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Abstract: A finite strain gradient model for the 3D analysis of materials containing spherical voids is
presented. A two-scale approach is proposed: a least-squares methodology for RVE analysis with
quadratic displacements and a full high-order continuum with both fourth-order and sixth-order
elasticity tensors. A meshless method is adopted using radial basis function interpolation with
polynomial enrichment. Both the first and second derivatives of the resulting shape functions are
described in detail. Complete expressions for the deformation gradient F and its gradient ∇F are
derived and a consistent linearization is performed to ensure the Newton solution. A total of seven
constitutive properties is required. The classical Lamé parameters corresponding to the pristine
material are considered constant. From RVE homogenization, seven properties are obtained, two
homogenized Lamé parameters plus five gradient-related properties. Two validation 3D numerical
examples are presented. The first example exhibits the size effect (i.e., the stiffening of smaller
specimens) and the second example shows the absence of stress singularity and hence the convergence
of the discretization method.

Keywords: gradient elasticity; radial basis functions; size effect; substitution models

MSC: 37M10

1. Introduction

In conventional finite solid mechanics (cf. [1–4]), only the position (or, in alternative,
the displacement) gradient is considered in the measurement of deformation. Experimen-
tally observed phenomena such as the size effect and nonlocal behavior are excluded from
this framework [5]. In contrast, conventional solid mechanics predicts nonphysical effects,
such as stress singularities at cracks and notch tips. This is especially taxing on numer-
ical methods based on polynomials, since convergence failure is a fact in sharp corners,
cracks and other geometrical disturbances. Alternatives to conventional theories have
existed since the work of R.D. Mindlin [6] and the identification of properties can now be
performed using RVE (representative volume element) analysis [7]. Since the classes of
materials/constraints are shown to be equivalent to strain gradient models, large compu-
tational savings can be obtained by explicitly calculating the properties of the gradient
models, see [8–10].

Periodically arranged architectured materials [11] can result in being too costly for
direct simulations or even classical two-scale simulations.

If the simulation is part of a topological optimization process, a possible solution is
homogenization. Energy equivalence requires that the homogenized continuum includes
higher-order displacement derivatives. For certain cases (see, e.g., [11–13]), the second

Mathematics 2022, 10, 2876. https://doi.org/10.3390/math10162876 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10162876
https://doi.org/10.3390/math10162876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6865-1326
https://orcid.org/0000-0002-1081-2729
https://orcid.org/0000-0002-3164-113X
https://orcid.org/0000-0002-6324-5107
https://doi.org/10.3390/math10162876
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10162876?type=check_update&version=2


Mathematics 2022, 10, 2876 2 of 19

derivatives are sufficient. That is the case for the problem under analysis here and homoge-
nization procedures have been established for determining the properties for the gradient
model, e.g., [9]. Of course, a discretization compatible with C1 continuity is required. The
range of the applications of these gradient models is vast: from composites [13] to strain
localization regularization, see, e.g., [14]. In addition, application to the Stokes equations is
straightforward, and the analysis can be adopted in fluid mechanics.

For our current application, porous materials are known to be equivalent to the strain
gradient continuum [15]. The general form of the isotropic sixth-order elasticity tensor is
derived in Dell’Isolla’s work [8] and employed in this work.

The distinctive features of this work are the following:

• Full 3D RVE analysis and generalized continua for a material containing spherical voids.
• The use of enriched radial basis functions (RBF) with the first and second derivatives

of the shape functions obtained in closed form.
• RVE analysis is based on quadratic displacement at the faces and the least-squares

fitting of constitutive properties.

The paper is organized as follows: Interpolation with enriched radial basis functions is
described in Section 2. The Green–Lagrange strain and its derivative are derived in closed
form in Section 3. In Section 4, details concerning the constitutive laws with second-order
terms are exposed. Following that, in Section 5, the homogenization process is described.
Validation examples are shown in Section 6 which provide a demonstration of two known
effects of second-order models: the size effect and the removal of stress singularities. Finally,
in Section 7, conclusions are drawn concerning the formulation and results.

