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Abstract: The paper presents a new solution for motion transmission between two shafts with
non-intersecting axes. The structural considerations fundament the existence in the structure of
the mechanism of three revolute pairs and a bipod contact. Compared to classical solutions, where
linkages with cylindrical pairs are used, our solution proposes a kinematical chain also containing
higher pairs. Due to the presence of a higher pair, the transmission is much simpler, the number
of elements decreases, and as a consequence, the kinematical study is straightforward. Regardless,
the classical analysis of linkages cannot be applied because of the presence of the higher pair. For
the proposed spatial coupling, the transmission ratio is expressed as a function of constructive
parameters. The positional analysis of the mechanism cannot be performed using the Hartenberg–
Denavit method due to the presence of a bipod contact, and instead, the geometrical conditions of
existence for the bipod contact are applied. The Hartenberg–Denavit method requires the replacement
of the bipodic coupling with a kinematic linkage with cylindrical (revolute and prismatic) pairs,
resulting in complicated analytical calculus. To avoid this aspect, the geometrical conditions required
by the bipod coupling were expressed in vector form, and thus, the calculus is significantly reduced.
The kinematical solution for the proposed transmission can be obtained in two ways: first, by
considering the equivalent transmission containing only cylindrical pairs and applying the classical
analysis methods; second, by directly expressing the condition of definition for the higher pairs
(bipodic pair) in vector form. The last method arrives at a simpler solution for which analytical
relations for the positional parameters are obtained, with one exception where numerical calculus
is needed (but the precision of this parameter is controlled). The analytical kinematics results show
two possibilities of building the actual mechanism with the same constructive parameters. The
rotation motions from the revolute pairs, internal and driven, and the motions from the bipod joint
were obtained through numerical methods since the equations are very intricate and cannot be solved
analytically. The excellent agreement validates the theoretical solutions obtained and the possibility
of applying such mechanisms in technical applications. The constructive solution exemplified here is
simple and robust.

Keywords: mechanical coupling; non-intersecting axes; bipod contact; kinematic simulation

MSC: 70B15; 70Q05

1. Introduction

The transmission of motion is a classical—but also modern—issue [1] with applications
to cutting-edge systems, such as medical robots [2], bioinspired robots [3], and hybrid
robotic systems [4], where the problem of motion control of the effector element [5,6] is
always a key task. There are solutions with classical couplings constructed with rigid
elements but also solutions of extreme novelty, such as compliant couplings [7–11].
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From a constructive point of view, the single pair that is suitable to be designed with
compliant elements is the intermediate revolute pair. This pair can be used for reduced
stress and low angular speed, otherwise the risk of vibrations occurrence due to elastic
elements will appear. Compliant mechanisms have some limitations, such as complicated
design calculus, difficulty of controlling the deformation, and lack of precision. They
also raise problems such as fatigue strength and efficiency due to the fact that the elastic
elements store and dissipate energy.

Because the mechanism is spatial, the loading of the elastic element is complex and
conducts difficult-to-control behavior. In addition to the difficult design of the compliant
mechanism, the special and complex construction, difficult assemblage, and more com-
plicated running and maintenance are some aspects to be mentioned when classical and
compliant couplings are balanced. We must also consider that the compliant couplings
are dedicated to small torques and the strains must be kept within the elastic domain, or
else the plastic deformations occur. They cannot transmit continuous rotation motion. The
costs of compliant mechanisms are obviously greater than those for classical couplings
constructed with rigid elements. A rigorous study is very complex, and simplified models
are demanded, such as a pseudo-rigid-body model [12,13].

In 2015, D. Farhadi Machekposhyi [7] realized a comparative analysis between spatial
couplings with rigid elements versus compliant couplings, but in this analysis, no spatial
coupling with four rigid elements is mentioned. In current illustrations, the solid bodies
constituting a system interrelate to each other [14] with the final goal that the system fulfils
the function for which it was designed. In a first approximation, each of the constitutive
elements of a mechanical system can be regarded as a rigid body called a kinematic element
and having six degrees of freedom: three rotations and three translations. Connecting
several elements in a system, the degree of freedom of the system increases to 6n, where n
is the total number of elements of the system. However, in order to accomplish the function
of the system, it is required that the elements of the system interact with each other, and
this leads to a decrease in the degrees of freedom.

The analysis of the mobility of a system is based on fundamental concepts, from
which a kinematical pair that is a direct, mobile, and permanent connection between two
kinematic elements is obtained. The foremost classification criterion of the kinematic pairs
is the class, defined as the number of degrees of freedom withdrawn from an element
when the other element is considered immobile. Based on this definition, the class of
kinematic pair ck may have values between 1 and 5. By extrapolating the definition, one
considers the pair of class c0 as the pair corresponding to the lack of interaction between
two elements and the pair of class c6 characteristic to the rigid link between two elements.
All the elements of the system linked to each other by kinematic pairs create a kinematic
chain characterized by the degree of freedom (DOF) [15]:

L = 6n−∑5
k=1 kck (1)

Equation (1) shows that in order to ensure a well-defined motion of the entire kinematic
chain, control of all the L degrees of freedom is required. Two situations are met in practical
applications: the open chain, in which, in the structure of the chain, at least one element
exists which makes a single pair, as seen in robotic structures and the closed chain, in
which each element creates at least two kinematic pairs, characteristic to mechanisms. In
order to calculate the degree of mobility M of a mechanism, it is considered that one of the
elements is immobile and the motions of all other elements are considered relative to this
fixed element [16,17]:

