW1

dη

dW9

dη
+

dW2

dη

dW8

dη
+

dW4

dη

dW5

dη
+ n1

dW2

dη

dW5

dη
= 0, (87d)

d2

dη2

[
(1− η)S14

]
+

dW2

dη

dW9

dη
+

1
2

(
dW5

dη

)2

= 0, (87e)

which should satisfy the boundary conditions, that is, Equation (74), in which (i = 10, 11, 12,
13, 14); thus, the solution gives{

S10 = S11 = S13 = 0
S12 = n2S5 = n2l2

96 [η3 + (4λ1 + 1)η2 + (6λ2
1 + 4λ1 + 1)η + λ2(6λ2

1 + 4λ1 + 1)]
, (88a)

S14 =
−l5

7741440
×

3η7+(
23040T2/l + 34λ1 + 13

)
η6+[

9216(14λ1 − 1)T2/l + 182λ1
2 + 160λ1 + 41

]
η5+ (

290304λ1
2 − 64512λ1 − 9216

)
T2/l + 462λ1

3

+728λ1
2 + 412λ1 + 83 + 42λ2

(
6λ1

2 + 4λ1 + 1
) η4+ 9216

(
35λ1

3 − 21λ1
2 − 7λ1 − 1

)
T2/l + 420λ1

4 + 1512λ1
3+

1708λ1
2 + 832λ1 + 153 + 56λ2

(
30λ1

3 + 32λ1
2 + 13λ1 + 2

) η3+ 9216
(

35λ1
4 − 7λ1

3 − 21λ1
2 − 7λ1 − 1

)
T2/l + 2100λ1

4 + 4032λ1
3 + 3108λ1

2+

1112λ1 + 153 + 56λ2

(
90λ1

4 + 120λ1
3 + 67λ1

2 + 18λ1 + 2
) η2+

(
483840λ1

5 − 1128960λ1
4 − 645120λ1

3 − 193536λ1
2 − 64512λ1 − 9216

)
T2/l

+2520λ1
5 + 5880λ1

4 + 6132λ1
3 + 3528λ1

2 + 1112λ1 + 153
+28λ2

(
270λ1

5 + 450λ1
4 + 345λ1

3 + 149λ1
2 + 35λ1 + 4

)
η+


(

483840λ1
5 − 1128960λ1

4 − 645120λ1
3 − 193536λ1

2 − 64512λ1 − 9216
)

T2/l

+3528λ1
2 + 7560λ1

5λ2 + 2520λ1
5 + 1112λ1 + 12600λ1

4λ2 + 1008λ1λ2
+4172λ1

2λ2 + 5880λ1
4 + 6132λ1

3 + 9660λ1
3λ2 + 112λ2 + 153λ2

λ2



(88b)
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(ii) The differential equation used for the solution of Wi(η) (i = 10, 11, 12, 13, 14) can
be obtained from the coefficient of α4

1, α3
1Pm, α2

2P2
m, α1P3

m, P4
m in Equation (72):

d2

dη2

(1− η)
dW10

dη
− 6T2(1− η)2 dW3

dη

(
dW1

dη

)2


= l

S1

4
dW6

dη
+

S3

4
dW3

dη
+

S6

4
dW1

dη
+ m1

(
S1

4
dW3

dη
+

S3

4
dW1

dη

)
+ m2

S1

4
dW1

dη
− T2S1

2

(
dW1

dη

)3
 (89a)

d2

dη2

(1− η)
dW11

dη
− 6T2(1− η)2 dW4

dη

(
dW1

dη

)2


= l


S1
4

dW7
dη + S2

4
dW6
dη + S3

4
dW4
dη + S4

4
dW3
dη + S6

4
dW2
dη + S7

4
dW1
dη +

m1

(
S1
4

dW4
dη + S2

4
dW3
dη + S3

4
dW2
dη + S4

4
dW1
dη

)
+ m2

(
S1
4

dW2
dη + S2

4
dW1
dη

)
−

T2

2

[
S2

(
dW1
dη

)3
+ 3S1

dW2
dη

(
dW1
dη

)2
]

