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Abstract: In this paper, we consider the parameter identification problem of partial differential
equations with constraints. A nonlinear multigrid method is introduced to the process of parameter
inversion. By keeping the objective functions on coarse grids consistent with those on fine grids, the
proposed method reduces the dimensions of objective functions enormously and mitigates the risk of
trapping in local minima effectively. Furthermore, constraints significantly improve the convergence
ability of the method. We performed the numerical simulation based on the porosity identification
of elastic wave equations in the fluid-saturated porous media, which suggests that the nonlinear
multigrid method with constraints decreases the computational expenditure, suppresses the noise,
and improves the inversion results.
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1. Introduction

In science and engineering, the system of partial differential equations with unknown
parameters, which cannot be measured directly, is often used to describe a physical model.
An indispensable need for successfully modeling and optimizing the corresponding physi-
cal process is the accurate identification of unknown parameters. Normally, the values of
these parameters are set at first on the base of laboratory experiments or literature data.
Thereafter, comparing the results of the forward calculation of the system of partial differ-
ential equations (PDEs) with measurement data, the unknown parameters are determined
by trial and error, such that the discrepancy is minimal.

Parameter identification inverse problem is widely applied in optical imaging [1,2],
biomedical imaging [3,4], exploration seismology [5–7], groundwater flow modeling [8],
industrial process monitoring [9,10], elasticity imaging [11,12], and acoustics imaging [13,14].
Owing to its nonlinearity and ill-posedness, such an inverse problem can hardly be solved
explicitly. Recently, many authors focused on artificial intelligence algorithms, such as
machine learning [15–18] and ensemble learning [19,20]. Moreover, there are traditional
inversion algorithms such as gradient, Gauss–Newton, and full Newton methods [21–24],
which are more often used on a fixed discretization grid. As long as there are more
parameters needed to be estimated, the search space will increase and the computation
efficiencies of these approaches will be lower. Motivated by the shortages of the above
inversion methods, a nonlinear multigrid method was designed.

The multigrid method is an accurate and efficient method that has been successfully
employed to solve forward and inverse problems [25,26]. When applied to inverse prob-
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lems, the multigrid method can reduce the dimensions of objective functions enormously
and mitigate the risk of trapping in local minima effectively by keeping the objective func-
tions on coarse grids consistent with those on fine grids [27,28]. Inspired by the multigrid
decomposition, Ye et al. [29] proposed a nonlinear multigrid optimization technique to
reconstruct images in the field of optical diffusion tomography by computing the maximum
a posteriori estimate. Marlevi et al. [30] utilized multigrid methods in tomographic image
reconstruction from non-truncated projection data. Zhang et al. [31] studied an effective
multigrid domain decomposition method in order to solve the minimization problem of
the total variation. Zhang et al. [32] presented a multigrid correction scheme to obtain
the solution to a new Steklov eigenvalue problem in inverse scattering. Edjlali et al. [33]
applied the multigrid method to decrease the dimensions of the fluorescence tomographic
imaging problem. A line search multigrid method was designed by Javaherian et al. [34]
for photoacoustic tomography. Hu et al. [35] put forward a path covering adaptive al-
gebraic multigrid method to solve linear systems of weighted graph Laplacians. The
authors in [36–38] studied multigrid methods for the parameter identification problem of
chemotaxis models inspired by Cancer-on-Chip experiments.

In comparison with using data only recorded on the surface of the studied object, the
parameter inversion involving constraint data (such as the internal data of the object with
a higher signal-to-noise ratio) might have lower noise levels and achieve better inversion
quality. The parameter inversion with constraints has been applied in many areas including
tectonophysics [39], geophysics [40,41], atmospheric research [42], remote sensing [43], and
so on.

This article discusses the parameter identification problem of partial differential equa-
tions with constraints. Firstly, the problem was formulated as a constrained minimization
problem, and then was converted to an unconstrained minimization problem by utiliz-
ing the penalty function method. Secondly, a V-cycle multigrid method with constraints
(MGCS) was constructed for the parameter identification problem. Finally, the numerical
simulation based on the porosity identification of elastic wave equations in the fluid-
saturated porous media was carried out.

This article is organized in the following way. In Section 2, we briefly describe the
constrained parameter inversion problem of partial differential equations. In Section 3,
the details of MGCS are investigated. Section 4 is devoted to the numerical simulation
performed for the porosity inversion of elastic wave equations in the fluid-saturated porous
media. In Section 5, we present our conclusions and perspectives for future work.