2. Interpolation

The discretization of finite gradient models, see [16], requires the first and second
derivatives of the unknown solution. This precludes the use of well-established finite ele-
ment technology. Possible alternatives are meshless methods. Specifically, the radial basis
function (RBF) method for PDE was introduced by Kansa [17]. Wu [18] and Wendland [19]
introduced RBFs with compact support. RBFs are appropriate for gradient models for the
following reasons:

1. The Kronecker delta property is satisfied
2. A strict positive definite interpolation matrix is obtained, even in the presence of

enrichment [20].

The analysis of [21] showed that RBF enriched with polynomials results in a more
robust interpolation than classical-polynomial-based moving-least-squares (MLS). We use
a compact RBF enriched with a quadratic polynomial. Given na nodes belonging to the
support set Ωa, an interpolation function w(X) is constructed by multiplying a set of na
radial basis functions Aia [r(X)] by a set of na unknown parameters aia , with ia = 1, · · · , na :

w(X) = A[r(X)] · a =
na

∑
ia=1

Aia [r(X)]aia (1)

where r(X) is the distance between X ia and X:

r(X) = ‖X ia − X‖2 (2)

The interpolation condition for node N is written by specializing the inner product (1):

wN = w(XN) =
na

∑
ia=1

Aia [r(XN)]aia (3)

We introduce the notation ANia = Aia [r(XN)] and w = {w1, · · · , wna}T , which results
in the following solution:

a = A−1 ·w (4)
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Inserting a in the interpolation Formula (1), we obtain the inner product of a shape
function array and nodal function images:

w(X) = N(X) ·w = A[r(X)] ·A−1 ·w (5)

where N(X) = {N1(X), · · · , Nna(X)}T is the array of shape functions. If a monomial basis
term B(X) of dimension nb is added to the interpolation, the result is:

w(X) = A[r(X)] · a + B(X) · b =
na

∑
ia=1

Aia [r(X)]aia +
nb

∑
ib=1

Bib(X)bib (6)

where {b1, · · · , bnb} are additional parameters. The evaluation of B(X) at the nodes is
similar to the previous notation:

BNia = Bia(XN) (7)

If w represents the images of a given polynomial p?(X) evaluated at nodes Xia with
ia = 1, · · · , na, i.e., p? = {p?(X1), · · · , p?(Xna)}T , then

w = p? (8)

For this polynomial p?(X), we have the following result for a:

a = A−1 · (w− p?) = A−1 · (w−B · b) (9)

We premultiply both sides of (9) by BT , and this will result in

BT · a = 0 (10)

The full interpolation system is given by:[
A B

BT 0

]
·
{

a
b

}
=

{
w

0

}
(11)

The purpose of this constrained system is to ensure the exact reproduction of constant
and linear displacement fields [22]. For nonsingular A, we have the classical solutions for a
and b:

a = A−1 · [I −B ·H] ·w (12)

b = H ·w (13)

where
H =

(
BT ·A−1 ·B

)−1
·BT ·A−1 (14)

is obtained for nonsingular A. We note that the matrix
(
BT ·A−1 ·B

)
in (14) is at most

10× 10 for a quadratic monomial in 3D and a dedicated subroutine can be adopted. With
this result, we obtain the following form for the shape functions:

N(X) = A[r(X)] ·G+ B(X) ·H (15)

with
G = A−1 · [I −B ·H] (16)
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For conciseness, the component-wise format is presented here for both the first and
second derivatives:

∂N(X)

∂Xi
=

∂A[r(X)]

∂r
·G∂r(X)

∂Xi
+

∂B(X)

∂Xi
·H (17)

∂2N(X)

∂Xi∂Xj
=

∂2 A[r(X)]

∂r2 ·G∂r(X)

∂Xi

∂r(X)

∂Xj
+

∂A[r(X)]

∂r
·G ∂2r(X)

∂Xi∂Xj
+

∂2B(X)

∂Xi∂Xj
·H (18)

with

∂r(X)

∂Xi
=

1
r(X)

[Xi − X iai] (19)

∂2r(X)

∂Xi∂Xj
=

1
r(X)

δij −
1

[r(X)]3
[Xi − X ia i]