− lm3

(89b)

d2

dη2

(1− η)
dW12

dη
− 6T2(1− η)2 dW1

dη

(
dW2

dη

)2


= l


S1
4

dW8
dη + S2

4
dW7
dη + S3

4
dW5
dη + S4

4
dW4
dη + S5

4
dW3
dη + S7

4
dW2
dη + S8

4
dW1
dη +

m1

(
S1
4

dW5
dη + S2

4
dW4
dη + S4

4
dW2
dη + S5

4
dW1
dη

)
+ m2

S2
4

dW2
dη −

T2

2

[
3S1

dW1
dη

(
dW2
dη

)2
+ 3S2

dW2
dη

(
dW1
dη

)2
]


(89c)

d2

dη2

(1− η)
dW13

dη
− 6T2(1− η)2 dW4

dη

(
dW2

dη

)2


= l


S1
4

dW9
dη + S2

4
dW8
dη + S4

4
dW5
dη + S5

4
dW4
dη + S8

4
dW2
dη + S9

4
dW1
dη +

m1

(
S2
4

dW5
dη + S5

4
dW2
dη

)
− T2

2

[
S1

(
dW2
dη

)3
+ 3S2

dW1
dη

(
dW2
dη

)2
] 

(89d)

d2

dη2

[
(1− η)

dW14

dη

]
= l

S2

4
dW9

dη
+

S5

4
dW5

dη
+

S9

4
dW2

dη
− T2

2
S2

(
dW2

dη

)3
 (89e)

which should be solved under Equation (77), in which (i = 10, 11, 12, 13, 14); thus, we obtain

W10 = W12 = W14 = 0

W11 =
lm3(η2+2λ1η)

4
W13 = (n1 + m1)W9

= − l4(n1+m1)
276840



2η6 +
[
13824T2/l + 6(3λ1 + 1)

]
η5+[

51840λ1T2/l − 17280T2/l + 15
(

5λ1
2 + 4λ1 + 1

)]
η4+[

69120λ1(λ1 − 1)T2/l+
20
(

6λ1
3 + 9λ1

2 + 5λ1 + 1 + λ2

(
6λ1

2 + 4λ1 + 1
)) ]η3+[

34560λ1
3(3λ1 − 1)T2/l+

30
(

6λ1
3 + 9λ1

2 + 5λ1 + 1 + λ2

(
18λ1

3 + 18λ1
2 + 7λ1 + 1

)) ](η2 + 2λ1η
)



(90)
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(V) Fifth-order approximation

The differential equation used for the solution of Si(η)(i = 15, 16, 17, 18, 19, 20) can be
obtained from the coefficient of α5

1, α4
1Pm, α3

2P2
m, α2

2P3
m, α1P4

m, P5
m in Equation (37):

d2

dη2

[
(1− η)S15

]
+ dW1

dη
dW10

dη + dW3
dη

dW6
dη + n1

dW1
dη

dW6
dη

+n2
dW1
dη

dW3
dη + 1

2 n1

(
dW3
dη

)2
+ 1

2 n3

(
dW1
dη

)2
= 0

, (91a)

d2

dη2

[
(1− η)S16

]
+ dW1

dη
dW11

dη + dW2
dη

dW10
dη + dW3

dη
dW7
dη + dW4

dη
dW6
dη

+n1

(
dW1
dη

dW7
dη + dW2

dη
dW6
dη + dW3

dη
dW4
dη

)
+n2

(
dW1
dη

dW4
dη + dW2

dη
dW3
dη

)
+ n3

dW1
dη

dW2
dη = 0

(91b)

d2

dη2

[
(1− η)S17

]
+ dW1

dη
dW12

dη + dW2
dη

dW11
dη + dW3

dη
dW8
dη + dW4

dη
dW7
dη + dW5

dη
dW6
dη

+n1

[
dW1
dη

dW8
dη + dW2

dη
dW7
dη + dW3

dη
dW5
dη + 1

2

(
dW4
dη

)2
]

+n2

(
dW1
dη

dW5
dη + dW2

dη
dW4
dη

)
+ 1

2 n3

(
dW2
dη

)2
= 0

(91c)

d2

dη2

[
(1− η)S18

]
+ dW1

dη
dW13

dη + dW2
dη

dW12
dη + dW3

dη
dW9
dη + dW4

dη
dW8
dη + dW5

dη
dW7
dη

+n1

(
dW1
dη

dW9
dη + dW2

dη
dW8
dη + dW4

dη
dW5
dη

)
+ n2

dW2
dη

dW5
dη = 0

(91d)

d2

dη2

[
(1− η)S19

]
+ dW1

dη
dW14

dη + dW2
dη

dW13
dη + dW4

dη
dW9
dη + dW5

dη
dW8
dη

+n1
dW2
dη

dW9
dη + 1

2 n1

(
dW5
dη

)2
= 0

(91e)

d2

dη2

[
(1− η)S20

]
+

dW2

dη

dW14

dη
+

dW5

dη

dW9

dη
= 0, (91f)

which should satisfy the boundary conditions, that is, Equation (74), in which (i = 15, 16, 17,
18, 19, 20); thus, the solution gives{