M = 6(n− 1)−∑5
k=1 kck (2)

A frequent problem in mechanical engineering is the transmission of rotation motion
between two shafts with non-coplanar axes. A usual engine provides the rotation motion of
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the driving shaft, and, for many situations, this is a uniform rotation motion. The parameter
describing the quality of transmission of motion is the transmission ratio:

i1n =
ω1

ωn
(3)

where ω1 is the angular velocity of the driving shaft and ωn is the angular velocity of the
driven shaft. For a transmission ratio equal to one, a special case of transmission known
as homokinetic transmission materializes. Diverse solutions of homokinetic couplings are
presented in technical literature [18–25]. There is also a wide range of applications in which
the rigorously constant transmission ratio is not necessary and in which it is accepted that
the transmission ratio may have a periodic variation about a mean value, with stipulated
deviation between accepted limits [26]. One of the aspects occurring in the case of motion
transmission between two shafts is the presence of sliding friction existing in the kinematic
pairs from the kinematic chain, a fact that reduces the efficiency of transmission [27,28].
This happens in the cases when the transmission of motion is completed using a small
number of elements—such as direct contact between the input and output elements or with
an intermediate element between them. The structural calculus reveals that for these cases,
between the elements of the coupling kinematic chain, pairs of lower class will exist (c1, c2,
and c3 planar joint) which cannot be envisaged for rolling friction [29,30]. The requirement
of optimum design assumes a structural solution as simple as possible for ensuring a higher
efficiency. The necessity of quantitative evaluation of the manner in which the motion is
transmitted from driving shaft (1) to the driven shaft (n) demands that the transmission
ratio be expressed as a function of the constructive characteristics of the mechanism.

For planar mechanisms, an efficient method is the vector loop method [17,31,32], which
expresses the condition of a closed contour of the kinematic chains of the mechanism in
vector or complex form. The kinematic analysis of spatial mechanisms can be performed via
different analytic methods based on the kinematical closed chain of the mechanisms, such
as dual quaternions [33], the screw method, the bar method, the method of homogeneous
operators, the matrix–tensor method, or the matrix invariants method [34].

The kinematic analysis of the mechanism presented in the present paper is based on
the homogeneous operators method, which was proposed by Hartenberg and Denavit [35].
The method created by Hartenberg and Denavit became classical, but it continues to be
applied to the kinematic study [36–39] of most recent systems, such as spatial mechanisms
and robots [40–46]. There is no specified methodology for the kinematic analysis of the
mechanisms with higher pairs. If a stated methodology is to be applied, it is required
that all the kinematical higher pairs must be replaced by kinematical chains that have
only cylindrical pairs (with particular forms revolute and translational) in their structures.
From the known methodologies, one can mention the Hartenberg–Denavit method of dual
operators [47,48], the screw method [49], and the method of dual quaternions [50]. In
the paper, a general method is applied [51–55] that is appropriate to any type of spatial
mechanism. The method is based on the relation of coordinate transformation of a point
when the reference system is changed. The point M, Figure 1, has in two coordinate
systems p and q the position vectors rp = [xp, yp, zp]

T and rq = [xq, yq, zq]
T , respectively.

By denoting with ip, jp, kp the versors of the p system and by iq, jq, kq the versors of the q
system, the coordinate transformation is expressed in matrix form, and the passing from
the p system to q system is described by a rotation matrix Rpq:

Rp,q =

 iq·ip jq·ip kq·ip

iq·jp jq·jp kq·jp
iq·kp jq·kp kq·kp

 (4)
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and a displacement vector dp,q, characterizing the displacement of the origin of the p system
over the origin of the q system:

dp,q =

xO
yO
zO

 (5)Mathematics 2022, 10, x FOR PEER REVIEW 4 of 25 
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The transformation relation is:

rq = dp,q + Rp,qrq (6)

McCarthy [56,57] gives an especially interesting remark, considering the coordinate
transformation (6) as a displacement from the initial position “p” to a final position “q”.
Since the two versor systems ip, jp, kp and iq, jq, kq are orthonormal coordinate systems,
from the nine elements of the Rp,q matrix, only three are independent. One can conclude
that the relative position of the two systems is described by six scalar parameters. Due to
the nonhomogeneous character of Relation (6), applying the relation successively leads
to intricate relations. Hartenberg and Denavit proposed the writing the relation in the
following form: [

rp
1

]
=

[
Rp,q dp,q

[0 0 0] 1

][
rq
1

]
= Tp,q

[
rq
1

]
(7)

Equation (7) can be regarded as a gliding in the hyper plane w = 1 from the four-
dimensional space (x, y, z, w) where the displacement is described by the homogeneous
operator:

Tp,q =

[
Rp,q dp,q

[0 0 0] 1

]
(8)

Relation (8) presents an important consequence: when attaching a coordinate system
to each element of the chain, the coordinates of a point, after successive passes through
all coordinate systems, will be the same after returning to the initial frame. For a given
closed kinematic chain of n elements, when the convention that the element denoted n + 1
is identical to element 1, the vector loop equation is written:

∏n
k=1 Tk,k+1 = I4 (9)

where I4 is the unit matrix of order 4. Equation (9) provides 12 scalar equations, of which
six are independent, and the position of the kinematic chain can thus be found. The
system of scalar equations is a nonlinear one, with multiple solutions corresponding to all
assembling possibilities. Uicker [17] presents a numerical method for solving the system of
scalar equations. A generalized method for any kinematics chain type, closed or open, is
presented by [58]. The papers [59–62] present a review of spatial couplings with constant
velocity. Four-element coupling does not occur; only coupling with five or more elements
exists. Regarding the spatial mechanisms, the kinematical analysis can be performed using
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the Hartenberg–Denavit method only if, as emphasized in the paper, in the structure of the
mechanism only cylindrical pairs (represented in Figure 2) occur (possible with particular
forms: prismatic, revolute, and helical joint). For other types of mechanisms (in this case
as well), the replacement of non-cylindrical pairs with kinematical chains in which only
cylindrical pairs occur (with the particular forms) is required. For example, Fisher [63]
presents the manner of applying the Hartenberg–Denavit method in dual form for the
mechanisms containing spherical pairs and planar joints. The attempt to find mechanisms
with four elements with higher pairs on the internet did not produce a result. From the
category of spatial mechanisms with higher pairs, the most representative examples are the
spatial cam mechanisms [59–62,64–67].
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Another example: in 2011, Bil studied the spatial mechanism with higher pairs [66,67]
by means of the fundamental equivalent mechanism 7R. The importance of the subject is
reflected by classical monographs [20,68–70].

In order to apply the Hartenberg–Denavit method, the axis z will be represented by
the axis of the prismatic joints and the axis x will be represented by the common normals
of two successive z axes, as shown in Figure 3.
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Overlaying the system Okxxykzk and the system Ok+1xk+1yk+1zk+1 by means of a
roto-translation of parameters sk and θk along the axis zk followed by a roto-translation of



Mathematics 2022, 10, 2898 6 of 25

parameters αk,k+1 and ak,k+1 around the axis xk+1, the homogeneous operator Tk,k+1 results
as a composition of two homogeneous operators, Z(θk, sk) and X(αk,k+1, ak,k+1):

Tk,k+1 = Z(θk, sk)X(αk,k+1, ak,k+1) =

=


cosθk −sinθk 0 0
sinθk cosθk 0 0

0 0 1 sk
0 0 0 1




1 0 0 ak,k+1
0 cosαk,k+1 −sinαk,k+1 0
0 sinαk,k+1 cosαk,k+1 0
0 0 0 1

 (10)

Recalling the remark given by McCarthy, the two matrixes Z(θk, sk) and X(αk,k+1, ak,k+1)
can be viewed as homogeneous operators that describe roto-translations with respect to
the axes zk and xk+1, respectively. Thus, the symbolisation of the Ox axes with two indices
appears natural; for example, Oxk+1 will now be Oxk,k+1 in order to suggest that the
axis Oxk+1 is in fact the normal to the axes Ozk and Ozk+1. Additionally, the notation
with two indices clearly indicates the fact that the axes Oxk and Ok+1 are attached to
the same element “k” and that the two parameters αk,k+1 and ak,k+1 are the constructive
characteristics of the element.

Seemingly restrictive, due to the imposed condition that only cylindrical joints should
occur in the mechanism’s structure, the Hartenberg–Denavit method can be applied to any
mechanism, with the condition that all joints different from cylindrical ones be previously
equivalated to combinations of cylindrical joints. The proposed method does not present
restrictions because any pair is represented by a series of geometrical restrictions that
can be expressed in vector form, and after that, using the transformation relations from
the Hartenberg–Denavit method, all the vectors can be expressed by their projections
on the axes of a unique system of coordinates in order to obtain the scalar equations of
projections. The method is exemplified in [71] for the swash plate mechanisms, where the
sphere–plane joint of the first class is equivalated to a Cardan coupling in series with an
Oldham coupling. The method presents the disadvantage that all the motions from the
joints of the equivalent mechanism must be found in order to obtain the motions from the
joints of the actual mechanism. In the present work, it will be proven that for the kinematic
analysis, it is more efficient to use the condition equation of the kinematic joints (other than
cylindrical). In other papers concerning higher pairs, the equations of condition are not
used in vector form—which is a simpler form—but in more intricate forms (algebraic, by
projections); for illustration, see [72–76]. The condition equations in vector form express
the relations existing between different vectors identified in different reference coordinate
systems. In order to make these equations operable, it is required that all the vectors be
identified in the same coordinate system; therefore, the transformation relations from the
homogeneous operators method are applied in a simple manner. The classical method
based on the equation of closed contour of the mechanism assumes that the bipodic pair
is replaced by an assembly of elements which are linked through kinematical lower pairs.
As a result of applying the classical method, an over-constrained system of 12 equations
with six unknowns results, and for solving it, in most cases, numerical calculus must be
used [77]. As a general conclusion of the above considerations, the kinematical study of a
transmission with multipodic contacts cannot be performed via classical methods. In the
present paper, a general methodology is proposed with the bipodic contact as example,
and it is based on the statement by Phillips [78] that any pair can be assimilated by the
relation between the points (n = 1÷ 6) of an element with respect to the surface of the
other element. To solve the problem, these relations must be expressed in vector form with
the mention that all vectors should be expressed in the same reference system.

