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Abstract: Let b and c be two elements in a semigroup S. The (b, c)-inverse is an important outer
inverse because it unifies many common generalized inverses. This paper is devoted to presenting
some symmetric properties of (b, c)-inverses and (c, b)-inverses. We first find that S contains a (b, c)-
invertible element if and only if it contains a (c, b)-invertible element. Then, for four given elements
a, b, c, d in S, we prove that a is (b, c)-invertible and d is (c, b)-invertible if and only if abd is invertible
along c and dca is invertible along b. Inspired by this result, the (b, c)-invertibility is characterized by
one-sided invertible elements. Furthermore, we show that a is inner (b, c)-invertible and d is inner
(c, b)-invertible if and only if c is inner (a, d)-invertible and b is inner (d, a)-invertible.
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1. Introduction

An element a in a semigroup S is said to be regular if there exists x ∈ S such that
axa = a, in which case x is called an inner inverse (or a {1}-inverse) of a. Recall that
an involution ∗ of S is a self-map such that (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ S.
If there exists x satisfying axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa, then it is the
unique solution of the previous four equations and is called the Moore–Penrose inverse [1]
of a (denoted by a†).

An element a in a semigroup S is Drazin invertible [2] if there exists x ∈ S such that

xam+1 = am for some m ∈ N+, ax2 = x, ax = xa.

If such x exists, then it is unique and called the Drazin inverse of a (denoted by aD).
The smallest integer m that makes the above equations hold is called the Drazin index of a
and denoted by ind(a). If ind(a) = 1, x is called the group inverse of a and denoted by a#.

Let S be any semigroup and a, b ∈ S. Mary [3] defined that the inverse of a along b as
the unique element y satisfying the following relations:

y ∈ bS ∩ bS, yab = b, bay = b.

In this case, a is said to be invertible along b, and y is denoted by a||b. If, moreover, aa||ba = a,
then a||b is called the inner inverse of a along b. He also proved that the Moore–Penrose
inverse of an element a is equal to a||a

∗
, and the group inverse of a is equal to a||a. The set

of all elements which are invertible along b is denoted by S||b.
Let S be any semigroup and a, b, c ∈ S. Drazin [4] defined the (b, c)-inverse of a to be

the unique element y satisfying

y ∈ bS ∩ Sc, yab = b, cay = c.

In this case, a is said to be (b, c)-invertible, and y is denoted by a||(b,c). When b = c, we
can see that a||(b,b) = a||b. To see the difference between inverses along an element and
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(b, c)-inverses, we consider the semigroup C2×2. Let a = b =
[

1 1
0 0

]
and c =

[
1 0
1 0

]
. Then

a||(b,c) =
[

1 0
0 0

]
6=

[
1 1
0 0

]
= a||b.

Later, Drazin [5] also defined the one-sided version of the (b, c)-inverse in a semigroup
S. If b ∈ Scab, or equivalently if there exists y such that y ∈ Sc and yab = b, then a is said to
be left (b, c)-invertible. Such y is called a left (b, c)-inverse of a. Dually, a is said to be right
(b, c)-invertible if c ∈ cabS, or equivalently if there exists z such that z ∈ bS and caz = c.
Such z is called a right (b, c)-inverse of a. Drazin proved that a is (b, c)-invertible if and only
if a is left and right (b, c)-invertible. Given any semigroup S and b, c ∈ S, we denote the
sets of all left (b, c)-invertible elements, right (b, c)-invertible elements and (b, c)-invertible
elements in S by S||(b,c)

l , S||(b,c)
r and S||(b,c), respectively.

The motivation of this paper comes from the following facts.

Lemma 1 (Theorem 7 in [3]). Let S be any semigroup and a, b ∈ S. Then a is invertible along b if
and only if ab is group invertible with b ∈ Sab if and only if ba is group invertible with b ∈ baS,
in which case,

a||b = b(ab)# = (ba)#b.

Lemma 2 (Corollary 2.7 in [6]). Let S be any semigroup and a, b ∈ S. Then a is inner invertible
along b if and only if a is invertible along b and b is invertible along a.

These are two interesting results with nice symmetry. However, in general cases,
the (b, c)-invertibility of a does not imply that ab, ac, ba and ca are group invertible
(see Example 2.1 in [7]), and a being (b, c)-invertible with aa||(b,c)a = a does not imply
that b ∈ S||(a,a) and c ∈ S||(a,a) (see the case of b = a and c = a∗).