S15 = S16 = S18 = S20 = 0
S17 = n3S5 = n3l2

96
[
η3 + (4λ1 + 1)η2 + (6λ2

1 + 4λ1 + 1)η + λ2(6λ2
1 + 4λ1 + 1)

] (92a)

S19 = − l5(n1 + m1)

7741440
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3η7 +
(
23040T2/l + 34λ1 + 13

)
η6 +

[
9216(14λ1 − 1)T2/l + 182λ1

2 + 160λ1 + 41
]
η5+ (

290304λ1
2 − 64512λ1 − 9216

)
T2/l + 462λ1

3

+728λ1
2 + 412λ1 + 83 + 42λ2

(
6λ1

2 + 4λ1 + 1
) η4+ 9216

(
35λ1

3 − 21λ1
2 − 7λ1 − 1

)
T2/l + 420λ1

4 + 1512λ1
3+

1708λ1
2 + 832λ1 + 153 + 56λ2

(
30λ1

3 + 32λ1
2 + 13λ1 + 2

) η3+ 9216
(

35λ1
4 − 7λ1

3 − 21λ1
2 − 7λ1 − 1

)
T2/l + 2100λ1

4 + 4032λ1
3 + 3108λ1

2+

1112λ1 + 153 + 56λ2

(
90λ1

4 + 120λ1
3 + 67λ1

2 + 18λ1 + 2
) η2+

(
483840λ1

5 − 1128960λ1
4 − 645120λ1

3 − 193536λ1
2 − 64512λ1 − 9216

)
T2/l

+2520λ1
5 + 5880λ1

4 + 6132λ1
3 + 3528λ1

2 + 1112λ1 + 153
+28λ2

(
270λ1

5 + 450λ1
4 + 345λ1

3 + 149λ1
2 + 35λ1 + 4

)
η+


(

483840λ1
5 − 1128960λ1

4 − 645120λ1
3 − 193536λ1

2 − 64512λ1 − 9216
)

T2/l

+3528λ1
2 + 7560λ1

5λ2 + 2520λ1
5 + 1112λ1 + 12600λ1

4λ2 + 1008λ1λ2
+4172λ1

2λ2 + 5880λ1
4 + 6132λ1

3 + 9660λ1
3λ2 + 112λ2 + 153λ2

λ2



(92b)
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Similarly, we end the computation here. After summarizing the results, we have

W =
(

1 + m1α1 + m2α1
2 + m3α1

3
)(

η2 + 2λ1η
) l

4
Pm + [1 + (n1 + m1)α1]W9P3

m (93)

S =
(

1 + n1α1 + n2α1
2 + n3α1

3
)

S5P2
m + [1 + (2n1 + m1)α1]S14P4

m (94)

in which W9, S5, S14 are shown in Equations (86), (80), and (88b), respectively.

4. Comparisons and Discussions
4.1. Comparison of Two Biparametric Perturbation Solutions

The biparametric perturbation solution based on α1 and Wm is shown in Equations
(65)–(67), while another biparametric perturbation solution based on α1 and Pm is shown in
Equations (93) and (94). It is interesting to compare the two solutions and try to find the
difference due to the different parameter combinations.

Let us focus our attention on the relation of load vs. central deflection, that is, P~Wm,
which is of importance for the analysis and design of thin plates. We first notice that, for
the solution based on α1 and Wm, the relation of P~Wm has been obtained since this relation
is explicitly given in Equation (65), but for the solution based on α1 and Pm, this relation
in Equation (93) is implicit. Thus, we may obtain this relation by further mathematical
treatment. To this end, we let η = 1 in Equation (93), also substituting W9 at η = 1 into it,
thus yielding