2. Inversion Model

Consider a system of a partial differential equation
L(p(x), t)u(x, t) = 0, x ∈ Ω, 0 < t < T,
Eu(x, 0) = ϕ(x), x ∈ Ω,
Bu(x, t) = φ(x, t), x ∈ ∂Ω, 0 < t < T,

(1)

where x = (x1, x2, . . . , xn)> is the space variable, t is the time variable, Ω ⊂ Rn is a
bounded domain, ∂Ω is the boundary of Ω, u(x, t) is a sufficiently smooth function defined
on Ω× (0, T). L, E, and B are, respectively, differential, initial condition, and boundary
condition operators. u(x, t) can be determined with the known p(x); such a problem is
denoted as a forward problem.

While the parameter p(x) is unknown, the process of identifying the unknown param-
eter p(x) from some observed data uobs(xb, t) (b = 1, 2, . . . , B), which can be viewed as an
optimization problem, is called the parameter identification inverse problem.

Firstly, solution u(x, t) of Equation (1) nonlinearly depends on p(x), so a nonlinear
operator equation can be defined as follows:

A(p(x)) = u(xb, t), (2)
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then, the parameter p(x) can be identified from the observed data uobs(xb, t) by minimizing
the discrepancy between the computed and observed data:

min ‖A(p(x))− uobs(xb, t)‖2. (3)

In practical applications, the identified parameter and observed data in the problems
are generally in discrete forms: for example, let

P = (p1, p2, . . . , pS)
>,

Uobs = (uobs(x1, t), uobs(x2, t), . . . , uobs(xB, t))>,

denote the discrete forms of p(x) and uobs(xb, t), respectively.
To achieve better inversion quality, the constraint data (such as the internal data of

the object with a higher signal-to-noise ratio) can be utilized. Denote the admissible set
containing the constraint data p̂i1 , p̂i2 , . . . , p̂iJ :

Φ = {P : pij = p̂ij , j = 1, 2, . . . , J},

where 1 ≤ i1 < i2 < . . . < iJ ≤ S. Therefore, the parameter inversion with constraints is
transformed into:

min
P∈Φ
‖A(P)−Uobs‖2. (4)

Assume
P̂ = ( p̂i1 , p̂i2 , . . . , p̂iJ )

>,

DP = (pi1 , pi2 , . . . , piJ )
>,

where D is an extraction operator, such that DP− P̂ = 0 by choice of P ∈ Φ. Hence, an
output least squares problem without constraints is obtained:

min{‖A(P)−Uobs‖2 + µ1‖DP− P̂‖2}, (5)

where µ1 denotes the constraint parameter, which can manage the constraint strength. In
the specific inversion process, it is necessary to design a large enough µ1 to ensure that the
solution of Equation (5) is close to that of Equation (4).

Because of the ill-posedness of the inverse problem, the regularization technique has
to be adopted to compute a stable approximation of the minimum, which leads to the
associated least squares problem:

min H(P) = {‖A(P)−Uobs‖2 + µ1‖DP− P̂‖2 + µ2‖P‖2}, (6)

where µ2 denotes the regularization parameter, and the regularization term µ2‖P‖2 is
incorporated to enhance stability or provide priori information or both.

3. Multigrid Method with Constraints

As the primary component of the multigrid, a hierarchy of discretization grids is required:

{Πg}, g = 0, 1, . . . , G,

where Π0 is the finest grid, and Πg is attained with the discrete step size of Π0 multiplied
by 2g. The objective functional is discretized on grid Πg:

H(g)(P(g)) = ‖A(g)(P(g))−U(g)
obs‖2 + µ

(g)
1 ‖D(g)P(g) − P̂(g)‖2 + µ

(g)
2 ‖P(g)‖2, (7)

which has fewer local minima and lower dimensions on a coarser grid, to mitigate the risks
of trapping in local minima and huge computations.
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For the sake of propagating information between coarse and fine grids, we define the
restriction and prolongation operators as

Ng+1
g : Πg → Πg+1, g = 0, 1, . . . , G− 1,

Ng
g+1 : Πg+1 → Πg, g = 0, 1, . . . , G− 1.

For the sake of the parameter update on each fixed grid, we define the relaxation opera-
tors as

Rg(P(g), H(g)),

where P(g) is the initial value, H(g) is the objective function, and Rg can be chosen as
any iterative method, such as the regularized Gauss–Newton method [44], Levenberg–
Marquardt method [45], and the Landweber method [46].