2. Materials and Methods
2.1. Structural Considerations

Straightforward calculus shows that the unique solution for transmitting the rotation
motion by direct contact between two shafts with non-coplanar axes is possible when a
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pair of class 1 exists between them [79]. In a general case, the transmission of rotation of
motion between two shafts with non-coplanar axes can be achieved via a kinematic chain
having in structure n elements and ck pairs of k class. As a consequence, the total number
of elements of the chain is (n + 3) because to the number of elements of the chain, the two
shafts and the ground are added. To the ck pairs of the chain there must be added 2 pairs of
class 5, c5, which connect to the ground the driving and driven shafts. The mobility of the
transmission should be M = 1 since a single driving element exists. Equation (2) is applied
for the coupling mechanism:

1 = 6(n + 3− 1)−∑n
k=1 kck − 5c5 (11)

The simplest solution is the direct contact, n = 0:

1 = 6·2−∑5
k=1 kck − 2·5 (12)

from which results
∑5

k=1 kck = 1 (13)

The single possible solution of Equation (13) is

c1 = 1, c2 = 0, c3 = 0, c4 = 0,c5 = 0 (14)

System (14) shows that for two shafts with non-coplanar axes, direct coupling can
be achieved only by means of a pair of class c1 obtained through a Hertzian point con-
tact. From the mechanisms that correspond to this category, one can recall hypoid gears,
gear mechanisms with intersecting axes, and spatial cam mechanisms. In papers [66,67],
there are theoretically modelled different particular aspects concerning higher pairs, but
kinematical analysis for each particular solution is not performed.

When the coupling is obtained using an intermediate element, as presented in Figure 4,
it is considered that the intermediate element makes with each of two shafts a pair of class
p and q, respectively, (p, q = 1÷ 5).
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Applying the equation
p + q = 7, 1 ≤ p, q ≤ 5 (15)

in this case, from the possible solutions of Equation (2), gives

1 = (1 + 3− 1)6− p− q− 2·5 (16)

from which it results
p + q = 7 (17)

with the possible solutions {
p = 2
q = 5

(18)
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and {
p = 3
q = 4

(19)

It deserves mention that the structural solutions obtained by changing the values of
the indices p and q are also valid. One can remark that when the notion of generalized pair
of class c0 (non-contacting elements) and c6 (elements rigidly connected) is accepted, the
following structural solution can be added to Solutions (18) and (19):{

p = 1
q = 6

(20)

This solution corresponds to the rigid coupling between the intermediate element
and one of the shafts, and thus—in fact—it is a direct contact between two shafts, and the
motion is transmitted by a direct contact.

Next, the coupling mechanism where the intermediate elements make a c2 class pair
and a c5 class rotation pair with the two shafts, respectively, will be considered. The
resulting mechanisms will be R2RR or RR2R mechanisms. The revolute pair is shown in
Figure 5, and the bipod joint is presented in Figure 6.
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Figure 6. The bipod joint.

The bipod pair assumes that between the two elements, denoted 1 and 2, two-point
concentrated contacts are made. In Figure 6, the two contacts are achieved between
spherical surfaces from element 2 and two surfaces attached to element 1. The geometric
conditions for the existence of the contacts consist of maintaining the centers of the spheres,
C′ and C′′ , at distances equal to the radius with respect to the two supporting surfaces
Σ′ and Σ′′ , respectively. In engineering applications, the supporting surfaces are simple
surfaces, such as planes, cylinders, etc. A common situation is when the two supporting
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surfaces are materialized by the same plane and the radii of the two spheres are equal. In
this case, the condition of existence for the bipod contact imposes that the axis of the center
of spheres is permanently contained in a plane fixed to the other element. The practical
solution is presented in Figure 7, in which the balls, attached to the intermediate element,
are introduced in a prismatic channel with width equal to the balls’ diameter. Another
constructive solution consists of replacing the balls with a metallic cylinder with the same
diameter as the balls.
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Next, the case p = 2, q = 5 is considered, accepting that c5 class pair is a revolute pair.
The mechanism corresponding to this structural solution is presented in Figure 8. The c2
class pair is obtained, in theory, by constraining two points from the intermediate element
3 to lie permanently in a plane attached to element 1. In practice, the class 2 pair is made by
introducing two identical spheres attached to the element 3 in a parallelepipedal channel of
width equal to the spheres’ diameter, made in the body of element 1. Thus, the centers of
the spheres A1 and A2 are permanently constrained to be situated in the plane of symmetry
(P) of the channel.
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and the revolute pairs are denoted c5.

The existence of the sphere–plane contacts, Figures 8 and 9a, which theoretically
make the bipod pair, has as its main disadvantage the generation of appreciable contact
stresses [80,81]. These stresses may exceed the admissible values, and in consequence,
plastic deformations may occur in the materials of the two parts and the actual contact
surfaces differ from the theoretical ones. As a practical solution for the transmission, in
order to surpass this drawback, Ref. [53] presented the design of an intermediate pad which
has a spherical cavity of the same radius as the ball and a flat surface. This pad is introduced
between the sphere and the surfaces of the channel to reduce contact stresses, as seen in
Figure 9b. The pad and the sphere make a spherical pair, and the pad and the surface of
the channel make a planar pair. Both pairs are lower pairs; the contact occurs on extended
surfaces, and the effect is the substantial decrease in contact surfaces. Additionally, the
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tribological behavior of the pad–ball contact and pad–channel contact can be improved
by the adequate choice of materials for the pad (bronze, cast iron with nodular graphite,
polytetrafluoroethylene PTFE—Teflon, etc.) and by using grease for friction diminishing.
In the present case, the pad was made of cast iron with nodular graphite FGN30. For
each of the balls, two pads are necessary, and the dimensions of the pad–ball–pad pack
are established at assembly—see Figure 9c—because an optimum clearance is required
between the pack and the walls of the channel. The constructive solution of the bipod pair
is presented in Figure 10.
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2.2. Kinematic Analysis of the Mechanism

