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Abstract: Magnetic Particle Imaging is an imaging modality that exploits the non-linear magnetiza-
tion response of superparamagnetic nanoparticles to a dynamic magnetic field. In the multivariate
case, measurement-based reconstruction approaches are common and involve a system matrix whose
acquisition is time consuming and needs to be repeated whenever the scanning setup changes. Our
approach relies on reconstruction formulae derived from a mathematical model of the MPI signal
encoding. A particular feature of the reconstruction formulae and the corresponding algorithms is
that these are independent of the particular scanning trajectories. In this paper, we present basic ways
of leveraging this independence property to enhance the quality of the reconstruction by merging
data from different scans. In particular, we show how to combine scans of the same specimen
under different rotation angles. We demonstrate the potential of the proposed techniques with
numerical experiments.

Keywords: magnetic particle imaging; model-based reconstruction; total variation; phase space;
inverse problems
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1. Introduction

Magnetic Particle Imaging (MPI) is an emerging imaging modality which has become
a vivid and interdisciplinary field of research since its introduction with the seminal work
by Gleich and Weizenecker [1]. The imaging task of MPI is to reconstruct the spatial
distribution of paramagnetic nanoparticles from measurements of a voltage induced by
the non-linear magnetization response of these particles when a magnetic field is applied
during an MPI scan. The magnetic particles are injected into the specimen before the scan.
After reconstruction, the spatial distribution of the particles provides a means to visualize
the interior of the specimen, e.g., the system of blood vessels. Potential applications of
MPI entail tracer-based diagnostics such as cancer detection or blood flow imaging [2], or
quantitative stem cell imaging [3]. Brain applications such as MPI-assisted stroke detection
or monitoring may be feasible in the near future with a recently developed human-sized
MPI scanner as demonstrated by [4].

MPI is an auspicious technique as it provides certain advantages compared with
established imaging methods: (i) MPI offers high spatial and temporal resolution; (ii) in
contrast to methods such as PET [5] or SPECT [6], the specimen is not exposed to radioactive
tracers or radiation.

Regarding the reconstruction of the spatial distribution of the magnetic particles
measurement-based approaches are common in the multivariate 2D and 3D setups. Such
measurement-based approaches use a so-called system matrix which is acquired during a
time-consuming procedure: every column of the system matrix corresponds to a voxel in
the field of view and for every voxel a delta probe has to be scanned [7–10]. Scan data of a
specimen provides the right-hand side of the linear system corresponding to the system
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matrix. Regularized inversion [11,12] of this linear system yields the reconstruction of the
spatial particle distribution.

In common scan setups the physical field of view has usually a side length of about
10 mm. Enlarging the effective field of view is thus an important research topic. Cur-
rently, so-called multi-patch scan sequences [13,14] are employed which stitch together
reconstructions of different patches.

Because the acquisition procedure outlined above is rather expensive, especially
if high resolution reconstructions are requested in the multivariate case, model-based
techniques are advisable. Model-based approaches to reconstruction have been considered
in [15–21]. For the multivariate setup the early model-based algorithms essentially simulate
the columns of the system matrix. Actual reconstruction formulae were given initially only
for the 1D setup [15] by exploiting a relationship of the 1D model to Chebyshev polynomials.
The authors’ preliminary work [22] has provided reconstruction formulae for the 2D and
3D scenarios. Moreover, Ref. [22] has demonstrated a first algorithm which is based on
these reconstruction formulae and features two stages: Stage 1, the MPI core operator is
estimated by employing a local least squares (LLSq) fit. Stage 2, the reconstruction of the
spatial particle distribution is performed by regularized deconvolution of the result from
Stage 1. In the conference paper [23], a variational approach to Stage 1 was proposed which
makes the technique more flexible.

Regularization plays a prominent role regarding image reconstruction in general
and MPI in particular. This is because either approach, measurement-based or model-
based, provides an inverse problem which is ill-posed (or ill-conditioned in a discrete
setting), i.e., we have to deal with severe amplification of measurement noise or other small
perturbations contained in the measured data [24,25].

In this paper we propose a quality-enhancing technique based on the combination
of multiple trajectories using a model-based reconstruction as introduced in [22]. More
precisely, we make the following contributions: (i) extension of the algorithmic frame-
work of [22,23], (ii) development of a model-based reconstruction scheme for quality-
enhancement by combination of multiple scans along different trajectories, and (iii) demon-
stration of the technique’s potential by numerical experiments. Concerning (i), we extend
the two-stage scheme of [22] by a TV-smooth regularization in Stage 2. This comple-
ments [23] whose focus was the variational inpainting-type reconstruction of Stage 1.
Concerning (ii), the strategy for quality-enhancement relies on two facts: First, the model
of [22] exhibits a beneficial feature, namely that is independent of the chosen scan trajecto-
ries. Second, the temporal causality of scan trajectories is not relevant to our algorithms
since the data samples are processed as point cloud in extended phase space (measured
data, position, velocity). These two features make it possible to combine the collected data
from different scan trajectories for the model-based reconstruction scheme to enhance the
quality of reconstructions. Different trajectories may be obtained via simple geometric
transformations such as translations and rotations. In particular, we propose to employ
rotations. We work out this case in detail. These rigid body transformations may also be
emulated in practice without changing the settings of the MPI-scanner but by placing the
specimen in a rotated or shifted position. We note that it may be advisable to practitioners
to work with rotations, too. Moreover, we point out that data from multi-patch sequences
which basically employ shifted versions of a standard scan trajectory can in principle be
handled by our method. Finally, concerning (iii), we demonstrate the technique’s poten-
tial to enhance the quality of reconstructions through computational experiments with
simulated data.

The paper is organized as follows: In Section 2 we collect the mathematical pre-
requisites; in particular, a concise review of the mathematical model of MPI and the
reconstruction formulae is given. In Section 3 we present and extend the two-stage algo-
rithmic model-based variational reconstruction framework proposed by the authors. More
precisely, the mathematical structure and the variational formulation of the two-stage re-
construction are the topics of Section 3.1. In Section 3.2 we provide details on the numerical
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treatment of the mathematical subproblems. Section 4 explicates firstly the general merging
property, i.e., how data from multiple scans can be combined within our model-based
reconstruction technique. Secondly, it explains how scans of rotated versions of a specimen
can be merged. In Section 5 we discuss the results of the computational experiments. We
show with different experiments how the use of rotations can improve the reconstruction
quality with respect to object shape as well as particle concentration. Finally, in Sections 6
and 7 we provide a discussion and conclusions, respectively.

2. Materials and Methods

In this section we briefly review the mathematical model we employ; in particular, we
discuss its analytical properties and the reconstruction formulae of [22] which we use in
this paper.