[
Xj − X ia j

]
(20)

where ia is identified by the radius function r(X). We now particularize the bases A[r(X)]
and B(X) as a radial basis function’s basis and a quadratic basis, respectively. Compact
support RBF bases by Wendland are used, see [19,20]. These are the appropriate forms for
the solid mechanics problem under study, where the quadratic case in 3D is written:

Aia [r(X)] =

{
(1− r/rmax)

4
+(1 + 4r/rmax) r ≤ rmax

0 r > rmax
(21)

B(X) = {1, X1, X2, X3, X1X2, X1X3, X2X3, X2
1 , X2

2 , X2
3} (22)

where rmax is the support radius, here determined from the preassigned number of support
nodes, see [23]. In the 3D examples, we use 25 nodes for each quadrature point, which is
found to be sufficient to capture the second derivatives.

A plot of the shape functions and derivatives is exhibited in Figure 1. We observe that
the second derivative is quasilinear, regardless of the polynomial enrichment. The reason
for this behavior is that the shape functions depend on the radius and this will appear as
a cubic power in the denominator of the derivative with respect to the position X. Since
a shape function derivative is a sum of two terms, (17), the radial basis term imposes the
smoothness of the second derivative. Note that even with polynomial enrichment, the
second derivative is continuous. A simple calculation shows that only the fourth derivative
is discontinuous.

RBFs are implemented in our own software SimPlas (www.simplassoftware.com),
cf. [24], using Mathematica [25] with the AceGen add-on [26]. The specific source code for
the RBF part of this work is provided in Github [27].
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Figure 1. For nodes {−3,−2,−1, 0,+1,+2,+3}, shape function number 3 and its first and second
derivatives.

3. Green–Lagrange Strain, Its Material Derivative and Nodal Sensitivity

Using shape functions and their first and second derivatives obtained from the mesh-
less formalism, the following notation is adopted:

NK(X) ≡ [N(X)]K (23)

NKi(X) = ∂NK(X)/∂Xi (24)

NKij(X) = ∂2 NK(X)/∂Xi∂Xj (25)
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where the upper-case K identifies a node, see, e.g., [28]. Given the nodal spatial coordinates
xL, with L being the node number, the deformation gradient and its material derivative are
given, respectively, by:

Fij(X) = NLj(X)xLi (26)

Fijk(X) = NLjk(X)xLi (27)

where the sum is implied in the nodal index L. With respect to the nodal coordinates, the
derivatives of the deformation gradients (26) and (27) are calculated as:

Fij,Lm(X) = NLj(X)δmi (28)

Fijk,Lm(X) = NLjk(X)δmi (29)

where the comma separates the continuum mechanics indices from the nodal quantities.
Note that the deformation gradient and its material gradient are linear functions of the
nodal coordinates. The Green–Lagrange strain and its first material derivative can be
written using index notation as:

[E]ij =
1
2
(

FniFnj − δij
)

(30)

[∇E]ijl =
1
2

(
Fnil Fnj + FniFnjl

)
(31)

with an implicit sum on n. Using the same notation, the following identities are a result of
the chain rule:

[E]ij,Lm =
1
2
(

Fni,LmFnj + FniFnj,Lm
)

(32)

[E]ij,Lm,Kl =
1
2

(
Fni,LmFnj,Kl + Fni,Kl Fnj,Lm

)
(33)

[∇E]ijl,Lm =
1
2

(
Fnil,LmFnj + Fni,LmFnjl + Fnil Fnj,Lm + FniFnjl,Lm

)
(34)

[∇E]ijl,Lm,Kl =
1
2

(
Fnil,LmFnj,Kl + Fni,LmFnjl,Kl + Fnil,Kl Fnj,Lm + Fni,Kl Fnjl,Lm

)
(35)

After replacing (28) and (29) in (32)–(35), it is straightforward to obtain:

[E]ij =
1
2
(

NKi NLjxKmxLm − δij
)

(36)

[E]ij,Lm =
1
2
(

NLiFmj + NLjFmi
)

(37)

[E]ij,Lm,Kl =
1
2
(

NLi NKj + NLjNKi
)
δml (38)

[∇E]ijn =
1
2
(

NKinNLj + NKi NLjn
)

xKmxLm (39)

[∇E]ijn,Lm =
1
2
(

NLinFmj + NLjnFmi + NLjFmin + NLiFmjn
)

(40)

[∇E]ijn,Lm,Kl =
1
2
(

NLinNKj + NLjnNKi + NLjNKin + NLi NKjn
)
δml (41)

Table 1 organizes these quantities by derivative order.
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Table 1. Required derivatives of the Green–Lagrange strain, in terms of the shape function derivatives.