A first general remark is that for the mechanisms where the sphere–plane contacts are
present, due to the great number of degrees of freedom allowed for this pair, kinematic
analysis is difficult. From the literature, the affirmation made by Phillips [78] concerning
the tripod coupling from Figure 11: “the mechanics of this joint is complicated. It is not
well understood” can be mentioned. Another constructive solution based on the curve
contact proposed in [72,73] is presented in Figure 12.
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In the present case, the bipod joint presents a greater number of DOF compared to the
tripod joint, and therefore, it is expected that the kinematic analysis of the bipod joint should
be more complicated than that of the tripod joint, for which a complete analytical solution
is presented in [53]. The scheme and the constructive parameters of the mechanisms from
Figure 8 are presented in Figure 13. The axes of the rotation pairs are denoted according to
the Hartenberg–Denavit [81] convention: z1 is the rotation axis between the ground and the
driving element, z2 is the rotation axis between the driven element and the ground, and z3
is the rotation axis between the intermediate and the driven element. The position between
the driven and driving elements is specified by the angle (π − α) and the length of the
common normal, a12. The straight line passing through the centers A1 and A2 is the axis x4
of a coordinate system attached to the intermediate element. The position of this axis is
specified with respect to the z3 axis by the rotation β and the length of the common normal
s4. The axis z4 has the direction of the common normal of the axes. The x1 axis is fixed to
element 1, and it is contained in the plane of symmetry of the channel. For a position of the
driving element stipulated by the angle θ1, forcing the points A1 and A2 to lay in the plane
(P1), the position of the mechanism is completely determined by the rotation angles θ2, θ3
from the other two rotation pairs. The origin of coordinate system 1 is denoted O1, and the
condition that the points A1 and A2 belong to the plane (P1) is written in vector form:

n1·O1 A1,2 = 0 (21)

where n1 is the versor of the normal to the plane (P1) which coincides with versor j1 of
coordinate system 1. The relations of (21) can be written in the form:

n1·(rA1,2 − rO1) = 0 (22)

In Relation (22), the vectors n1 and r1 are known by the projections on the axes of
system 1, while the vectors rA1,2 are stipulated by the projections on the axes of frame
4. In order to make these equations operable, all vectors must be expressed in the same
reference system. To this end, the coordinate transformation relations are used and the
Hertenberg–Denavit homogeneous operators method is applied [81]. The notations Z(θ, s)
and X(α, a) are used:

Z(θ, S) =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 s
0 0 0 1

 (23)

X(α, a) =


1 0 0 a
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

 (24)
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The homogeneous operators correspond to roto-translation with respect to axis z and
axis x, respectively. The relation of coordinate transformation from the system 4 to the
system 1 is applied based on Figure 13, using the matrix relation:

x1 = T14x4 (25)

where:

T14 = Z(θ1, s1)X(α12, a12)Z(θ2, s2)X(α23, a23)·Z(θ3, s3)X(α34, a34)Z(θ4, s4) (26)

x1 =
[

x1 y1 z1 1
]T

x4 =
[

x4 y4 z4 1
]T (27)

In the above relations, the convention used is that the vector x is characterized in the
coordinate system indicated by the superscript index. From Figure 13, one can notice that:

s1 = 0, α23 = π/2; a23 = 0; s3 = 0; α34 = π/2, a34 = 0, θ4 = β + π/2 (28)

The problem of how to choose the coordinate system for expressing the vector compo-
nents from Equation (7) in order to result equations as simpler as possible arises. Aiming
to solve that problem, a reference system is chosen denoted generically by q from the
succession of frames met in the product that defines the operator T14. The matrix form of
the relations (7) expressed in the coordinate system q is:

(nq
1)

T ·(xq
A1,2
− xq

O1
) = 0 (29)

or, in explicit manner,

(Tq1n1
1)

T ·(Tq4x4
A1,2
− Tq1x1

O1
) = 0 (30)

Equation (30) can be written as:

(n1
1)

TTT
q1·(Tq4x4

A1,2
− Tq1x1

O1
) = 0 (31)
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After the calculus from Equation (31) is performed, it results in

(n1
1)

T(TT
q1Tq4)x4

A12
− (n1

1)
TTT

q1Tq1x1
O1

= 0 (32)

With the aid of the relation
TT

q1 = T1q = T−1
q1 (33)

Equation (32) takes the form:

(n1
1)

T(TT
q1Tq4)x4

A12
− (n1

1)
TI4x1

O1
= 0 (34)

where matrix I4 is the unit matrix of fourth order and the final form of Relation (34) is:

(n1
1)

TT14x4
A1,2
− (n1

1)
Tx1

O1
= 0 (35)

It is remarked that the form of Equation (21) does not depend on the index q—that is,
it is independent of the reference frame in which the equations of condition of the pair of
second class are expressed. From here, the conclusion that the scalar form of Equation (7)
does not depend on the reference coordinate system in which the vectors are expressed.
In order to obtain the concrete scalar form of Equation (7), in Relations (35), the following
relations are considered:

n1
1 =

[
0 1 0 0

]T (36)

x4
A1,2

=
[
±x4 0 0 1

]T

x1
O1

=
[

0 0 0 1
]T (37)