The coarser resolution approximation P(g+1) on grid Πg+1 can be calculated by re-
stricting the current approximation P(g) on grid Πg:

P(g+1) = Ng+1
g P(g). (8)

To improve P(g), some τ(g+1) times iterations of the relaxation operator are performed with
the initial value P(g+1) on the coarser grid Πg+1, and the result P̄(g+1) is denoted by

P̄(g+1) ← Rg(P(g+1), H(g+1)), (9)

which is used to correct the finer grid approximation:

P̄(g) = P(g) +Ng
g+1(P̄

(g+1) −Ng+1
g P(g)). (10)

Although we expect that these operations lead to a more precise approximation, i.e.,
H(g)(P̄(g)) ≤ H(g)(P(g)), it is hard to be tenable due to the possible inconsistent objective
functionals. Therefore, some additional conditions are imposed to assure the monotonous
convergence of MGCS.

Firstly, we add a correction term α(g)P(g) to the objective functionals to adjust
their gradients:

H(g)
α (P(g)) = H(g)(P(g))− α(g)P(g)

= ‖A(g)(P(g))−U(g)
obs‖2 + µ

(g)
1 ‖D(g)P(g) − P̂(g)‖2 + µ

(g)
2 ‖P(g)‖2 − α(g)P(g),

(11)

where α(g) is a row vector, and it is noteworthy that α(0) = 0, so that H(0)
α (P(0)) =

H(0)(P(0)).
Secondly, we restrict the initial discrepancy between the computed and observed data

to be equal on the coarse and fine grids:

A(g+1)(Ng+1
g P(g))−U(g+1)

obs = A(g)(P(g))−U(g)
obs , (12)

then U(g+1)
obs is obtained from

U(g+1)
obs = U(g)

obs −
[

A(g)(P(g))− A(g+1)(Ng+1
g P(g))

]
, (13)

where the square bracket term compensates for the forward model mismatch on differ-
ent grids.

Thirdly, we enforce the equal restriction on the constraint terms:

µ
(g+1)
1 ‖D(g+1)Ng+1

g P(g) − P̂(g+1)‖2 = µ
(g)
1 ‖D(g)P(g) − P̂(g)‖2, (14)
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which leads to the expression of µ
(g+1)
1

µ
(g+1)
1 =

‖D(g)P(g) − P̂(g)‖2

‖D(g+1)Ng+1
g P(g) − P̂(g+1)‖2

µ
(g)
1 , (15)

and again, on the regularization terms:

µ
(g+1)
2 ‖Ng+1

g P(g)‖2 = µ
(g)
2 ‖P(g)‖2, (16)

which leads to the expression of µ
(g+1)
2

µ
(g+1)
2 =

‖P(g)‖2

‖Ng+1
g P(g)‖2

µ
(g)
2 . (17)

Finally, the gradients of the fine and coarse grid objective functionals with the equal
restriction is carried on so that the necessary condition of convergence of MGCS is satisfied:

∇H(g+1)
α (Ng+1

g P(g)) = ∇H(g)
α (P(g))Ng

g+1, (18)

with which one has

α(g+1) = ∇H(g+1)(Ng+1
g P(g))−∇H(g)

α (P(g))Ng
g+1. (19)

Note that, the right multiplication prolongation operator Ng
g+1 works as the restric-

tion operator.
A V-cycle MGCS can be developed with a recursive substitution—that another two-

grid method is adopted instead of the iteration method on the coarser grid of the two-grid
method. Figure 1 shows the flowchart.

To describe the V-cycle multigrid process, which is the significant recursion in an
iteration procedure of our proposed method, a four-level grid with different spacing is
used as an example in Figure 2. The iteration from the finest grid (0) to the coarsest grids
(3) and then back to the finest grid (0) requires a recursive calling to Equations (8)–(10).
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Figure 1. The flowchart of MGCS.

(0)

(1)

(2)

(3)

Figure 2. The V-cycle multigrid iteration process.