2.1. Signal Encoding

Magnetic Particle Imaging exploits the non-linearity of the magnetization response
from superparamagnetic particles to an applied magnetic field H(x, t) ∈ R3 which varies
spatially and temporally. For a schematic on the measurement process we refer for instance
to the authors’ paper [22] and to the book [2] for further details. The applied field H(x, t) =
Gx + HD(t) is the superposition of a linear static field Gx and a dynamic controllable
drive field HD(t). In this article we consider the field free point (FFP) setup of an MPI
scanner which is currently a commonly used setup (cf. [26]). In the FFP setup the matrix
G ∈ R3×3 is non-singular. Consequently, the location where the applied field vanishes at
time t is the unique point given by r(t) = −G−1HD(t) ∈ R3 and is called the field free
point. Because the FFP is uniquely determined by the dynamic drive field HD(t) and also
the other way around the drive field HD(t) = −Gr(t) by the FFP, the applied field can be
expressed as H(x, t) = G(x− r(t)) (cf. x-space formulation [18,19]), which we use here.
After preparation with a solution of magnetic particles the specimen is placed in the field
of view (FOV) of the MPI scanner. During the scan the field free point is a sensitive spot
where the magnetization response of the particles has a steep rise in magnitude and thus a
strong gradient. The magnetization response M(x, t) ∈ R3 is described by the Langevin
theory of paramagnetism [27,28] and reads as

M(x, t) = ρ(x) m L
(
|H(x, t)|

Hsat

)
H(x, t)
|H(x, t)| , L(ξ) = coth(ξ)− 1

ξ
. (1)

Equation (1) involves different quantities which are: the spatial distribution ρ of the
magnetic particles, the magnetic moment m of a single particle, and Hsat which is a com-
bined saturation parameter depending on the diameter and the saturation magnetization
of the particles as well as on the temperature. The Langevin function L(ξ) is a sigmoid
function with a steep rise at ξ = 0. The magnetization response M(x, t) is aligned with the
applied field, but its magnitude is affected essentially by ρ and L.

An MPI scanner has typically three recording coils where the MPI data is measured.
The measured data is the voltage induced in the recording coils stemming from the negative
rate of change of the magnetic flux, according to Faraday’s law. With Faraday’s law the
induced voltage is the superposition of two parts: the first part involves only the applied
field, while the second part involves the magnetization response as of Equation (1). Because
only the second part depends on ρ, i.e., the image which we want to reconstruct, we remove
the first part by subtracting a reference signal from an empty scan. That is, after subtraction,
we are given time-dependent data s(t) ∈ R3 which relates to the particle distribution ρ by

s(t) = − d
dt

µ0

∫
R3

M(x, t) dx = µ0 m
d
dt

∫
R3

ρ(x) L
(
|G(r(t)− x)|

Hsat

)
G(r(t)− x)
|G(r(t)− x)| dx. (2)

In other words, the underlying signal ρ(x) is encoded in the data s(t) via Equation (2).
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2.2. MPI Core Operator and Reconstruction Formulae

We employ Equation (2) as basis for the reconstruction of the particle distribution ρ(x)
from measured data s(t). To this end, we transform and non-dimensional Equation (2) into
the following more convenient form

s(t) =
d
dt

∫
R3

ρ(x) L
(
|r(t)− x|

h

)
r(t)− x
|r(t)− x| dx. (3)

This transformation is achieved by a change of variables (cf. [22] for the details). The
remaining quantities are then dimensionless and we reuse the previous symbols to denote
them as well. The parameter h > 0 is also dimensionless and constitutes a resolution
parameter. From Equation (3) we infer the MPI Core Operator A[ρ](r) ∈ R3×3 which
reads as

s(t) = A[ρ](r(t)) r′(t), A[ρ](r) =
∫
R3

ρ(x) ∇r

(
L
(
|r− x|

h

)
r− x
|r− x|

)
dx. (4)

Here we want to emphasize that the MPI Core Operator A[ρ](r) does not depend on
the particular choice of the scanning trajectory t→ r(t), but only on the point r = r(t). A
further insight of [22] has been that the trace of the matrix valued core operator A[ρ](r)
contains all information about ρ(x). Moreover, the trace of A[ρ](r) is related to ρ via
convolution κh ∗ ρ with the kernel κh as follows

κh ∗ ρ = trace(A[ρ]), where κh(y) = div
(
L
(
|y|
h

)
y
|y|

)
. (5)

Equation (5) implies the following reconstruction formula: let data u = trace(A[ρ]) be
given, then we obtain ρ from deconvolution of u with the kernel κh. We point out that the
regularized variant of this reconstruction formula is a key ingredient for the algorithmic
reconstruction scheme below; cf. Equation (9). Moreover, the kernel is an analytic function
on R3, cf. [22].

3. Algorithmic Framework and Numerical Realization

In this section we recall and extend an algorithmic model-based reconstruction frame-
work proposed by the authors in [23] which is based on the above reconstruction formulae
in Equation (5) using suitable regularization. In particular, we describe a two stage scheme
for which we provide both the variational models as well as information on discretization
and concrete numerical realization.

3.1. Model-Based Reconstruction Framework

Equations (4) and (5) state the mathematical relationships between the measured data,
the MPI Core Operator A[ρ](r) and the distribution ρ(x) of particles. They form the basis
of a model-based algorithmic framework consisting of two stages. Stage 1 implements the
reconstruction of the MPI Core Operator A[ρ](r) using Equation (4). Stage 2 implements
the reconstruction of ρ(x) using Equation (5) with data u = trace A[ρ] obtained in Stage 1.
We point out that in algorithmic realizations regularization is necessary due to ill-posedness
(cf. [22]). In what follows we discuss the details of these two stages.

Stage 1: Reconstruction of the MPI Core Operator. The aim is to reconstruct the MPI
Core Operator A[ρ](r) from a time series of measured data sk = s(tk). By Equation (4), the
data is related to a sampling of the core operator as follows

sk = A[ρ](rk)vk, for k ∈ {1, . . . , L}, (6)

where rk = r(tk) and vk = r′(tk) denote the corresponding samples of the scan trajectory
and the velocity, respectively.
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We have two different approaches for the reconstruction of A[ρ](r) on a grid over the
FOV: the Local Least Squares (LLSq) of [22] and the variational approach of [23]. With the
LLSq technique all cells (pixels or voxels) are treated independently and samples sk, vk
are associated with a cell Ci (or its center xi) whenever the corresponding position rk is
located in Ci. For every cell Ci we collect the associated data samples sk as columns of the
matrix Si and accordingly the velocities vk as columns of the matrix Vi. With the additional
assumption that the matrix field A is constant on each cell Ci, we obtain Ai ≈ A[ρ](xi) as
the least squares solution of

Si = AiVi. (7)

The trace field, i.e., the piecewise constant scalar field ui = trace(Ai) is the data for
the second stage. Note that the LLSq approach will only work on grids defined such that
each grid cell Ci contains at least two data points. The latter condition can be restrictive in
the case of unevenly or sparsely sampled data.