Wu and Chen [7] had done some interesting work on the case of a ∈ S||(b,c) ∩ S||(c,b).
They characterize a ∈ S||(b,c) ∩ S||(c,b) by using group invertible elements and invertible
elements, respectively. We find that S||(b,c) 6= ∅ implies S||(c,b) 6= ∅, so it seems more
natural to consider the situation a ∈ S||(b,c) and d ∈ S||(c,b), which of course includes the
case of a ∈ S||(b,c) ∩ S||(c,b). This paper focuses on the case of a ∈ S||(b,c) and d ∈ S||(c,b).

In Section 2, we prove that

a ∈ S||(b,c) and d ∈ S||(c,b) ⇔ abd ∈ S||c and dca ∈ S||b,

which allows us to transform many questions on the (b, c)-invertibility and (c, b)-invertibility
into those on the invertibility along b and c. As an application of this observation, the (one-
sided) (b, c)-invertibility is characterized by one-sided invertible elements.

If a ∈ S||(b,c) such that aa||(b,c)a = a, then a||(b,c) is called the inner (b, c)-inverse of a.
In Section 3, we consider some symmetric properties of inner (b, c)-inverses. We prove
that a is inner (b, c)-invertible and d is inner (c, b)-invertible if and only if c is inner (a, d)-
invertible and b is inner (d, a)-invertible. Especially, a is both inner (b, c)-invertible and
inner (c, b)-invertible if and only if both b and c are inner invertible along a if and only if a
is inner invertible along b and c, in which case

a||(b,c) = a||baa||c and a||(c,b) = a||caa||b.

At last, under the assumption that aa||ca = a, we characterize the product a||baa||c by
equations and prove that a||baa||c is equal to the (b, baa||c)-inverse of a, which generalizes
some results on the DMP inverse.

2. Characterizations of a ∈ S||(b,c) and d ∈ S||(c,b)

We first recall two basic characterizations of (b, c)-invertibility, which will be frequently
used in the sequel discussion.

Lemma 3 (Theorem 2.2 in [4]). Let S be any semigroup and a, b, c ∈ S. Then a is (b, c)-invertible
if and only if c ∈ cabS and b ∈ Scab. In this case, a||(b,c) = sc = bt, where c = cabt and b = scab.
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Lemma 4 (Proposition 6.1 in [4]). Let S be any semigroup and a, b, c ∈ S. Then a is (b, c)-
invertible if and only if there exists y ∈ S satisfying that

yay = y, S1y = S1c, yS1 = bS1,

where S1 stands for the monoid generated by S.

From previous two Lemmas, we can immediately obtain a connection between S||(b,c)

and S||(c,b).

Proposition 1. Let S be any semigroup and b, c ∈ S. Then S||(b,c) 6= ∅ if and only if S||(c,b) 6= ∅.

Proof. If a ∈ S||(b,c), then cabS1 = cS1 and S1cab = S1b by Lemma 3. From
Proposition 3.3 in [8], we know that cab is regular. Thus cab is the (c, b)-inverse of (cab)−

by Lemma 4, for any inner inverse (cab)− of cab.
By symmetry, the converse statement is also true.

Proposition 2. Let S be any semigroup and b, c ∈ S. If S||(b,c) 6= ∅, then the mapping φ : x 7→
cx−b is a bijection from {a||(b,c) | a ∈ S||(b,c)} to {d||(c,b) | d ∈ S||(c,b)}, for any inner inverse
x− of x.

Proof. At first, we prove that φ is well defined. Suppose that x = a||(b,c) for some a ∈ S||(b,c).
For any inner inverse x− of x, we know that a||(b,c) is the (b, c)-inverse of x− by
Lemma 4. Then

cx−b = (caa||(b,c))x−b = ca[(x−)||(b,c)x−b] = cab.

Next we prove that φ is a bijection. Define another mapping ψ : y 7→ by−c from
{d||(c,b) | d ∈ S||(c,b)} to {a||(b,c) | a ∈ S||(b,c)}. Similarly, ψ is well-defined. Then
we obtain

ψφ(x) = b(cab)−c = a||(b,c) = x,

where the last second equality holds because of Theorem 2.7 in [9]. Similarly, φψ(y) = y.
Thus, φ is a bijection.