In Relation (37), ±x4 are the abscissas of the centers of the balls in reference coordinate
system 4. Considering Relations (37) and (35), after calculus is performed, two complicated
relations result. However, it is noticed that by adding and subtracting the two scalar equa-
tions, two simpler scalar equations are obtained. These equations express the conditions
that the sum and the difference of the vectors O1 A1 and O1 A2 are placed in the plane of
symmetry of the channel made in the driving element:{

tanθ1cosθ2sinθ3 + cosα12sinθ2sinθ3 + sinα2cosθ3 +
a12tanθ1−s2sinα12

s4
= 0

tanθ1cosθ2cosθ3 + cosα12sinθ2cosθ3 + tanθ1tanθ4sinθ2 − cosα12tanθ4cosθ2 − sinα12sinθ3 = 0
(38)

The unknowns of the trigonometrical system (38) are the angles θ2 and θ3, which
obviously depend on the rotation angle of the driving element, θ1. Because the system of
Equation (38) is a non-algebraic one, it is expected that it has more solutions corresponding
to the assemblage possibilities of the mechanism for a given position of the driving element.
Theoretically, System (38) can be solved, and the solution is expressed using the common
trigonometrical functions of a single argument. The disadvantage of using trigonometrical
functions of unique argument—asin(x), acos(x), and atan(x)—is the fact that they have
the co-domain of length π while the variations of the motions from the mechanisms’ joints
may extend to 2π. Thus, there is the risk that the solutions of System (38) given by inverse
trigonometrical functions by a unique argument do not correspond to physical reality. To
overcome this aspect, the inverse trigonometrical functions of two arguments [82,83] that
have the extent of the co-domain 2π, must be used: atan2(y, x), arg(x + iy), angle(x, y). To
this purpose, one can remark that the system is linear with respect to sinθ2 and cosθ2 or
sinθ3 and cosθ3. As example, the system is solved by considering cosθ3 and sinθ3 as the
unknowns and it results in:

cosθ3 =
(tanθ1sinθ2−cosα12cosθ2)(tanθ1cosθ2+cosα12sinθ2)tanθ4+

(a12tanθ1−s2sinα12)sinα12
s4

(tanθ1cosθ2+cosα12sinθ12)
2

sinθ3 =
(tanθ1tanθ4sinθ2−cosα12tanθ4cosθ2)sinα12−(tanθ1cosθ2+cosα12sinθ2)

a12tanθ1−s2sinα12
s4

(tanθ1cosθ2+cosα12sinθ12)
2

(39)
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By writing
cos2 θ3 + sin2 θ3 = 1 (40)

an equation is obtained, written in the form

f (θ2, θ1) = cos2(θ2, θ1) + sin2(θ2, θ1)− 1 = 0 (41)

where the function f (θ2, θ1) depends on the variable θ2 and the parameter θ1. The solution
of Equation (41) has the form

θ2 = θ2(θ1) (42)

Next, the angle θ3 is obtained by replacing the values of θ2 given by Equation (42) into
System (39). At this moment, the positional analysis of the mechanism is complete. With
known dependencies θ3 = θ3(θ1) and θ2 = θ2(θ1), the velocities and angular accelerations
from the rotational pairs of the mechanism can be found by the derivative with respect to
time through the angle θ1 = θ1(t).

2.3. Obtaining the Displacements from the Bipod Joint

In Figure 14, elements 1 (the middle plane of the channel) and 4 (driven element),
which define the bipod pair, are represented. As mentioned before, this pair is obtained by
forcing two spherical surfaces to maintain contact with a planar surface. The geometric
constraint for the existence of bipod joint requires that the straight line passing through
the centers of the spheres is permanently contained in a plane. From the six degrees of
freedom of element 4, two are cancelled: the translation along the normal to the plane
and the rotation with respect to the line contained into the plane and normal to the axis
of the centers. As a result, element 4 has four degrees of freedom with respect to element
1: two translations in the plane of symmetry of the channel, a rotation with respect to the
normal n1 ≡ j1 corresponding to the plane-parallel motion of the axis of the centers in the
plane of symmetry of the channel, and the motion described by the angle ψ a basculation
motion about the axis of the centers.
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The translational motion from the bipod joint can be characterized when the motion
of a point from the axis of the centers in the plane of symmetry of the intermediate plane
is known. The point O4 is preferred as the origin of the system 4, which in homogeneous
coordinates is characterized by the point x4

O4
= [0 0 0 1]T . By choosing this particular

point, the expressions of the coordinates in the reference frame of the driving element are
substantially simplified:

x1
O4 = T14x4

O4
(43)
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After calculation, the parametric equations of the trajectory of the point O4 in the plane
O1x1z1 are obtained:

x1
O4(θ1) = s4(cosθ1cosθ2sinθ3 − sinα12sinθ1cosθ3 − cosα12sinθ1sinθ2sinθ3)

+a12cosθ1 + s2sinα12sinθ1

z1
O4
(θ1) = s4(sinα12sinθ2sinθ3 − cosα12cosθ3) + s2cosα12

(44)

In order to characterize the rotational motion of the axis of the centers in the median
plane of the channel, the projections of the versor Ox4 on the axes of system 1 are necessary:

i1
4 = T14i4

4 (45)

where
i4
4 = [1 0 0 0]T (46)

taking into account that
cosϕ = i1

4·i1
1; sinϕ = i1

4·k1
1 (47)

After calculation, the following is obtained:
cos ϕ = cosθ1cosθ2cosθ3cosθ4 − cosα12sinθ1sinθ2cosθ3cosθ4 + sinα12sinθ1sinθ3cosθ4+