In [23] we proposed a variational (inpainting type) approach to reconstruct the core
operator which does not impose restrictions on the grid; in particular, it is not required that
each grid cell contains sufficient data. We obtain the estimate for the core operator A as the
minimizer of the following functional J[A], i.e.,

A = arg min
Â

J
[
Â
]
, where J

[
Â
]
=

λ

N
‖DÂ‖2

2︸ ︷︷ ︸
=:R[Â]

+
1
L

L

∑
k=1

∣∣sk − I
[
Â
]
(rk)vk

∣∣2
︸ ︷︷ ︸

=:F[Â]

. (8)

Here, N denotes the number of total cells, and L the number of data samples. The
argument Â is again constant on each grid cell. The matrix D is given as the discretization
of the gradient operator by first differences. Thus, the regularizing term R

[
Â
]

given by the
left-hand summand in Equation (8) enforces smoothness and fills small gaps by taking a
neighborhood relationship between cells into account. The symbol λ > 0 is a regularization
parameter (hyperparameter) regulating the trade-off between regularization and data-
fidelity. The data fidelity term F

[
Â
]

given by the right-hand summand in Equation (8)
enforces the closeness of the approximation Â to the data. Here, the symbol I[A] denotes
the application of an interpolation scheme to the approximation A (such that I[A] is a
sufficiently smooth function defined on a continuous spatial domain). Hence, using I

[
Â
]
,

the summands of the fidelity term can be evaluated at the exact sample location rk. In this
paper, we employ bicubic interpolation to implement I.

Stage 2: Reconstruction of the Spatial Particle Distribution. We obtain the spatial
particle distribution ρ via regularized deconvolution, i.e., ρ is the minimizer of the energy
minimization problem

ρ = argmin
ρ̂

E[ρ̂], where E[ρ̂] = ‖κh ∗ ρ̂− u‖2
2 + µR[ρ̂]. (9)

Here the residual of Equation (5), i.e., the squared euclidean norm of κh ∗ ρ̂ − u,
provides the data fidelity with u = trace(I[A]) being the trace field obtained in stage one.
The hyperparameter µ > 0 denotes the regularization weight. The symbol R[ρ̂] is used to
denote a regularizer. Concrete realizations of R are discussed next.

In [23] we used the regularizer

R[ρ] = ‖∇ρ‖2
2 (10)

which leads to a standard Tikhonov regularizer for ρ ∈W1,2(Ω), where Wk,p(Ω) denotes
the Sobolev space of differentiation order k and integration order p, and which enforces
smoothness of the reconstruction.
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In this paper we also employ Total Variation (TV) type regularization. More pre-
cisely, we use the TV-smooth regularizer (which is a standard regularizer used in imaging;
cf. [24,29,30]). For a concentration ρ of bounded variation, i.e., ρ ∈ BV(Ω) on a domain Ω,
and δ > 0 it is given by

Rδ[ρ] = sup

{∫
Ω

δ
1
2 ϕ0(x)− div(ϕ(x)) ρ(x) dx : (11)

ϕ0 ∈ C1
c (Ω), ϕ ∈ C1

c

(
Ω,R2

)
, ϕ2

0 + |ϕ|2 ≤ 1

}
.

For ρ ∈W1,1(Ω) ⊂ BV(Ω) this expression reduces to

Rδ[ρ] =
∫
Ω

√
δ + |∇ρ(x)|2 dx. (12)

We observe that with δ→ 0 the regularizer Rδ[ρ] approaches the total variation of ρ
denoted by |ρ|TV.

3.2. Discretization and Numerical Realization

We describe the numerical treatment of the considered energy minimization problems
given by Equations (8) and (9) with Tikhonov regularization (10) and TV type regularization
(11) in the two-dimensional case here. (The treatment of the three-dimensional case is
similar but, from the view-point of notation, more involved).

In the 2D case the FOV is the box Ω = [−1, 1]2 on which we define an Nx × Ny
Cartesian grid. The (i, j)-th grid cell (or pixel) is represented by its center point (xi, yj) ∈ Ω,
which explicitly read

xi = −1 +
(

i +
1
2

)
hx, yj = −1 +

(
j +

1
2

)
hy, (13)

where hx = 2
Nx

and hy = 2
Ny

, for i ∈ {0, . . . , Nx − 1} and j ∈ {0, . . . , Ny − 1}.
Numerical Approach for Stage 1: Reconstruction of the MPI Core Operator. The

grid functions which approximate the MPI Core Operator are tensors Â ∈ RNx×Ny×2×2,
Â =

(
Âp,q

i,j

)
, where i, j are the cell indices and p, q the indices of the matrix components.

The regularizing term R
[
Â
]

in Equation (8) was given by R
[
Â
]
= λ

N ‖DÂ‖2
2 where we can

more explicitly represent ‖DÂ‖2
2 by

‖DÂ‖2
2 =

Nx−1

∑
i=0

Ny−1

∑
j=0

(∥∥∥∥ Âi+1,j − Âi,j

hx

∥∥∥∥2

F
+

∥∥∥∥ Âi,j+1 − Âi,j

hy

∥∥∥∥2

F

)
. (14)

Using this representation, we find the minimizer A ∈ RNx×Ny×2×2 of the functional J
corresponding to Equation (8) by solving the gradient system ∇J[A] = 0. This system is
linear with respect to A. According to [23], the partial derivatives of the data fidelity term
F of J = R + F (cf. Equation (8)) are given by

∂F[A]

∂Ap,q
i,j

= − 2
L

L

∑
k=1

〈
sk − I[A](rk)vk, I

[
δ

p,q
i,j
]
(rk)vk

〉
, (15)
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where δ
p,q
i,j denotes the Kronecker symbol, while those of the regularizing term read as

∂R[A]

∂Ap,q
i,j

= −2λ

N

(
Ap,q

i−1,j − 2Ap,q
i,j + Ap,q

i+1,j

h2
x

+
Ap,q

i,j − 2Ap,q
i,j + Ap,q

i,j+1

h2
y

)
. (16)

The data fidelity term F of Equation (8) depends on the interpolation operation I[A](r).
We use bicubic interpolation, meaning that, if the point to be evaluated (rx, ry) is contained
in the cell with center (xi, yj), the evaluation is given as follows:

I[Ap,q](rx, ry) =


L−1(sx)
L0(sx)

L+1(sx)
L+2(sx)


T


Ap,q
i−1,j−1 Ap,q

i−1,j Ap,q
i−1,j+1 Ap,q

i−1,j+2
Ap,q

i,j−1 Ap,q
i,j Ap,q

i,j+1 Ap,q
i,j+2

Ap,q
i+1,j−1 Ap,q

i+1,j Ap,q
i+1,j+1 Ap,q

i+1,j+2
Ap,q

i+2,j−1 Ap,q
i+2,j Ap,q

i+2,j+1 Ap,q
i+2,j+2




L−1(sy)
L0(sy)

L+1(sy)
L+2(sy)

. (17)

Here the right-hand side is given via the Lagrange polynomials

L−1(s) = −
1
6

s(s− 1)(s− 2), L0(s) =
1
2
(s + 1)(s− 1)(s− 2), (18)

L+1(s) = −
1
2

s(s + 1)(s− 2), L+2(s) =
1
6

s(s + 1)(s− 1), (19)

where sx = rx−xi
hx

and sy =
ry−yj

hy
are the coordinates of (rx, ry) relative to the cell. Note

that the interpolation scheme acts independently on the matrix entries, i.e., I[A](rx, ry) is
obtained applying Equation (17) to every matrix component. The gradient system∇J[A] =
0, can formally be written as a non-homogeneous linear system GA = b (cf. [23]) with

(GA)
p,q
i,j =

2
L

L

∑
k=1

〈
I[A](rk)vk, I

[
δ

p,q
i,j

]
(rk)vk

〉
+

∂R[A]

∂Ap,q
i,j

, (20)

bp,q
i,j =

2
L

L

∑
k=1

〈
sk, I

[
δ

p,q
i,j

]
(rk)vk

〉
. (21)

Because the formal matrix G is the Hessian of a convex quadratic function it is sym-
metric positive definite. Thus, we may solve the linear system GA = b with respect to A by
using the conjugate gradient method [31].