Let a, b, c be elements in a semigroup S such that a is (b, c)-invertible. We wonder
what conditions are needed to ensure that d is (c, b)-invertible. To handle this question, we
consider the following Lemma.

Lemma 5. Let S be any semigroup and b, c, d, u, v ∈ S. If uS1 = bS1 and S1v = S1c, then

(1) d is left (b, c)-invertible if and only if d is left (u, v)-invertible;
(2) d is right (b, c)-invertible if and only if d is right (u, v)-invertible;
(3) (Remark 2.2(i) in [10]) d is (b, c)-invertible if and only if d is (u, v)-invertible, in which case,

a||(b,c) = a||(u,v).

Proof. (1) Suppose that b = ug, c = hv, u = bt and v = sc for some g, h, s, t ∈ S1.
If d is left (b, c)-invertible, then there exists x ∈ S such that b = xcdb. It follows that

u = bt = xcdbt = xcdu = xhvdu ∈ Svdu.

Conversely, suppose that u = yvdu for some y ∈ S. We have that

b = ug = yvdug = yvdb = yscdb ∈ Scdb.

(2) It can be proved similarly.
(3) It can be proved by combining (1) and (2).
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Proposition 3. Let S be any semigroup and a, b, c, d ∈ S. If a is (b, c)-invertible, then we have
the following:

(1) d is left (c, b)-invertible if and only if d is left invertible along cab;
(2) d is right (c, b)-invertible if and only if d is right invertible along cab;
(3) d is (c, b)-invertible if and only if d is invertible along cab, in which case, d||(c,b) = d||cab.

Proof. If a ∈ S||(b,c), then cabS1 = cS1 and S1cab = S1b by Lemma 3. Taking u = v = cab
and exchanging the position of b and c in Lemma 5, then the proposition follows.

Now we give the main result of this section, which presents a necessary and sufficient
condition for any semigroup S and a, b, c, d ∈ S such that a ∈ S||(b,c) and d ∈ S||(c,b).

Theorem 1. Let S be any semigroup and a, b, c, d ∈ S. Then a ∈ S||(b,c) and d ∈ S||(c,b) if and
only if abd ∈ S||c and dca ∈ S||b. In this case,

a||(b,c) = bd(abd)||c = (dca)||bdc,

d||(c,b) = (abd)||cab = ca(dca)||b.

Proof. If a ∈ S||(b,c) and d ∈ S||(c,b), then we know that

c ∈ cabS, b ∈ Scab, b ∈ bdcS, and c ∈ Sbdc

by Lemma 3. It follows that

c ∈ cabS ⊆ cabdcS and c ∈ Sbdc ⊆ Scabdc,

which means that abd ∈ S||c. Similarly, dca ∈ S||b.
Conversely, if abd ∈ S||c and dca ∈ S||b, then we have

c = cabd(abd)||c ∈ cabS and b = (dca)||bdcab ∈ Scab.

So a ∈ S||(b,c) by Lemma 3. Similarly, d ∈ S||(c,b). The formulae of a||(b,c) and d||(c,d) follow
from Lemma 3.

From above proof, we can see that the one-sided version of Theorem 1 is also true. We
list it below and omit its proof.

Proposition 4. Let S be any semigroup and a, b, c, d ∈ S. Then

(1) a ∈ S||(b,c)
l and d ∈ S||(c,b)

l if and only if abd ∈ S||cl and dca ∈ S||bl ;

(2) a ∈ S||(b,c)
r and d ∈ S||(c,b)

r if and only if abd ∈ S||cr and dca ∈ S||br .

Let S be any semigroup and a, b ∈ S. Lemma 1 shows that a ∈ S||b if and only if b ∈ Sab
and ab ∈ S# if and only if b ∈ baS and ba ∈ S#, in which case a||(b,b) = b(ab)# = (ba)#b.
By Theorem 1, we can also characterize the (b, c)-inverse and (c, b)-inverse by the
group inverses.