+sinα12cosθ1sinθ4 + cosα12sinθ1cosθ2sinθ4

sin ϕ = sinα12cosθ2cosθ3cosθ4 + cosα12sinθ3cosθ4 − sinα12cosθ2sinθ4

(48)

The angle ϕ can be found by using one of the inverse trigonometrical functions of
two arguments mentioned previously. The tilting angle ψ is found based on the remark
that it occurs between the axis O4x4 and its projection on the median plane of the channel.
The simplest manner for finding this angle is via the decomposition of the versor O4z4 into
two components, one along the normal to the median plane and the other contained in the
plane. To the versor k4

4 = [0 0 1 0]T of the axis z4, in system 1, the column matrix will
correspondingly be:

k1
4 = T14k4

4 (49)

The component of the versor k4 along the normal to the plane is [34]:

k1
4⊥ = j1

1

(
j1
1

)T
T14k4

4 (50)

or, in an explicit manner,

k1
4⊥ =


0

sinθ1cosθ2sinθ3 + cosα12cosθ1sinθ2sinθ3 + sinα12cosθ1cosθ3

0

0

 (51)

The component k1
4|| is contained in the median plane and is expressed by:

k1
4|| = k1

4 − k1
4⊥ =

[
I4 − j1

1

(
j1
1

)T
]

k1
4 (52)

Having the explicit form:

k1
4|| =


cosθ1cosθ2sinθ3 − cosα12sinθ1sinθ2sinθ3 − sinα12sinθ1cosθ3

0

sinα12sinθ2sinθ3 − cosα12cosθ3

0

 (53)
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From Figure 14 it results: 
cos ψ =

(k1
4)

T
k1

4 ||√
(k1

4 ||)
T

k1
4 ||

sin ψ =
(

j1
1

)T
k1

4⊥

(54)

and the explicit form of the relations can also be obtained but are not given here due to
space restrictions.

3. Results and Discussion

The System (38) has a complicated form, and a numerical procedure was chosen for
solving it. In Figure 15, the final angle is represented for a set of constructive parameters
(α12 = −160 deg, a12 = −20 mm, s2 = 60 mm, s4 = 60 mm, β = 60 deg) and for a given
value of the angle of the driving element θ1. In order to solve the equation f (x) = 0 using
the Newton–Raphson method, the condition that the function must be derivable on an
interval in the vicinity of the root must be fulfilled. The equation from the paper is very
complex, and it is difficult to test the derivability. Furthermore, if the equation has more
than one solution, it is difficult to intuit towards which of these solutions the procedure will
converge. For this reason, for solving the equation, the bisection method was chosen [84,85],
which requires only the continuity of the function and not the derivability; in addition, the
solution of the equation will be found within an interval specified a priori. For a period,
two solutions are obtained, and from here, we conclude that the Newton–Raphson method
is difficult to apply since the approximate solution for the initialization of the numerical
algorithm cannot be specified.
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driving angle.

Two main conclusions arise from Figure 15:

• the function f (θ2, θ1), Relation (41), is periodic with respect to variable θ2, with the
period π;

• two different solutions θ1
20(θ1) θ2

20(θ1) of Equation (41) will be found in the closed
interval of π dimension.

The variations of the function f (θ2, θ1) for two positions θ I
1 and θ I I

1 of the driving ele-
ment are represented in Figure 16. The Newton–Raphson algorithm requires the solution of
Equation (41). By choosing one of the two solutions for one of assembling alternatives—for
instance, θ1

20
(
θ I

1
)

(corresponding to the first value of parameter θ I
1)—when the parameter

θ1 is changed into θ I I
1 , the convergence (which is expected to tend to the solution θ1

20
(
θ I I

1
)

results in the solution θ2
20
(
θ I I

1
)
, which corresponds with the second assembling position of

the mechanism.
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Figure 16. The convergence shift in the numerical algorithm.

To avoid this situation, the bipartition method was applied while solving Equation (41).
The condition imposed on the solving algorithm is that, for the current iteration, the
root of the equation should be searched for in an interval with a center identical to the
previous iteration root and of length small enough that the two roots will correspond to
the same assembling position of the mechanism. The two possible assembling poses of the
mechanism are presented in Figure 17.
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Figure 17. The two possible assembling poses of the mechanism.

Based on Relation (42), the dependencies θ2(θ1) and also the angular velocity of the
driven element were plotted, as seen in Figure 18. With the known dependency θ2(θ1),
one can represent θ3(θ1), as in Figure 19. Using Relation (44), the trajectory of the center
of frame 4 was traced with respect to the driving element, as in Figure 20. The angle of
rotation and the angular velocity of the axis of centers in the symmetry plane of the channel
were represented by applying Equation (48), as in Figure 21. The basculation angle of the
intermediate element around the axis of centers is represented according to Relation (54) in
Figure 22.