Order of Material Derivative

Nodal Derivative 0 Equation 1 Equation

0 [E]ij (36) [∇E]ijn (39)

1 [E]ij,Lm (37) [∇E]ijn,Lm (40)

2 [E]ij,Lm,Kl (38) [∇E]ijl,Lm,Kl (41)

Introducing the second Piola–Kirchhoff stress S, the hyperstress Σ, which is a third-
order tensor, and the corresponding natural conditions [29], we have the following:

• B is the volume force.
• T is the surface loas resulting from the projection of both the second Piola–Kirchhoff

and the hyperstress on the undeformed normal N, see [16].
• τ is the double force per unit area. At Γ, the following holds: τ − [N · (Σ · N)] = 0.
• f is the distributed edge force, which is in action at the locations with discontinuous N.

A weak form of equilibrium is established as (see [8]):∫
Ω

(
S : δE + Σ

...δ∇E
)

dV︸ ︷︷ ︸
δWint

=
∫

Ω
B · δudV +

∫
Γ

T · δudΓ +
∫

Γ
(τ ⊗ N) : δ∇udΓ + ∑

h

∫
Eh

f · δu︸ ︷︷ ︸
δWext

(42)

The Jacobian is obtained by a subsequent variation of (42), which is written as:

dδWint =
∫

Ω

(
dS : δE + S : dδE + dΣ

...δ∇E + Σ
...dδ∇E

)
dV (43)

It is not efficient to calculate the quantities of Table 1 separately for the geometric
terms. In index notation, the terms are:

S : δE =
1
2

Sij
(

NLiFmj + NLjFmi
)
δxLm (44)

Σ
...δ∇E =

1
2

Σijn
(

NLinFmj + NLjnFmi + NLjFmin + NLiFmjn
)
δxLm (45)

and

S : dδE =
1
2

Sij
(

NLi NKj + NLjNKi
)
δxLmdxKm (46)

Σ
...dδ∇E =

1
2

Σijn
(

NLinNKj + NLjnNKi + NLjNKin + NLi NKjn
)
δxLmdxKm (47)

4. Constitutive Laws

For the linear case, we adopt the laws established by Dell’Isolla and coworkers [8].
For the second Piola–Kirchhoff stress, Hooke’s law reads:

Sij = CijklEkl

with Cijkl = λδijδkl + µ
(

δikδjl + δilδjk

)
where λ and µ are the traditional Lamé parameters.

These are related to the elastic properties E and ν as µ = κ − 2
3 µ and µ = E

2(1+ν)
and

κ = E
3(1−2ν)

. As in [8], no coupling exists between the Green–Lagrange strain gradient and
S. A sixth-order tensor is required to relate Σ with ∇E:

Σ = G...∇E (48)
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For Σ, only five elastic parameters are required, c2 , c3, c5, c11 and c15:

Gijklpq =c2

(
δijδklδpq + δijδkpδlq + δikδjqδlp + δiqδjkδlp

)
+c3δijδkqδlp + c5

(
δikδjlδpq + δikδjpδlq + δilδjkδpq + δipδjkδlq

)
+c11

(
δilδjpδkq + δipδjlδkq

)
+ c15

(
δilδjqδkp + δipδjqδkl + δiqδjlδkp + δiqδjpδkl

)
The positive-definiteness of the strain energy corresponding to Σ

...∇E, see [8], implies
that:

c11 > 0

− c11

2
< c15 < c11

5c3 + 4c11 > 2c15

c5 >
c3(3c11 + c15) + 2

[
c2

11 − 5c2
2 − 6c15c2 − 2c2

15 + c11(3c3 + c15)
]