Proposition 5. Let S be any semigroup and a, b, c, d ∈ S. If a ∈ S||(b,c) and d ∈ S||(c,b), then
abdc, bdca, dcab and cabd are group invertible. In this case,

a||(b,c) = bdc(abdc)# = bd(cabd)#c = b(dcab)#dc = (bdca)#bdc,

d||(c,b) = cab(dcab)# = ca(bdca)#b = c(abdc)#ab = (cabd)#cab.
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Proof. If a ∈ S||(b,c) and d ∈ S||(c,b), then abd ∈ S||c and dca ∈ S||b by Theorem 1. According
to Lemma 1, abdc, bdca, dcab and cabd are group invertible with

(abd)||c = c(abdc)# = (cabd)#c and (dca)||b = b(dcab)# = (bdca)#b.

Substituting them into the formulae for a||(b,c) and d||(c,b) in Theorem 1, the formulae in
terms of the group inverses follow.

Proposition 6. Let S be any semigroup and a, b, c, d ∈ S. If u is any one of abdc, bdca, dcab, cabd,
then the following conditions are equivalent:

(1) a ∈ S||(b,c) and d ∈ S||(c,b);

(2) u is group invertible, a ∈ S||(b,c)
l and d ∈ S||(c,b)

l ;

(3) u is group invertible, a ∈ S||(b,c)
r and d ∈ S||(c,b)

r ;

(4) u is Drazin invertible, a ∈ S||(b,c)
l and d ∈ S||(c,b)

l ;

(5) u is Drazin invertible, a ∈ S||(b,c)
r and d ∈ S||(c,b)

r .

Proof. (1)⇒ (2). By Proposition 5.
(2)⇒ (4). It is obvious.
(4)⇒ (1). If u is Drazin invertible, then abdc and dcab are Drazin invertible by Cline’s

formula [11]. Meanwhile, from b ∈ Scab and c ∈ Sbdc, we know that

Sdcab ⊆ Scab ⊆ Sbdcab ⊆ Scabdcab ⊆ Sbdcabdcab ⊆ S(dcab)2 ⊆ Sdcab.

It follows that ind(dcab) = 1, which means that dcab is group invertible. Similarly, abdc is
group invertible.

Noting that b ∈ Scab ⊆ Sbdcab ⊆ Sdcab and c ∈ Sbdc ⊆ Scabdc ⊆ Sabdc, we have

b = bdcab(dcab)# ∈ bdcS and c = cabdc(abdc)# ∈ cabS.

(1)⇒ (3)⇒ (5)⇒ (1) can be proved dually.

Let R be any associative ring with 1 and a, b ∈ R such that b is regular with an inner
inverse b−. Theorem 3.2 in [12] proved that a is invertible along b if and only if ab + 1− b−b
is invertible if and only if ba + 1− bb− is invertible. Denoting the set of all invertible
(resp., left and right invertible) elements in R by R−1 (resp., R−1

l and R−1
r ), we characterize

the (one-sided) (b, c)-inverse and (one-sided) (c, b)-inverse by using (one-sided) invertible
elements as follows.

Proposition 7. Let R be any associative ring with 1 and a, b, c, d ∈ R such that b and c are regular.
If b− is an inner inverse of b and c− is an inner inverse of c, denote

u = cabd + 1− cc−, v = bdca + 1− bb−,

s = abdc + 1− c−c, t = dcab + 1− b−b.

Then

(1) a ∈ R||(b,c)
l and d ∈ R||(c,b)

l if and only if u ∈ R−1
l and v ∈ R−1

l if and only if s ∈ R−1
l and

t ∈ R−1
l , in which case u−1

l cab is a left (c, b)-inverse of d and v−1
l bdc is a left (b, c)-inverse

of a, where u−1
l and v−1

l are left inverses of u and v, respectively;

(2) a ∈ R||(b,c)
r and d ∈ R||(c,b)

r if and only if u ∈ R−1
r and v ∈ R−1

r if and only if s ∈ R−1
r and

t ∈ R−1
r , in which case bdcs−1

r is a right (b, c)-inverse of a and cabt−1
r is a right (c, b)-inverse

of d, where s−1
r and t−1

r are right inverses of s and t, respectively;
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(3) a ∈ R||(b,c) and d ∈ R||(c,b) if and only if u ∈ R−1 and v ∈ R−1 if and only if s ∈ R−1 and
t ∈ R−1, in which case,

a||(b,c) = v−1bdc = bdcs−1 and d||(c,b) = u−1cab = cabt−1.