Numerical Approach for Stage 2: Reconstruction of the Spatial Particle Distribu-
tion. Regarding the second stage, i.e., the reconstruction of spatial particle distribution by
regularized deconvolution via the variational model Equation (9), the grid functions are of
type ρ ∈ RNx×Ny with ρi,j ≈ ρ(xi, yj). By the assumption that the support of ρ is contained
in the FOV Ω, the convolution integral κh ∗ ρ in the energy E[ρ] of Equation (9) reduces to
an integral over Ω, i.e.,

κh ∗ ρ(x) =
∫
Ω

ρ(y) κh(x− y) dy. (22)

We approximate the integral in Equation (22) with the midpoint rule. The kernel
κh is sampled on the same grid as ρ (but with appropriate extension) and the remaining
summation is handled by FFT-based discrete convolution, giving us a discrete linear
operator Khρ ≈ κh ∗ ρ. Note also that since κh(−x) = κh(x) (cf. [22]) the matrix Kh
is symmetric.
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When we apply standard Tikhonov regularization, i.e., we use the regularizer R[ρ] =
‖∇ρ‖2

2 of Equation (10) in the deconvolution model in Equation (9), we discretize the
regularizer by

R[ρ] = hxhy

Nx−1

∑
i=0

Ny−1

∑
j=0

Wij. (23)

Here the summands Wij are given by

Wij :=

(
D+

x ρi,j
)2

+
(

D−x ρi,j
)2

2
+

(
D+

y ρi,j

)2
+
(

D−y ρi,j

)2

2
, (24)

with the forward and backward first order difference operators defined by

D+
x ρi,j :=

ρi+1,j − ρi,j

hx
, D−x ρi,j :=

ρi,j − ρi−1,j

hx
. (25)

The averages in Equation (24) gives us formally second order accurate approximations
at the cell centers, i.e., (

D+
x ρi,j

)2
+
(

D−x ρi,j
)2

2
= ∂xρ(xi, yj)

2 + O(h2
x). (26)

Moreover, boundary conditions are implemented via padding of ρ. Concretely, we
use zero-padding of ρ which implements Dirichlet-zero boundary conditions and which is
consistent with the assumption that the support of ρ is contained in Ω. (We point out that
other boundary conditions may be implemented as well.) We find the vectorized ρ ∈ RNx ·Ny

by solving the gradient system ∇E[ρ] = 0 of the discretized energy E which reads

−µLρ + KT
h (Khρ− u) = 0. (27)

Here L is the matrix of the discrete five-point stencil Laplacian (cf. [22]). The linear
system features a symmetric positive definite matrix such that we may solve it with the
conjugate gradient method.

In the case of TV-smooth regularization, i.e., we use the regularizer of Equation (11) in
the deconvolution model in Equation (9), the discrete regularizer is given by

Rδ[ρ] = hxhy

Nx−1

∑
i=0

Ny−1

∑
j=0

√
δ + Wij, (28)

with Wij as defined in Equation (24) (and zero-padding of ρ). The partial derivatives of
Rδ[ρ] are expressed as

∂Rδ

∂ρi,j
[ρ] =−

A+
x gi,j D+

x ρi,j − A−x gi,j D−x ρi,j

hx
−

A+
y gi,j D+

y ρi,j − A−y gi,j D−y ρi,j

hy
(29)

gi,j =
1√

δ + W

where the forward and backward average operators applied to the grid function g are

A+
x gi,j :=

gi+1,j + gi,j

2
, A−x gi,j :=

gi,j + gi−1,j

2
. (30)

We like to mention that Equation (29) is consistent with −div
(
∇ρ/

√
δ + |∇ρ|2

)
which is the partial differential obtained by the calculus of variations. If D denotes again
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the first difference matrix corresponding to the gradient operator and M[ρ] the diagonal
matrix corresponding to the multiplication with g = 1/

√
δ + |∇ρ|2, then we have

∇Rδ[ρ] = −DT M[ρ] D ρ. (31)

With Equation (31) the gradient system ∇E[ρ] = 0 in the case of TV-smooth regular-
ization reads as

−µDT M[ρ] D ρ + KT
h (Khρ− u) = 0. (32)

We solve Equation (32) by fixed point iteration as suggested by [29,30], i.e.,

−µDT M[ρk] D ρk+1 + KT
h (Khρk+1 − u) = 0, starting with ρ0 = u. (33)

In every iteration we have a linear system with symmetric positive definite matrix
which we solve using the conjugate gradient method.

4. Model-Based Reconstruction for Combining Multiple Scans

In this section, we describe how to incorporate an acquisition process based on geo-
metric transformations which we propose for the quality-enhancement of reconstructions.
In connection with this, we describe how corresponding simulated data can be generated.

General Merging Property. Our model-based approach comes with the feature that
is does not depend on a particular choice of trajectory. The algorithm handles the data
(sk, rk, vk) = (measured data, location, velocity) as point cloud in extended phase space.
The data fidelity term in Equation (8) takes into account any provided data no matter which
scan of the same object the data came from. Morever, the order of summation in the fidelity
term may be arbitrary, which means that any temporal causalities that the data once had
are not relevant. This gives us the freedom to merge data from scans of the same object
acquired with different scan trajectories before the algorithm is applied. More precisely,
let scan data sets Ti, i ∈ {1, . . . , n} of the same object along n different scan trajectories be
given as

Ti =
{(

si
k, ri

k, vi
k

)
: k ∈ {1, . . . , Li}

}
(34)

then the merged data set T is the union

T =
n⋃

i=1

Ti (35)

and the algorithm is supplied with T.
Merging Scans from Rotated Versions of a Specimen. We propose here not to change

the scan trajectory but instead to scan the specimen in rotated positions. With a change of
variables this is equivalent to scanning along the reversely rotated version of the original
scan trajectory. Consider a rotation matrix Qα corresponding to a rotation angle α. Plac-
ing the specimen rotated by α into the scanner means that we scan the rotated particle
distribution ρ̂(x) = ρ

(
QT

α x
)
. Following Equation (4) we obtain the data

ŝ(t) = A[ρ̂](r(t)) v(t), (36)

with the core operator A[ρ̂] applied to the rotated distribution ρ̂. By performing the change
of variables y = QT

α x on the integral of Equation (4) which defines the core operator
we obtain

ŝ(t) = Qα A[ρ]
(

QT
α r(t)

)
QT

α v(t), (37)
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with the core operator A[ρ] applied to the original distribution ρ. That means that the
reversely rotated data QT

α ŝ(t) corresponds to the original distribution ρ but scanned along
the reversely rotated trajectory QT

α r(t) with reversely rotated velocity QT
α v(t).