Wm = (1 + m1α1 + m2α1
2 + m3α1

3) l(1+2λ1)
4 Pm

− 1+(n1+m1)α1
276480

 3456(20λ4
1 − 50λ3

1 − 10λ2
1 − 5λ1 − 1)T2/l

+360λ4
1 + 840λ3

1 + 825λ2
1 + 388λ1 + 73

+10λ2(108λ4
1 + 162λ3

1 + 108λ2
1 + 35λ1 + 5)

P3
m

(95)

The inversion transform of Equation (95) will give, after ignoring higher-order terms
and also considering Equation (68),

Pm = P
16 = 4

(1+m1α1+m2α1
2+m3α1

3)l(1+2λ1)
Wm

+ 1+(n1+m1)α1

1080(1+2λ1)
4(1+m1α1+m2α1

2+m3α1
3)

4× 3456(20λ4
1 − 50λ3

1 − 10λ2
1 − 5λ1 − 1)T2/l

+360λ4
1 + 840λ3

1 + 825λ2
1 + 388λ1 + 73

+10λ2(108λ4
1 + 162λ3

1 + 108λ2
1 + 35λ1 + 5)

W3
m

(96)

while, at the same time, Equation (65) gives, after substituting P9 into it,

P
16 = 4[1−m1α1−(m2−m1

2)α1
2−(m3−2m1m2+m1

3)α1
3]

l(2λ1+1) Wm

+ 1+(n1+m1)α1

1080l(2λ1+1)4


(69120T2 + 1080lλ2 + 360l)λ1

4+
(−172800T2 + 1620lλ2 + 840l)λ1

3+
(−34560T2 + 1080lλ2 + 825l)λ1

2+
(−17280T2 + 350lλ2 + 388l)λ1 − 3456T2 + 50lλ2 + 73l

W3
m

(97)

It is easy to see that the structural forms of the two solutions are the same, both giving
the similar relation; that is, the load is the sum of the terms of Wm and Wm

3, only with the
coefficient differences of Wm and Wm

3. For the coefficient of Wm, if we spread, in the form
of power series, (1 + m1α1 + m2α2

1 + m3α3
1)
−1 in Equation (96), then the expression in the

numerator of the coefficient of Wm in Equation (97) may be obtained, thus verifying the
consistency of the term Wm. For the coefficient of Wm

3, due to the fact that mi (i = 1, 2, 3)
and α1 all are small quantities, (1 + m1α1 + m2α2

1 + m3α3
1)

4 of Wm
3 in Equation (96) may be

approximated as 1; thus, the only difference is embodied in expressions in square brackets,
which may be caused by different perturbation parameter combinations. We have to accept
the existence of this difference; at least the difference is not very big.



Mathematics 2022, 10, 3459 23 of 26

4.2. Comparison with Single-Parameter Perturbation Solution

In our previous study [40], only one parameter Wm is selected to carry out the pertur-
bation solving; the result of P~Wm is as follows:

P
16 = 4K

2λ1+1 Wm

+ W3
m

1080(2 λ1+1)4

 V
(

1080 λ1
4λ2 + 360 λ1

4 + 1620 λ1
3λ2 + 840 λ1

3 + 1080 λ1
2λ2

+825 λ1
2 + 350 λ1λ2 + 388 λ1 + 50λ2 + 73

)
+KT2 (69120 λ1

4 − 172800 λ1
3 − 34560 λ1

2 − 17280 λ1 − 3456
)

 (98)

in which K and V have the same meaning as this study, but without the expansions with
respect to α1. If we substitute the expansions of K and V, that is, Equation (35), into
Equation (98), we will have

P
16 = 4

2λ1+1
1

l(1+m1α1+m2α2
1+...)

Wm

+ W3
m

1080(2λ1+1)4


(
1 + n1α1 + n2α2

1 + ...
) 1080λ1

4λ2 + 360λ1
4 + 1620λ1

3λ2+

840λ1
3 + 1080λ1

2λ2 + 825λ1
2+

350λ1λ2 + 388λ1 + 50λ2 + 73


+ T2

l(1+m1α1+m2α2
1+...)

(
69120λ1

4 − 172800λ1
3−

34560λ1
2 − 17280λ1 − 3456

)


(99)

If we compare Equation (99) with Equation (96) or (97), once again, it is easy to see
that the term of Wm is the same, and the term of Wm

3 has slight differences, which is mainly
reflected in the introduction of K and V expansions and may be caused by the biparametric
perturbation.