Proof. (1) By Proposition 4, a ∈ R||(b,c)
l and d ∈ R||(c,b)

l if and only if abd ∈ R||cl and

dca ∈ R||bl . Additionally, abd ∈ R||cl and dca ∈ R||bl if and only if u ∈ R−1
l and v ∈ R−1

l by
Theorem 3.2 in [13], which is equivalent to s ∈ R−1

l and t ∈ R−1
l by Jacobson’s lemma.

If u ∈ R−1
l , multiplying by c on the right of u = cabd + 1− cc− yields that uc = cabdc.

It follows that c = u−1
l uc = u−1

l cabdc ∈ Rbdc, which means that u−1
l cab is a left (c, b)-

inverse of d. Similarly, one can prove that v−1
l bdc is a left (b, c)-inverse of a.

(2) Similarly by using Theorem 3.4 in [13].
(3) Combining (1) and (2), it follows.

If a ∈ S||(b,c), we showed in the proof of Proposition 1 that (cab)− ∈ S||(c,b) for any
inner inverse (cab)− of cab. Suppose that b, c and cab are regular. then a ∈ R||(b,c) if and
only if u = cab(cab)− + 1− cc− ∈ R−1 and v = (cab)−cab + 1− b−b ∈ R−1 by replacing
d by (cab)− in Proposition 7. However, characterizing the left (b, c)-invertibility of a only
requires that b, cab are regular and v is left invertible.

Proposition 8. Let R be any associative ring with 1 and a, b, c ∈ R such that b and cab are regular.
If b− is an inner inverse of b and (cab)− is an inner inverse of cab, then the following conditions
are equivalent:

(1) a is left (b, c)-invertible;
(2) v = (cab)−cab + 1− b−b ∈ R−1

l ;
(3) t = b(cab)−ca + 1− bb− ∈ R−1

l .

In this case, t−1
l b(cab)−c is a left (b, c)-inverse of a, where t−1

l is a left inverse of t.

Proof. (1)⇒ (2). If a is left (b, c)-invertible, then Rcab = Rb. It follows that b(cab)−cab = b.
Then we have

[b−b + 1− (cab)−cab][(cab)−cab + 1− b−b]

= b−b(cab)−cab + b−b(1− b−b) + (1− (cab)−cab)(cab)−cab

+(1− (cab)−cab)(1− b−b)

= b−b + 0 + 0 + 1− b−b− (cab)−cab + (cab)−cabb−b

= 1.

So v = (cab)−cab + 1− b−b is left invertible.
(2)⇒ (3). By Jacobson’s lemma.
(3) ⇒ (1). Multiplying by b on the right of t = b(cab)−ca + 1 − bb− yields that

tb = b(cab)−cab. It follows that

b = t−1
l tb = t−1

l b(cab)−cab ∈ Rcab.

Then t−1
l b(cab)−c is a left (b, c)-inverse of a.

Dually, we have a characterization for right (b, c)-invertibility as follows.

Proposition 9. Let R be any associative ring with 1 and a, b, c ∈ R such that c and cab are regular.
If c− is an inner inverse of c and (cab)− is an inner inverse of cab, then the following conditions
are equivalent:

(1) a is right (b, c)-invertible;
(2) u = cab(cab)− + 1− cc− ∈ R−1

r ;
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(3) s = ab(cab)−c + 1− c−c ∈ R−1
r .

In this case, b(cab)−cs−1
r is a right (b, c)-inverse of a, where s−1

r is a right inverse of s.

Combining Propositions 8 and 9, we have the following characterization for (b, c)-
invertibility.

Theorem 2. Let R be any associative ring with 1 and a, b, c ∈ R such that b, c and cab are
regular. If b−, c−, (cab)− are inner inverses of b, c, cab, respectively, then the following conditions
are equivalent:

(1) a is (b, c)-invertible;
(2) u = cab(cab)− + 1− cc− ∈ R−1

r and v = (cab)−cab + 1− b−b ∈ R−1
l ;

(3) s = ab(cab)−c + 1− c−c ∈ R−1
r and t = b(cab)−ca + 1− bb− ∈ R−1

l .

In this case,
a||(b,c) = t−1

l b(cab)−c = b(cab)−cs−1
r ,

where t−1
l is a left inverse of t and s−1

r is a right inverse of s.