We exploit this property as follows: given a choice of rotation angles αi, we acquire for
every angle scan data (sk, rk, vk) of the αi-rotated object. Then, we merge from each such
scan the reversely rotated data (QT

αi
sk, QT

αi
rk, QT

αi
vk), feed it into our two-stage reconstruc-

tion algorithm and reconstruct the non-rotated ρ from it.
Figure 1 illustrates how scanning along rotated versions of the Lissajous curve is

beneficial to reduce gaps with respect to the sampling locations. Lissajous curves are
commonly used by practitioners in 2D and 3D FFP scanning sequences. For example the
2D sequence of the Open MPI project [26] corresponds in our model to the 2D Lissajous
curve given by

r(t) =
(
sin(2πm1t + φ1) , sin(2πm2t + φ2)

)T , (38)

with frequencies m1 = 16, m2 = 17, phase shifts φ1 = φ2 = π/2, and time domain t ∈ [0, 1].
In the 2D sequence of the Open MPI project, 1632 samples are taken. Figure 1a shows
the Lissajous curve as given by Equation (38) plotted in red, while the blue dots are the
1632 sample locations. The gaps visible here are a feature of the Lissajous curve and do
not vanish by just increasing the sampling the rate because, this way, additional samples
are also located on the Lissajous curve. However, with the rotations of the Lissajous curve
we are able to sample data away from the Lissajous curve and so to reduce gaps; see
Figure 1b,c. The merge of data from differently rotated scans as described above provides
our reconstruction algorithm in fact with spatially more information about ρ. We note
that, as explained above, the rotation of the Lissajous curve can by emulated by scanning
the rotated specimen. This means that practitioners need not change the scanner setting
regarding trajectories or sampling rate, but instead just scan the rotated object.

(a) No rotations (b) Four π
2 rotations (c) Eight π

4 rotations

Figure 1. Reducing sampling gaps with rotations. (a) The Lissajous curve (red line) and its sampling
(blue dots). Note that the Lissajous curve features gaps which cannot be reduced by just increasing
the sampling the rate. Instead, the gaps are reduced by merging samplings of rotated versions of the
Lissajous curve. (b,c) The merged sampling with four and eight rotations, respectively.

Extension to Rigid Body Motions and Multi-Patch Sequences. It is straightforward
to extend the proposed approach to rigid body motions that also include translations. If
the specimen is not only rotated by an angle α but also shifted by an offset b, we obtain
scan data ŝ(t) corresponding to ρ̂(x) = ρ

(
QT

α (x− b)
)
. Again, the change of variables

y = QT
α (x− b) yields the relationship to the original ρ by

ŝ(t) = Qα A[ρ]
(

QT
α (r(t)− b)

)
QT

α v(t), (39)

analogous to Equation (37). Consequently, the reverse operation (QT
α sk, QT

α (rk − b), QT
α vk)

needs to be performed on the data samples before it is merged with that of other scans.
We want to point out that this extension can in particular handle data as acquired in so-
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called multi-patch sequences. Multi-patch sequences combine just translated versions of a
standard scan trajectory such as Lissajous curves which are used to enlarge the effective
field of view (cf. [13,14]).

5. Numerical Experiments
5.1. Experimental Setup

The algorithms presented in this paper were implemented in Python 3.9, using Numpy,
SciPy, and PyTorch. The numerical experiments were performed on a laptop equipped
with an Intel Core i7 CPU, 16 GB of RAM, and Windows 10.

Simulation of Data. To obtain simulated MPI scans we proceed as follows: As a base
trajectory we use the 2D Lissajous of Equation (38) with the the parameter settings of the
Open MPI project [26] and 1632 sample locations. Using this trajectory we simulate 2D
scans of phantoms and rotated versions of it. The simulated scan data s(t) is obtained
through Equation (3) with the resolution parameter set to h = 0.01 (the motivation of this
choice is explained in [22]). Moreover, we add 10% Gaussian noise to account for noise in
measured data. This means that the discrete simulated scan data is given by

sk = s(tk) + εNk, ε = 0.1 max
k=1,...,L

{|s(tk)|}, (40)

where Nk ∼ N (0, 1) are i.i.d. standard normally distributed random variables.
Reconstruction Grid. For the discrete algorithms in the 2D setup, we fix a grid on the

FOV Ω = [−1, 1]2. In principle, we may choose any grid for the reconstruction, since the
data acquisition, i.e., sampling along the (rotated) trajectories of Figure 1, is not related to
this choice. Further note that the errors in the time series of acquired data (and thus also
the errors in the corresponding frequency band) are not related to the choice of the spatial
grid but to the time sampling. In all our experiments we employ a Nx × Ny = 100× 100
grid on Ω = [−1, 1]2. Thus, we have N = Nx · Ny = 10,000 pixels and mesh widths of
hx = hy = 0.04. We point out that this choice can be considered a higher resolution setup,
because in current practical setups, such as the Open MPI project [26], the usual grid sizes
are smaller than 40× 40.

Employed Algorithms and Choice of Parameters. In the experiments we employ the
two stage scheme described in Section 3. For Stage 1, we use the variational inpainting
model of [23] described in Section 3.1. A discussion of the advantages of the variational
approach over the LLSq method in [22] can be found in the experimental section of [23].
For Stage 2, we deconvolve in a regularized fashion as defined in Equation (9), with the
Tikhonov regularization of Equation (10) and the TV smooth regularization of Equation (11).

Concerning the (hyper-)parameters used in Stage 1, we use the following settings.
For the regularization weight λ of Equation (8) we set λ = 25.0/nRot, where nRot ∈
{1, 4, 8} represents the number of scans performed (with angles 2πn

nRot and n ∈ {0, . . . , nRot−
1}). Further, we use a maximum number of 1000 CG iterations if a tolerance of 5× 10−12 is
not reached before. In Stage 2 with the Tikhonov regularization in Equation (10), we use
µTik = 5.125× 10−4 as a regularization weight. The maximum number of CG iterations
is 10,000, if a tolerance of 5× 10−12 is not reached. The (hyper-)parameters used in Stage
2 with TV smooth regularization (11), are the following: as a regularization weight we
employ µTV = 1.825× 10−3. The TV smooth parameter δ, is set to δ = 10−16. For the fixed
point iteration we use a maximum number of 10 iterations.

The tolerance of the CG-solver applied within the fixed point iteration is set to 10−6

and a maximum number of 100,000 CG iterations. In all cases where the CG-solver is
employed, the maximum number of CG iterations was set sufficiently large for the solver
to stop at the requested tolerance.