4. An Application
4.1. Mathematical Model

The performance of MGCS can be properly illustrated, with specific application
to the porosity identification problem of elastic wave equations in the fluid-saturated
porous media:
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(20)

with homogeneous initial conditions and homogeneous Neumann boundary con-
ditions, where (ux, uz)>, (wx, wz)> are the solid-frame displacement and the fluid
displacement relative to the solid-frame, respectively, and the considered domain
Ω = [0, L]× [0, H]. Additionally,

γ = 1− Bs

Bg
, M =

Bg
2

Dg − Bs
, Dg = Bg

[
1 + p(x, z)

(
Bg

B f
− 1

)]
,

θ =
[

p(x, z)ρ f + (1− p(x, z))ρs

]
, ϑ =

ρ f

p(x, z)
,

where κ is the fluid viscosity, λ is the Lamé coefficient, γ is the tortuosity, θ is the bulk
density, ϑ is the mass density, ρ f is the pore fluid density, ρs is the solid grain density, Bs,
Bg, B f are, respectively, the bulk moduli of the skeletal frame, grain, and pore fluid, and
p(x, z) is the porosity parameter to be identified. Porosity is a property that is associated
with the subsurface media, so retrieving the porosity function can help explore the
underground structure.

In practical applications, such as geophysical prospecting, the observed data are
available at the earth’s surface (i.e., z = 0). Therefore, when Equation (20) is discretized
by the finite difference method with spatial step lengths hx = L

mx
, hz = H

mz
, and time

step length ht =
T

mt
, we can obtain a vector-valued expression of the nonlinear operator

Equation (2):
A(P) = U,

where

P = (p0,0, p0,1, . . . , p0,mz , p1,0, p1,1, . . . , p1,mz , . . . , pmx ,0, pmx ,1, . . . , pmx ,mz)
>,

U = (u1
x,1,0, u1

x,2,0 . . . , u1
x,mx−1,0, u2

x,1,0, u2
x,2,0 . . . , u2

x,mx−1,0, umt
x,1,0, umt

x,2,0 . . . , umt
x,mx−1,0)

>,

and
pi,j = p(ihx, jhz), uk

x,i,j = ux(ihx, jhz, kht).

Let the observed data are arranged in the same way as U and form a vector expression
Uobs, then this porosity parameter identification problem turns into

min ‖A(P)−Uobs‖2.

To achieve better inversion quality, the constraint data (porosity from the well logs of
a well located at point i0 in x) are introduced:

P̂ = ( p̂i0,0, p̂i0,1, . . . , p̂i0,mz)
>.
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Thus, the porosity parameter identification problem with the constraint can be written as

min{‖A(P)−Uobs‖2 + µ1‖DP− P̂‖2},

where

D =


0 0 . . . 0 1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0
...

...
...

...
...

. . .
...

...
...

...
0 0 . . . 0 0 0 . . . 1 0 0 . . . 0


(mz+1)×((mx+1)×(mz+1))

such that
DP = (pi0,0, pi0,1, . . . , pi0,mz)

>.

4.2. Simulation Test

There are some numerical simulation experiments presented to test MGCS and show
its advantages, in contrast with the multigrid method without constraints (MG) and the
fixed-grid method with constraints (FGCS). We choose

hx = 10 m, hz = 10 m, ht = 0.001 s, L = 400 m,

H = 400 m, i0 = 21, µ
(0)
1 = 103, µ

(0)
2 = 10−3,

to instantiate the above problem, with the source function and remaining involved parame-
ters as in our previous paper [47].

Figure 3 presents the true porosity model used for our simulations. This model has
two anomalous bodies in a homogeneous medium. The corresponding inversion results by
MGCS and MG under four different Gauss noise levels of 30, 25, 20, and 15 dB are listed in
Figures 4 and 5, respectively. The color patterns on the charts mean the values of porosity
as shown in the color box. In order to better compare the three methods (MGCS, MG, and
FGCS) we give some detailed computational results (CPU execution times and relative
errors of inversion results) in Tables 1 and 2.
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Figure 3. The true model.
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Figure 4. The inversion results by MGCS with different noise levels. Figures (a)–(d) are identified
porosity images with 30 dB, 25 dB, 20 dB and 15 dB Gaussian noises respectively.

Figure 4. The inversion results by MGCS with different noise levels; (a–d) are the identified porosity
images with 30, 25, 20, and 15 dB Gaussian noises, respectively.
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Figure 5. The inversion results by MG with different noise levels. Figures (a)–(b) are identified
porosity images with 30 dB and 25 dB Gaussian noises respectively.

Table 1. The CPU execution times (seconds) by three different methods.

Noise level MGCS MG FGCS

30 dB 531.191 633.275 1038.302
25 dB 586.140 623.060 1002.997
20 dB 571.452 × 1071.707
15 dB 569.270 × ×

Table 2. The relative errors of inversion results by three different methods.