3. Symmetric Properties of Inner (b, c)-Invertible Elements

Let S be any semigroup and a, b, c ∈ S. If a ∈ S||(b,c) such that aa||(b,c)a = a, then
a||(b,c) is called the inner (b, c)-inverse of a. For arbitrary a ∈ S||(b,c), it is easy to verify that
a||(b,c) is the inner (b, c)-inverse of aa||(b,c)a. Theorem 2.13 in [14] proved that a is inner
(b, c)-invertible if and only if b ∈ Sab, c ∈ caS and a ∈ abS ∩ Sca.

Let R be any associative ring with 1 and a, b, c ∈ R. Theorem 3.16 in [15] proved that a
is inner (b, c)-invertible if and only if a is regular, R = a◦ ⊕ bR and R = ◦a⊕ Rc. We give a
characterization for inner (b, c)-invertible elements as follows.

Proposition 10. Let S be any semigroup and a, b, c ∈ S. Then the following conditions are equivalent:

(1) a is inner (b, c)-invertible;
(2) a is (b, c)-invertible and a ∈ abS;
(3) a is (b, c)-invertible and S ∈ Sca.

Proof. (1)⇒ (2). Suppose that a||(b,c) = bt for some t ∈ S. Then

a = aa||(b,c)a = abta ∈ abS.

(2)⇒ (1). Assume that a = aby for some y ∈ S. Then

aa||(b,c)a = aa||(b,c)aby = aby = a.

(1)⇔ (3) can be proved similarly.

Let S be any semigroup and a, d ∈ S. Lemma 2 shows that a ∈ S||b and b ∈ S||a if and
only if a is inner invertible along b. It follows immediately that a is inner invertible along b
if and only if b is inner invertible along a. We consider to generalize this fact to the case of
a ∈ S||(b,c) and d ∈ S||(c,b).

Proposition 11. Let S be any semigroup and a, b, c ∈ S. If a ∈ S||(b,c) and d ∈ S||(c,b), then c is
inner (a′, d′)-invertible and b is inner (d′, a′)-invertible, where a′ = aa||(b,c)a and d′ = dd||(c,b)d.
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Proof. Let a′ = aa||(b,c)a and d′ = dd||(c,b)d. We first prove that c is (a′, d′)-invertible. In fact,
supposing that a||(b,c) = sc for some s ∈ S,

aa||(b,c)a = aa||(b,c)aa||(b,c)a

= ascaa||(b,c)a

= asd||(c,b)dcaa||(b,c)a

= asd||(c,b)dd||(c,b)dcaa||(b,c)a ∈ Sdd||(c,b)dcaa||(b,c)a.

Similarly, dd||(c,b)d ∈ dd||(c,b)dcaa||(b,c)aS.
Meanwhile, we have

cc||(a′ ,d′)c = d||(c,b)dcc||(a′ ,d′)c

= d||(c,b)dd||(c,b)dcc||(a′ ,d′)c

= d||(c,b)dc

= c.

By symmetry, we have that b is inner (d′, a′)-invertible.

Lemma 6. Let S be any semigroup and a, b, c, d ∈ S. If a ∈ S||(b,c), d ∈ S||(c,b), c ∈ S||(a,d) and
b ∈ S||(d,a), then

a||(b,c)a = bb||(d,a), aa||(b,c) = c||(a,d)c,

dd||(c,b) = b||(d,a)b, d||(c,b)d = cc||(a,d).

Proof. If a ∈ S||(b,c), d ∈ S||(c,b), c ∈ S||(a,d) and b ∈ S||(d,a), then we have

a||(b,c)a = a||(b,c)abb||(d,a) = bb||(d,a).

Similarly, aa||(b,c) = c||(a,d)c, dd||(c,b) = b||(d,a)b and d||(c,b)d = cc||(a,d).

Now we have the main result of this section.

Theorem 3. Let S be any semigroup and a, b, c, d ∈ S. Then the following conditions are equivalent:

(1) a is inner (b, c)-invertible and d is inner (c, b)-invertible;
(2) c is inner (a, d)-invertible and b is inner (d, a)-invertible;
(3) a ∈ S||(b,c), d ∈ S||(c,b) and b ∈ S||(d,a);
(4) a ∈ S||(b,c), d ∈ S||(c,b) and c ∈ S||(a,d).

Proof. (1)⇒ (2). If a is inner (b, c)-invertible and d is inner (c, b)-invertible, then c is inner
(a, d)-invertible and b is inner (d, a)-invertible by Proposition 11.