Motivation for the Choice of Regularization Parameters. The particular choice of the
parameters λ of Stage 1 and µ of Stage 2, for both Tikhonov and TV smooth regularization,
were found by manual tuning guided by the PSNR and SSIM scores (defined below). The
parameters were then kept fixed throughout all experiments of the paper. We support and
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motivate our hand-crafted choice by the following more systematic investigation. First, we
consider the setup without rotations and isolate Stage 1 to find a suitable parameter λ. To
this end, we convolve the ground truth image ρ with κh to obtain “intermediate ground
truth” data κh ∗ ρ which is used to compute the PSNR and SSIM scores of the intermediate
results u = trace(I[A]) of Stage 1; cf. Equation (5). Exemplarily, corresponding PSNR and
SSIM curves for Stage 1 obtained with the vessel-shaped phantom are displayed in Figure 2.
On the one hand, we observe that the optimal SSIM and PSNR values are significantly
different and, on the other hand, that both SSIM and PSNR are rather insensitive to λ-
values in the interval [15, 35]. The situation is similar for all other experiments of the paper;
in particular, we found that the numerical values of the SSIM and the PSNR scores for
λ ∈ [15, 35] only deviate by at most 5% from the corresponding SSIM and PSNR scores for
λ = 25 in all experiments. This motivates our hand-crafted fixed choice λ = 25. Concerning
the purpose of the corresponding Stage 1 regularizer, we note that it is responsible for
inpainting (gap filling) besides denoising. Thus, λ depends on the spatial density of the
sampling locations. In the case of rotations, a denser sampling of the FOV is provided (cf.
Figure 1) and therefore smaller parameter values as a function of the number of rotations
are reasonable. Based on the reference value λ = 25 (from the case without rotations) the
parameter value is reduced according to λnRot = λ · f (nRot) with a decreasing function
f (nRot). Here, we chose the particular (simple) function f (nRot) = 1/nRot.

(a) PSNR vs. λ (b) SSIM vs. λ

Figure 2. Motivation for the choice of the Stage 1 regularization parameter λ. (a,b) show the PSNR
and SSIM as functions of λ. The curves here were obtained from the vessel-shaped phantom. Both
SSIM and PSNR are rather insensitive to λ-values in the interval [15, 35], which contains our particular
choice λ = 25.

Next we consider the parameter µ of Stage 2. Again, we look at the setup without
rotations and the parameter λ of Stage 1 kept fixed at λ = 25. Exemplarily, for the
vessel-shaped phantom, PSNR values after Stage 2 for both Tikhonov and TV-smooth
regularization are displayed in Figure 3 as functions of log(µ). We observe that our
parameter choices for µTik and µTV are rather close to the optimal PSNR values (which are
however rather different to optimal SSIM values as observed for Stage 1 as well). Again,
the situation is similar in all other experiments of the paper, which motivates our fixed
choice for all experiments.
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(a) PSNR vs. log(µ) for Tikhonov regularization (b) PSNR vs. log(µ) for TV-smooth regularization.

Figure 3. Motivation for the choice of the Stage 2 regularization parameters µ. (a,b) show the
PSNR as functions of log(µ) for Tikhonov and TV-smooth regularization, respectively. The curves
were obtained from the vessel-shaped phantom keeping the Stage 1 parameter fixed at λ = 25.
Our particular choices, which are µTik = 5.125× 10−4 with respect to Tikhonov regularization and
µTV = 1.825× 10−3 with respect to TV-smooth regularization, are very close to the optimal values.

Quantitative Assessment. For the quantitative assessment of the quality of reconstruc-
tions we compute both the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity
Index Measure (SSIM). For a pair of images ρGT (the ground truth) and a reconstruction
ρrec ∈ {ρTik, ρTV}, the PSNR is defined as follows:

PSNR = 10 log10

(
max ρ2

GT
MSE

)
(41)

where MSE =
1

Nx Ny

Nx−1

∑
i=0

Ny−1

∑
j=0

(
ρGT,i,j − ρrec,i,j

)2 denotes the Mean Square Error, and ρGT,i,j,

ρrec,i,j are the (i, j)-th pixel of the images. The definition of SSIM is technically significantly
more involved. Therefore, we refer the reader to [32] for a thorough introduction to SSIM.

5.2. Experimental Results

Experiment 1. In our first experiment (cf. Figure 4a), we consider a simple-structured
phantom with different concentration levels for which we use the term concentration phantom.
More specifically, we chose relative concentration levels of 1, 0.75, 0.5, and 0.25. We consider
reconstruction using the model-based two stage approach using regularized deconvolution
via Equation (9) with Tikhonov regularization (10) and TV smooth regularization (11) for
Stage 2. We compare the algorithms for different numbers of rotated scan trajectories:
concretely, we consider sequences of n = 1, 4, 8 trajectories with corresponding rotation
angles being multiples of 2π

n .
We observe qualitatively increasing reconstruction quality with increasing number of

merged rotated scans for both Tikhonov and TV type regularization. Further, the experi-
ment qualitatively confirms the common observation that the TV type reconstruction is
capable of reconstructing the edges while the Tikhonov reconstruction smooths them out.

From a physical viewpoint it is reasonable to assume that the amount of tracer does
not change while flowing in the specimen. Mathematically, this translates to the desired
property that a reconstruction scheme should reproduce the total concentration as good
as possible. We experimentally investigate this property here by comparing the total
concentration of the ground truth with that produced by the reconstruction schemes (cf.
Table 1). We employed the following preprocessing: if a pixel value is negative, we set it to
zero (which is reasonable since concentrations are nonnegative quantities.) From Table 1
we infer that the two stage reconstruction scheme using TV-smooth regularization in Stage
2 preserves the concentration rather well.



Mathematics 2022, 10, 3278 14 of 22

(a) Ground truth (b) u, 0 rotations (c) u, 4 rotations (d) u, 8 rotations

(e) ρTik, without rotations. PSNR 17.57,
SSIM 0.4285

(f) ρTik, 4 rotations. PSNR 19.37,
SSIM 0.5249

(g) ρTik, 8 rotations. PSNR 19.97,
SSIM 0.5764

(h) ρTV, without rotations. PSNR 17.34,
SSIM 0.4293

(i) ρTV, 4 rotations. PSNR 19.97,
SSIM 0.7190

(j) ρTV, 8 rotations. PSNR 21.21,
SSIM 0.7853

Figure 4. Reconstruction of different concentration levels using model-based two-stage reconstruction
for combining rotated scan trajectories. The ground truth consists of four circular regions with
decreasing (relative) concentrations levels: 1, 0.75, 0.5, and 0.25. First row. Trace fields u = trace A[ρ]

(output of Stage 1) obtained with increasing number of rotations 0, 4, 8. Second row. Reconstruction
results ρTik using Tikhonov regularized deconvolution in Stage 2 with increasing number of rotations.
Third row. Reconstruction results ρTV using TV smooth regularized deconvolution in Stage 2 with
increasing number of rotations. We observe qualitatively and quantitatively increasing reconstruction
quality with increasing number of merged rotated scans for both Tikhonov and TV type regularization.
Further, the TV smooth regularized deconvolution in Stage 2 is capable of reconstructing the edges
while the Tikhonov regularized deconvolution in Stage 2 smoothes the edges.