From Figure 22, one can observe that the oscillations of the intermediate element
around the axis of the centers of balls are identical for the two assembling possibilities.
This apparent paradox is explained in a simple manner based on Figure 23, in which
the angle ψ is the angle between the axis of rotation of the intermediate element and the
plane of symmetry of the channel. Denoting with T the intersection point between the
axes of rotation of the intermediate element from the two assembling situations, it can be
noticed that the oscillation angle is the dihedral angle between the plane of symmetry of
the channel, P, and the triangles TC′1C′′1 and TC′2C′′2 . The triangle TC′2C′′2 can be obtained
by rotating the triangle TC′1C′′1 around the normal TN, this motion preserves the angle ψ
and in consequence ψ1 = ψ2.
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In order to validate the analytical relations obtained, the kinematics of the mechanism
were simulated using dedicated software. The mechanism and the paths of the centers of
the balls in the median plane of the channel for the two assembling solutions are presented
in Figure 24.
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The quantitative validation of the relations obtained in the present work is presented
in Figure 25. The paths [86] of the balls’ centers are obtained with the analytical rela-
tions, Relations (44), and by kinematical simulation using CATIA software. The Cartesian
gridlines enable the quantitative comparison between the two solutions, and a very good
agreement is emphasized.
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4. Conclusions

The paper presents a new solution for the coupling of two shafts with non-coplanar
axes. The proposed structural solution consists of a kinematics chain made of a driving
element and a driven element, joined to the ground by revolute pairs of fifth class, and with
an intermediate element to connect them. The intermediate part makes to the two shafts a
revolute pair and a bipod contact—this consists of two point contacts between a shaft and
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the middle part. The technical solution for the bipod pair is obtained using two identical
metallic spheres assembled together. Both balls are introduced in a parallelepipedal channel
of width equal to their diameter. Thus, the presence of the bipod pair will allow for the
intermediate element four degrees of freedom with respect to the driving element: three
motions for the plane parallel motion of the axis of the centers in the median plane of
the channel (two translational and one rotational motion) and a rotational motion of the
intermediate part around the axis of the centers of the balls. As a consequence, the bipod
contact is a kinematical pair of class two.

The Hartenberg–Denavit homogeneous operators method is applied for the kinemat-
ical analysis which requires the replacement of bipod pair to an assembly of cylindrical
joints. This solution conducts to complicated calculus because the matrix-loop-closure equa-
tion for the equivalent mechanism generates six equations containing both the kinematics
parameters of the actual mechanism and the positional parameters of the motions from
the fictive joints of the equivalent mechanism. To overcome this difficulty, the geometrical
condition of definition of bipod pair is applied. Actually, the bipod pair works when the
center of each ball is placed in the median plane of the prismatic channel from the conjugate
part. These conditions are expressed in vector form, but the vectors from the equations of
condition are known by their projections in different Cartesian systems. Therefore, in order
to obtain the equations of projection corresponding to the vector equations, all vectors
must be expressed in a unique coordinate system. The Hartenberg–Denavit method is
convenient for this requirement since is based on the manner of coordinate transformation
of a point when the reference frame is changed.

A problem of utmost importance is the selection of the coordinate system in which the
equations of geometrical conditions for the bipod pair should take the simplest form. It
is shown that in actuality, using any coordinate system arrives at the same form of scalar
equations of condition.

The vector equations of condition are projected and a system of two scalar equation
results with unknown position angles from the inner rotational pair and from the exit pair.
These equations are linear with respect to the sine and cosine functions of the unknown
angles. The direct solving of the system of equations gives expressions of the two un-
knowns described by inverse trigonometrical functions of one variable, which present
the disadvantage that the co-domain has the dimension 180

◦
—a fact that may bring us to

solutions that do not correspond to physical reality.
To avoid this aspect, the system of two equations with respect to the sine and cosine of

the rotation angle from the driven joint was solved and afterwards, applying the funda-
mental relations of trigonometry, a trigonometrical equation is obtained, with unknown the
rotation angle from the intermediate pair. It was observed that for each value of the rotation
angle from the driving pair, the equation has two solutions, fact that attest two different
assembling positions of the mechanism for the same position of the driving element.

For a succession of equidistant values of the rotation angle corresponding to a complete
rotation of the driven element, the trigonometrical equation obtained was numerically
solved, for both assembling solutions, using the bipartition method. The problem of the
accuracy of the algorithm used for solving the problem refers to a single transcendental
equation and the software allows for a priori stipulation of the accuracy. The advantage
of the method consists in the fact that all other kinematical parameters can be expressed
analytically as a function of the solution of this equation, and thus the accuracy is controlled.
It was noticed that the motion in the intermediate revolute joint is an oscillatory motion
with the period half of that of the driving element. With known values of the rotation angle
from the intermediate pair, the rotation angle from the exit revolute pair was found using
inverse trigonometrical functions of two variables, whose co-domain has the dimension
360

◦
. It was remarked that the rotational motion of the driven element is a rotatory motion

with the period equal to the period of the driving element.
Next, the motions from the bipod pair were found. First, the characteristics of the plane

parallel motion of the axis of the centers in the median plane of the channel were found for
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both assembling solutions. More specifically, the motion of the origin of the frame attached
to the intermediate element with respect to the frame attached to the driving element was
established together with the rotation angle of the axis of centers in the median plane of the
prismatic channel. For the last motion—the rotation of the intermediate element around
the axis of centers—after the rotation angle was found, it was confirmed that this motion is
identical for the two assembling alternatives of the mechanism, a fact perfectly justified but
difficult to perceive.

For all rotation motions, the corresponding angular velocities were obtained by nu-
merical division. Of these, of particular helpfulness is the angular velocity of the driven
shaft, as it permits the estimation of the transmission ratio of the coupling.

In order to validate the proposed kinematical solution, the trajectory of the center of a
ball obtained with the relations deduced in the present paper and the trajectory obtained
using a software dedicated to kinematical simulation are presented in comparison; of note
is the perfect similarity between the two diagrams.
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