(2)⇒ (1). It is similar to the proof of (1)⇒ (2).
(1)⇒ (3). If a is inner (b, c)-invertible and d is inner (c, b)-invertible, then aa||(b,c)a = a

and dd||(c,b)d = d. It follows that b is (d, a)-invertible by Proposition 11.
(3)⇒ (1). If a ∈ S||(b,c), d ∈ S||(c,b) and b ∈ S||(d,a), then aa||(b,c)a = abb||(d,a) = a and

dd||(c,b)d = b||(d,a)bd = d by Lemma 6.
The equivalence of (1) and (4) can be proved similarly.

Corollary 1. Let S be any semigroup and a, b ∈ S. Then a is inner invertible along b if and only if
b is inner invertible along a.

If a ∈ S||b and b ∈ S||a, then a||b = (ba)#b and b||a = a(ba)# by Lemma 1. It follows
that

a||bb||a = (ba)#ba(ba)# = (ba)#.
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By symmetry, b||aa||b = (ab)#. We generalized this result to the case of (b, c)-inverses.

Proposition 12. Let S be any semigroup and a, b, c, d ∈ S. If a ∈ S||(b,c), d ∈ S||(c,b), b ∈ S||(d,a)

and c ∈ S||(a,d), then abdc, bdca, dcab, cabd ∈ S# with

(dcab)# = b||(d,a)a||(b,c)c||(a,d)d||(c,b),

(cabd)# = d||(c,b)b||(d,a)a||(b,c)c||(a,d),

(abdc)# = c||(a,d)d||(c,b)b||(d,a)a||(b,c),

(bdca)# = a||(b,c)c||(a,d)d||(c,b)b||(d,a).

Proof. If a ∈ S||(b,c), d ∈ S||(c,b), b ∈ S||(d,a) and c ∈ S||(a,d), then abdc, dcab ∈ S# with
a||(b,c) = bdc(abdc)# and c||(a,d) = (abdc)#abd by Proposition 5, then we have

b||(d,a)a||(b,c)c||(a,d)d||(c,b)

= b||(d,a)bdc(abdc)#(abdc)#abdd||(c,b)

= dc(abdc)#(abdc)#ab

= (dcab)#,

where the last equality follows by Cline’s formula [11]. The remaining three equalities can
be verified similarly.

Proposition 13. Let S be any semigroup and a, b, c ∈ S. Then the following conditions are equivalent:

(1) a is both inner (b, c)-invertible and inner (c, b)-invertible;
(2) both b and c are inner invertible along a;
(3) a is inner invertible along b and c.

In this case,
a||(b,c) = bb||aa||c = a||bc||ac = a||baa||c

and
a||(c,b) = cc||aa||b = a||cb||ab = a||caa||b.

Proof. (1) ⇔ (2). Taking a = d in Theorem 3, then the equivalence between (1) and
(2) follows.

(2)⇔ (3). By Corollary 13.
In this case, noting that a||(b,c)a = bb||a = a||ba and aa||(b,c) = c||ac = aa||c by Lemma 6,

we have

a||(b,c) = a||(b,c)aa||(b,c) = a||(b,c)c||ac = a||(b,c)aa||c = bb||aa||c = a||baa||c = a||bc||ac.

Similarly, we can obtain the formula of a||(c,b).

Let S be any semigroup and a ∈ S. Theorem 4.4 in [16] proved that a is core invertible
if and only if a is (a, a∗)-invertible, and a is dual core invertible if and only if a is (a∗, a)-
invertible. Taking b = a and c = a∗ in Proposition 13, we have the following result.

Corollary 2 (Theorem 5.6 in [17]). Let S be any semigroup and a ∈ S. Then a is both core
invertible and dual core invertible if and only if a is both groups are invertible and Moore–Penrose
invertible. In this case, a#aa† is the core inverse of a and a†aa# is the dual core inverse of a.

The reason why the (b, c)-inverse of a is equal to a||(b,b)aa||(c,c) in Theorem 13 is based
on the following fact.



Mathematics 2022, 10, 2948 10 of 12

Proposition 14. Let S be any semigroup and a, b, c ∈ S. If a ∈ S||c ∩ S||(c,b) ∩ S||b, then
aa||(c,b)a ∈ S||(b,c) with

(aa||(c,b)a)||(b,c) = a||baa||c.