Table 1. Preservation of the concentration in Experiment 1.

nRot Total Concentration
of the Ground Truth

Total Concentration,
Tikhonov Reconstruction

in Stage 2

Total Concentration, TV
Smooth Reconstruction in

Stage 2

1 0.177 0.191236 0.181551
4 0.177 0.203939 0.178848
8 0.177 0.202336 0.178237

Experiment 2. In our second experiment (cf. Figure 5), we consider a more complex
angular ring or O-shaped structure. We investigate the effect of decreasing the size of the
object to see the limits of the considered model-based two stage approach using regularized
deconvolution via Equation (9) with Tikhonov regularization (10) and TV smooth regu-
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larization (11) for Stage 2. We again compare the algorithms for the combination of scan
sequences of n = 1, 4, 8 trajectories with corresponding rotation angles being multiples
of 2π

n .
As in Experiment 1, we observe qualitatively increasing reconstruction quality with

increasing number of merged rotated scans for both regularized deconvolution schemes.
We further observe that the scheme using Tikhonov regularized deconvolution smooths
the edges. In particular, in the case of a single scan (no rotations), it is hard to visually
recognize the ring-shape when diminishing the size of the ring phantom. However, with an
increasing number of rotations, the ring shape is reconstructed even for a small size of the
ring phantom. The scheme using TV smooth regularized deconvolution better preserves
the edges. Further, for a large ring size, one may very well infer the shape of the object
from the reconstruction. Notably, we mention that the reconstruction from 8 angular scans
in Figure 5g visually almost equals the ground truth. For smaller ring sizes the outer
object boundary still remains rather sharp, but the inner hole is no longer reconstructed
depending on the number of rotational scans—the more scans the smaller the size of the
phantom may be to still reconstruct the angular ring structure.

Experiment 3. In our third experiment (cf. Figure 6) we study a more realistic vessel-
shaped phantom. The phantom is designed to mimic in particular the junctions of blood
vessels. In the left column of Figure 6, one can see that already with no rotations the basic
structure emerges. By merging n = 4 (middle column) or n = 8 (right column) rotated
scans (with corresponding rotation angles 2π j

n for j ∈ {0, . . . , n− 1}), we obtain a clearer
picture of the structure and the locations of junctions become more distinctive. We observe
that using the merging of rotational scans as opposed to not doing so enhances the quality
of the reconstructions for both Tikhonov and TV-smooth type regularization. This manifests
also in terms of the two employed quality measures which are the Peak Signal-to-Noise
Ratio (PSNR) and the Structural Similarity Index Method (SSIM).

Experiment 4. In the fourth experiment (cf. Figure 7), we consider a vessel-shaped
phantom which features more and finer structures. While in Experiment 3 the branches
of the vessels have almost uniform thickness, the thickness here varies more and vessels
become even thinner than the O-shape of Experiment 2. For the results displayed in
Figure 7, we merge again n = 1 (left column), n = 4 (middle column) or n = 8 (right
column) rotated scans (with corresponding angles 2π j

n for j ∈ {0, . . . , n− 1}) and employ
Tikhonov regularization (second row) as well as TV smooth regularization (third row) in
the deconvolution Stage 2. As in Experiment 3, we observe that using rotations as opposed
to no rotations enhances again the quality of the reconstructions for both Tikhonov and
TV-smooth type regularization, qualitatively and in terms of PSNR or SSIM. All locations of
junctions become more distinctive with rotations. We observe here, too, as in Experiment 2,
that finer structures of smaller scale are more difficult to reconstruct. The finer structures
have apparently less contrast in all the reconstructions but still become better perceptible
when rotated scans are combined.
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(a) Ground truth, r = 0.5 (b) ρTik, 0 rotations (c) ρTik, 4 rotations (d) ρTik, 8 rotations

(e) ρTV, 4 rotations (f) ρTV, no rotations (g) ρTV, 8 rotations

(h) Ground truth, r = 0.4 (i) ρTik, no rotations (j) ρTik, 4 rotations (k) ρTik, 8 rotations

(l) ρTV, no rotations (m) ρTV, 4 rotations (n) ρTV, 8 rotations

(o) Ground truth, r = 0.3 (p) ρTik, no rotations (q) ρTik, 4 rotations (r) ρTik, 8 rotations

(s) ρTV, no rotations (t) ρTV, 4 rotations (u) ρTV, 8 rotations

Figure 5. Effect of decreasing the size of the object. The ground truth consists of circular rings of
decreasing size. First row. Trace fields u = trace A[ρ] (output of Stage 1) obtained with increasing
number of rotations 0, 4, 8. Second and third row. Reconstruction results ρTik using Tikhonov (second row)
and TV smooth (third row) regularized deconvolution in Stage 2 with increasing number of rotations.
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We observe qualitatively increasing reconstruction quality with increasing number of rotated scans
for both deconvolution schemes. The scheme using Tikhonov regularized deconvolution smoothes
the edges; in the case of no rotations, it becomes hard to visually recognize the ring-shape when
diminishing the size; with increasing number of rotations, the ring shape is reconstructed even for
a small ring size. The scheme using TV smooth regularized deconvolution better preserves the
edges; for a large ring size, one may very well infer on the object from the reconstructions; for
smaller ring sizes the outer object boundary still remains rather sharp, but the inner hole is no longer
reconstructed.

(a) Ground truth (b) u, 0 rotations (c) u, 4 rotations (d) u, 8 rotations

(e) ρTik, 0 rotations. PSNR 10.93, SSIM
0.2328

(f) ρTik, 4 rotations. PSNR 12.61, SSIM
0.2596

(g) ρTik, 8 rotations. PSNR 12.81, SSIM
0.2544

(h) ρTV, 0 rotations. PSNR 10.99, SSIM
0.3657

(i) ρTV, 4 rotations. PSNR 13.79, SSIM
0.4415

(j) ρTV, 8 rotations. PSNR 14.00, SSIM
0.4189

Figure 6. Reconstruction of a vessel-shaped phantom using model-based two-stage reconstruction
for combining rotated scan trajectories. First row. Trace fields u = trace A[ρ] (output of Stage 1)
obtained with increasing number of rotations 0, 4, 8. Second row. Reconstruction results ρTik using
Tikhonov regularized deconvolution in Stage 2 with increasing number of rotations. Third row.
Reconstruction results ρTV using TV smooth regularized deconvolution in Stage 2 with increasing
number of rotations. We observe qualitatively in the case of a more realistic phantom that merging
rotated scans helps to enhance the quality of the reconstruction for both Tikhonov and TV type
regularization. In particular, the locations of junctions become more distinctive with rotations.
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(a) Ground truth (b) u, 0 rotations (c) u, 4 rotations (d) u, 8 rotations