Noise level MGCS MG FGCS

30 dB 0.0213 0.0635 0.0373
25 dB 0.0297 0.0813 0.0415
20 dB 0.0331 × 0.0493
15 dB 0.0593 × ×

As seen from Table 1, under four different Gauss noise levels, the average CPU execu- 124

tion time of MGCS is 564.513s, apparently lower than those of the two other methods. It is 125

worth mentioning that the CPU execution times required for FGCS are almost double those 126

of MGCS and MG, which means that multigrid improves calculation speed significantly. 127

As 15 dB Gaussian noise is added, FGCS misses the global minimum; As 20 dB and 15 dB 128

Gaussian noises are added, MG misses the global minimum. Therefore, it can be shown 129

that MGCS is successful in mitigating the risk of trapping in local minima. 130

Table 2 demonstrates us that MGCS can achieve smaller relative errors of inversion 131

results than MG and FGCS. With 20 dB Gaussian noise added, the inversion results by 132

MGCS and FGCS are satisfactory, however, MG can not provide an acceptable inversion 133

result; With 15 dB Gaussian noise added, the inversion result by MGCS is still satisfactory, 134

however, neither FGCS nor MG can not provide an acceptable inversion result. This 135

indicates that MGCS has strong ability of suppressing the noise. The reason for this is that 136

MGCS combines the property of overcoming disturbance of local minima of multigrid 137

method with the advantage of high signal-to-noise ratio of constraint data. 138

5. Conclusions 139

This study aimed to develop algorithms based on multigrid methods to solve the 140

parameter identification inverse problem of partial differential equations with constraints. 141

Firstly, in order to suppress the noise and achieve better inversion quality, the constraint 142

data of lower noise levels are introduced to parameter identification problem of PDEs. 143

Figure 5. The inversion results by MG with different noise levels; (a,b) are the identified porosity
images with 30 and 25 dB Gaussian noises, respectively.

Table 1. The CPU execution times (seconds) by three different methods.

Noise Level MGCS MG FGCS

30 dB 531.191 633.275 1038.302
25 dB 586.140 623.060 1002.997
20 dB 571.452 × 1071.707
15 dB 569.270 × ×
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Table 2. The relative errors of inversion results from three different methods.

Noise Level MGCS MG FGCS

30 dB 0.0213 0.0635 0.0373
25 dB 0.0297 0.0813 0.0415
20 dB 0.0331 × 0.0493
15 dB 0.0593 × ×

As seen from Table 1, under four different Gauss noise levels, the average CPU
execution time of MGCS is 564.513 s, apparently lower than those of the two other methods.
It is worth mentioning that the CPU execution times required for FGCS are almost double
those of MGCS and MG, which means that the multigrid improves the calculation speed
significantly. As 15 dB Gaussian noise is added, FGCS misses the global minimum, As 20
and 15 dB Gaussian noises are added, MG misses the global minimum. Therefore, it can be
shown that MGCS is successful in mitigating the risk of trapping in local minima.

Table 2 demonstrates us that MGCS can achieve smaller relative errors of inversion
results than MG and FGCS. With 20 dB of Gaussian noise added, the inversion results by
MGCS and FGCS are satisfactory; however, MG cannot provide an acceptable inversion
result. With 15 dB of Gaussian noise added, the inversion result by MGCS is still satisfactory;
however, neither FGCS nor MG can provide an acceptable inversion result. This indicates
that MGCS has a strong ability to suppress the noise. The reason for this is that MGCS
combines the property of overcoming the disturbance of local minima of the multigrid
method with the advantage of a high signal-to-noise ratio of the constraint data.

5. Conclusions

This study aimed to develop algorithms based on multigrid methods to solve the
parameter identification inverse problem of partial differential equations with constraints.
Firstly, in order to suppress the noise and achieve better inversion quality, the constraint
data of lower noise levels were introduced to the parameter identification problems of PDEs.
Secondly, we constructed a nonlinear multigrid method that improved the calculation speed
and mitigated the risk of trapping in local minima. To evaluate the performance of this
new method, we presented an application of that to the porosity identification of elastic
wave equations in the fluid-saturated porous media. In summary, the advantages of the
multigrid method with constraints are:

• It is fast, accurate, and noise-resistant;
• It is faster and less likely to fall into local minima compared to the multigrid method

without constraints and fixed-grid method with constraints;
• It has stronger anti-noise ability, higher precision, and better stability than the multi-

grid method without constraints and fixed-grid method with constraints.

The nonlinear multigrid method considered in this paper is mainly based on space
discretization. The time domain multigrid method needs to be studied further. Constructing
different multigrid methods will be an interesting part of future work.
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