Proof. It is clear that a||baa||c ∈ bS ∩ Sc. We have

a||baa||caa||(c,b)ab = a||baa||(c,b)ab = a||bab = b

and
caa||(c,b)aa||baa||c = caa||(c,b)aa||c = caa||c = c.

So aa||(c,b)a ∈ S||(b,c) with (aa||(c,b)a)||(b,c) = a||baa||c.

If a is invertible along b and c, then the (c, b)-invertibility can be characterized by
a||baa||c.

Proposition 15. Let S be any semigroup and a, b, c ∈ S. If a is invertible along b and c, then

(1) a ∈ S||(c,b)
l if and only if S1a||baa||c = S1c;

(2) a ∈ S||(c,b)
r if and only if a||baa||cS1 = bS1;

(3) a ∈ S||(c,b) if and only if a||baa||cS1 = bS1 and S1a||baa||c = S1c.

Proof. (1) Noting that S1a||b = S1b and a||cS1 = cS1, we have a ∈ S||(c,b)
l if and only if a ∈

S||(a||c ,a||b)
l by Lemma 5. Additionally, a ∈ S||(a||c ,a||b)

l if and only if S1a||baa||c = S1a||c = S1c
by definition.

(2) Can be proved similarly.
(3) Combining (1) and (2).

Let A ∈ Cn×n. Malik and Thome [18] defined the matrix AD,† = AD AA† to be the
DMP inverse of A and A†,D = A† AAD to be the dual DMP inverse of A. Later, Mehdipour
and Salemi [19] defined the matrix Ac† = A† AAD AA† to be the CMP inverse of A. We
know that A† = A||A

∗
and AD = a||A

m
, where m = ind(A), it is natural to consider the

properties of a||baa||c, a||caa||b and a||caa||baa||c, under the assumption that aa||ca = a.

Proposition 16. Let S be any semigroup and a, b, c ∈ S. If a is invertible along b and c such that
aa||ca = a, then

(1) a||baa||c is the unique solution of the following equations

xax = x, bax = baa||c, xa = a||ba;

(2) a||caa||b is the unique solution of the following equations

xax = x, ax = aa||b, xab = a||cab;

(3) a||caa||baa||c is the unique solution of the following equations

xax = x, axa = aa||ba bax = baa||c, xab = a||cab.

Proof. (1) We first check that a||baa||c satisfies these three equations. Actually, we have

a||baa||caa||baa||c = a||baa||baa||c = a||baa||c,

baa||baa||c = baa||c and a||baa||ca = a||ba.

If y also satisfies these equations, supposing that a||b = sb for some s ∈ S, then

y = yay = a||bay = sbay = sbaa||c = a||baa||c.
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(2) and (3) can be proved similarly.

Let A ∈ Cn×n with ind(A) = m. Taking b = Am and c = A∗ in Proposition 16, we
recover the characterizations of the DMP inverse ([18], Theorem 2.2), dual DMP inverse
and CMP inverse ([19], Theorem 2.1).

Particularly, a||baa||c, a||caa||b and a||caa||baa||c can be expressed as the (_, _)-inverses
of a.

Proposition 17. Let S be any semigroup and a, b, c ∈ S. If a is invertible along b and c such that
aa||ca = a, then

(1) a||baa||c is the (b, baa||c)-inverse of a;
(2) a||(c,c)aa||(b,b) is the (a||cab, b)-inverse of a;
(3) a||(c,c)aa||(b,b)aa||c is the (a||cab, baa||c)-inverse of a.

Proof. (1) It is obvious that a||baa||c ∈ bS ∩ baa||cS. Meanwhile, we have

a||baa||cab = a||bab = b,

baa||caa||baa||c = baa||baa||c = baa||c.

So a||baa||c is the (b, baa||c)-inverse of a.
(2) and (3) can be proved in a similar way.

Let A ∈ Cn×n with ind(A) = m. Taking b = Am and c = A∗ in Proposition 17, we have
AD,† = A||(Am ,Am A†) = A||(AD ,Am A†), which are Theorem 3.2 in [20] and Theorem 3.6 in [21].

Corollary 3. Let A ∈ Cn×n with ind(A) = m. Then Ac† is the (A† Am, Am A†)-inverse of A.
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