(e) ρTik, 0 rotations. PSNR 10.22, SSIM
0.1663

(f) ρTik, 4 rotations. PSNR 11.03, SSIM
0.2213

(g) ρTik, 8 rotations. PSNR 11.44, SSIM
0.2438

(h) ρTV, 0 rotations. PSNR 9.96, SSIM
0.1983

(i) ρTV, 4 rotations. PSNR 10.88, SSIM
0.3261

(j) ρTV, 8 rotations. PSNR 11.45, SSIM
0.3365

Figure 7. Reconstruction of a vessel-shaped phantom with finer structures using model-based two-
stage reconstruction for combining rotated scan trajectories. First row. Trace fields u = trace A[ρ]

(output of Stage 1) obtained with increasing number of rotations 0, 4, 8. Second row. Reconstruction
results ρTik using Tikhonov regularized deconvolution in Stage 2 with increasing number of rotations.
Third row. Reconstruction results ρTV using TV smooth regularized deconvolution in Stage 2 with
increasing number of rotations. We observe qualitatively that again merging rotated scans helps to
enhance the quality of the reconstruction for both Tikhonov and TV type regularization. In particular,
the locations of junctions become more distinctive with rotations. We observe here too, that finer
structures of smaller scale are generally more difficult to reconstruct but still become better perceptible
when rotated scans are combined.

Experiment 5. In the fifth experiment (cf. Figure 8), we consider non piecewise constant
data (in contrast to the previous experiments where the ground truth was either binary or
piecewise constant). As a ground truth we consider the indicator function of an rectangle
with four-to-three aspect ratio which we convolved with a Gaussian kernel with variance
parameter corresponding to a tenth of the image size; see Figure 8a. As in the previous
experiments for piecewise constant data, we observe that using rotations as opposed to
no rotations enhances the quality of the reconstructions for both Tikhonov and TV-smooth
type regularization, qualitatively and in terms of PSNR and SSIM. Further, the TV recon-
structions show the well-known staircasing effect, i.e., constant plateaus are introduced in
the respective reconstruction.
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(a) Ground truth (b) u, 0 rotations (c) u, 4 rotations (d) u, 8 rotations

(e) ρTik, without rotations. PSNR 21.26,
SSIM 0.6212

(f) ρTik, 4 rotations. PSNR 24.00, SSIM
0.6117

(g) ρTik, 8 rotations. PSNR 24.90, SSIM
0.6239

(h) ρTV, without rotations. PSNR 22.02,
SSIM 0.6533

(i) ρTV, 4 rotations. PSNR 25.58, SSIM
0.7553

(j) ρTV, 8 rotations. PSNR 26.99, SSIM
0.7676

Figure 8. Reconstruction of smoothed rectangle (convolution with a Gaussian with σ of 1/10 of the
image size) using model-based two-stage reconstruction for combining rotated scan trajectories. First
row. Trace fields u = trace A[ρ] (output of Stage 1) obtained with increasing number of rotations
0, 4, 8. Second row. Reconstruction results ρTik using Tikhonov regularized deconvolution in Stage
2 with increasing number of rotations. Third row. Reconstruction results ρTV using TV smooth
regularized deconvolution in Stage 2 with increasing number of rotations. We observe qualitatively
and quantitatively increasing reconstruction quality with increasing number of merged rotated scans
for both Tikhonov and TV type regularization. The TV smooth regularized deconvolution results in
Stage 2 exhibit the well-known staircasing effect.

A summary of the quantitative reconstruction results is provided in Table 2. We observe
that this summary underpins the finding that an increasing number of rotations quantita-
tively increases the reconstruction quality for both Tikhonov and TV type regularization.
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Table 2. Summary of the PSNR and SSIM scores of all experiments.

nRot Tikhonov TV Smooth
PSNR SSIM PSNR SSIM

Figure 4 1 17.57 0.4285 17.34 0.4293
4 19.37 0.5249 19.97 0.7190
8 19.97 0.5764 21.21 0.7853

Figure 5a 1 12.85 0.2238 12.84 0.2933
4 14.88 0.3303 15.61 0.5964
8 15.84 0.3764 17.26 0.7256

Figure 5h 1 14.08 0.3358 13.75 0.4886
4 15.53 0.3894 15.58 0.6891
8 16.15 0.4071 16.68 0.7931

Figure 5o 1 15.52 0.4314 15.82 0.5516
4 16.70 0.4650 16.53 0.8134
8 16.98 0.4977 16.87 0.8179

Figure 6 1 10.93 0.2328 10.99 0.3657
4 12.61 0.2596 13.79 0.4415
8 12.81 0.2544 14.00 0.4189

Figure 7 1 10.22 0.1663 9.96 0.1983
4 11.03 0.2213 10.88 0.3261
8 11.44 0.2438 11.45 0.3365

Figure 8 1 21.26 0.6212 22.02 0.6533
4 24.00 0.6117 25.58 0.7553
8 24.90 0.6239 26.99 0.7676

6. Discussion

As a first contribution of the paper, we have extended the algorithmic framework
of [22] by a TV-smooth regularization in Stage 2. This complements [23], whose focus was
the variational inpainting-type reconstruction of Stage 1 and which resulted in an overall
enhanced and more flexible method. In particular, we are now able to process data from
scan trajectories which are as sparse as those employed in the Open MPI project [26]. Sec-
ondly, we have developed a model-based reconstruction scheme for quality-enhancement
by the combination of scans along multiple trajectories. Basing on the reconstruction
model’s independence of the particular scan trajectories and the algorithmic framework’s
independence of any temporal causality we were able to process the data as a point cloud
in extended phase space. More precisely, we transformed the collected data from dif-
ferent scan trajectories to point cloud data in extended phase space, and employed our
model-based reconstruction schemes to enhance the quality of reconstructions. In par-
ticular, we worked out the case of rotated scan trajectories. We point out that different
trajectories may be obtained via simple geometric transformations such as translations
and rotations including so-called multi-patch scan sequences as a special case. Finally, we
have conducted numerical experiments using simulated data to demonstrate the proposed
technique’s potential.

Topics of future research include improving the variational inpainting scheme used
for Stage 1 of the considered two-stage reconstruction process (cf. the small peaks visible
in the reconstruction of the trace fields; cf., e.g., Figure 6) as well as considering in more
detail the multi-patch setups mentioned. Further, the investigation of automatic parameter
choice rules for both parameters are an important topic of future research.

7. Conclusions

To conclude, in this paper we have proposed a quality-enhancing technique based
on the combination of multiple trajectories using model-based reconstruction. We have
illustrated the benefits of the proposed quality-enhancing technique by numerical exper-
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iments. As a consequence of our simulation study we want to suggest to experimenters
to rotate the specimen in the MPI scanner with respect to four angles, i.e., 0, 90, 180, and
270 degrees, and to repeat the same scanning process under these rotations. This does not
require changing the settings of the MPI scanner, and is precisely the information needed
for the proposed method.
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