4.3. Regression Verification

In the improved Föppl–von Kármán equations, the parameter T plays an important
role, which serves as a bridge to connect the Föppl–von Kármán equations considering
precise curvature with its counterpart considering approximate curvature. Simply speaking,
letting T = 0 in Equations (96) and (97) will yield, respectively,

Pm = P
16 = 4

(1+m1α1+m2α1
2+m3α1

3)l(1+2λ1)
Wm

+ 1+(n1+m1)α1

1080(1+2λ1)
4(1+m1α1+m2α1

2+m3α1
3)

4×[
+360λ4

1 + 840λ3
1 + 825λ2

1 + 388λ1 + 73
+10λ2(108λ4

1 + 162λ3
1 + 108λ2

1 + 35λ1 + 5)

]
W3

m

(100)

and

P
16 = 4[1−m1α1−(m2−m1

2)α1
2−(m3−2m1m2+m1

3)α1
3]

l(2λ1+1) Wm

+ 1+(n1+m1)α1

1080l(2λ1+1)4

[
(1080lλ2 + 360l)λ1

4 + (1620lλ2 + 840l)λ1
3+

(1080lλ2 + 825l)λ1
2 + (350lλ2 + 388l)λ1 + 50lλ2 + 73l

]
W3

m
(101)

which agrees with the solutions of the Föppl–von Kármán equations considering approxi-
mate curvature, that is, Equations (73) and (103) from [18]. This agreement indicates that
the biparametric perturbation solutions derived in this study are basically correct, from the
viewpoint of regression of solution.

5. Concluding Remarks

In this study, we applied the biparametric perturbation method to solve the improved
Föppl–von Kármán equations considering the precise curvature formulas from deformation
and the bimodular functionally graded properties from materials. To clearly demonstrate
the application of the biparametric perturbation method, two groups of parameter combi-
nations are adopted to obtain two different forms of biparametric perturbation solutions.
The following three conclusions can be drawn:
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(i) The biparametric perturbation solution based on α1 and Wm is consistent with another
solution based on α1 and Pm, but two groups of parameter combinations have their
own advantages. From the solution on α1 and Wm, the important relation of P~Wm is
easily obtained since it has been explicit in the solution, while for the solution on α1
and Pm, the relation of P~Wm is existed implicitly in the solution.

(ii) The biparametric perturbation solution is consistent with the single-parameter per-
turbation solution. Although the selection for multiple parameters makes the per-
turbation process more complex, the participation of multiple parameters enables us
to capture the influence of each factor. This undoubtedly brings convenience to the
subsequent parameter analysis.

(iii) Parameters should be chosen with caution, thus combining to achieve an effective
perturbation. However, this effectiveness is limited by the respective properties of
each parameter and their interrelationships. For example, α1 and Wm are a set of
successful combination in this study, achieving a better convergence, in which α1
stands for material property and Wm stands for geometrical characteristic, and they
are independent of each other. Another set of α1 and Pm has the same asymptotic
effect, and they are not dependent of each other. However, if we try to combine Wm
and Pm as a set of parameter combination, we will inevitably encounter undesired
results. The reason is the fact that the two parameters are not essentially independent
of each other, so the perturbation is doomed to fail.

There is no denying that the calculation process of the parametric perturbation method
is somewhat lengthy and annoying. At the same time, this disadvantage is exacerbated by
the introduction of multiple perturbation parameters. These two facts may be regarded
as the limitations of the multiparameter perturbation proposed. However, the solution is
analytical and asymptotic in nature. With the approximation of each order, the influence
of a parameter on the solution is shown step by step, and the property of the solution is
gradually revealed, which is the intrinsic charm of the perturbation method.

The multiparameter perturbation method proposed in this work attributes to a regular
perturbation method, which is one of two important divisions of perturbation. Another is
the singular perturbation (including the matching asymptotic expansion method and the de-
formation coordinate method), which is widely used in the field of fluid mechanics [45–48],
for example, the boundary layer problem. When the singular perturbation method is
applied to these problems, there exists also a parameter selection issue. From this perspec-
tive, the multiparameter perturbation can also be attempted to generalize to the singular
perturbation method.

In many industrial applications, the large deformation problem of flexible elements
can be found everywhere, and the materials that compose them are also diverse. This work
is helpful in analyzing the large deformation problem of flexible platelike elements with
bimodular functionally graded properties, and the multiparameter perturbation formulas
may be served as a theoretical reference for designers and engineers from applied fields.
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