4c15 − 10c3 − 8c11

With these terms, we can rewrite the variation of δWint as:

dδWint =
∫

Ω

(
(C : dE) : δE + S : dδE +

(
G...d∇E

)...δ∇E + Σ
...dδ∇E

)
dV

where (C : dE) : δE is given by:

(C : dE) : δE =
{

λ(∇NK · ∇NL)
2 + µ[2NK2NK3NL2NL3

+ 2NK1NL1NK2NL2 + 2NK1NL1NK3NL3

+ N2
K1

(
2N2

L1 + N2
L2 + N2

L3

)
+ N2

K2

(
N2

L1 + 2N2
L2 + N2

L3

)
+ N2

K3

(
N2

L1 + N2
L2 + 2N2

L3

)]}
· (δxL · xK)(dxK · xL)

The term
(
G...d∇E

)...δ∇E is too long to be written here and can be consulted in [27] where

the Mathematica/Acegen sheets are stored. A PDF version of this term can be consulted
in https://github.com/PedroAreiasIST/RBF/blob/main/mls3dstrainssecondkernel.pdf
(accessed on 6 June 2022).

5. Homogenization

For the determination of the seven properties E, ν, c2, c3, c5, c11 and c15, a homoge-
nization process based on a multiple-RVE discretization is adopted. If an RVE with volume
Vc is considered, where coordinates are identified as Xc and displacement as uc, we use
volume averaging to obtain the first and second macro displacement gradients:

∂ui
∂Xj
≡ 1

Vc

∫
Ωc

∂uc
i

∂Xc
j
dVc = Fij − δij (49)

∂2ui
∂Xj∂Xk

≡ 1
Vc

∫
Ωc

∂uc
i

∂Xc
j ∂Xc

k
dVc = Fijk

from which E and ∇E are obtained using (30) and (31).

https://github.com/PedroAreiasIST/RBF/blob/main/mls3dstrainssecondkernel.pdf
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This is implemented in SimPlas (www.simplassoftware.com) (accessed on 6 June 2022),
cf. [24], using Mathematica [25] with the AceGen add-on [26]. The source code for the
second derivatives is also provided in [27].

Of course, for a given set of essential boundary conditions, we have

ψ(p) ≡ 1
2

S : E +
1
2

Σ
...∇E (50)

where p = {µ, λ, c2, c3, c5, c11, c15} is the constitutive property array. By equating the RVE
energy to ψ(p), we obtain the following identity:

r(µ, λ, c2, c3, c5, c11, c15) = ψ(µ, λ, c2, c3, c5, c11, c15)−
1
Vc

∫
Ωc

1
2

Sc : EcdVc︸ ︷︷ ︸
ψc

= 0 (51)

which is the extended Hill–Mandel condition. Given that the energy of the RVE, ψc, depends
on each load case L = 1, . . . , nL, with nL > 7, an over-determined system is obtained from
identities (51) as:

ψ1(µ, λ, c2, c3, c5, c11, c15)− ψc1 = 0

ψ2(µ, λ, c2, c3, c5, c11, c15)− ψc2 = 0

· · · · · ·
ψnL(µ, λ, c2, c3, c5, c11, c15)− ψcnL = 0 (52)

The vector form of (52) is written as:

ψ(µ, λ, c2, c3, c5, c11, c15)−ψc = 0

By using least-squares, we can replace the over-determined system (52) by:

min
µ,λ,c2,c3,c5,c11,c15

1
2
(ψ(µ, λ, c2, c3, c5, c11, c15)−ψc) · (ψ(µ, λ, c2, c3, c5, c11, c15)−ψc) (53)

which can be solved as the linear system:[
(∂ψ/∂p)T ⊗ (∂ψ/∂p)

]
· p = ψc · ∂ψ/∂p (54)

The dependence of the energy vector ψ on p is linear and this is reflected in the left-
hand side of (54). The derivative of ψ(µ, λ, c2, c3, c5, c11, c15) with respect to the properties
is obtained as follows:

www.simplassoftware.com
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∂ψ(µ, λ, c2, c3, c5, c11, c15)

∂µ
= E2

11 + E2
22 + E2

33 + 2E2
12 + 2E2

13 + 2E2
23

∂ψ(µ, λ, c2, c3, c5, c11, c15)

∂λ
=

1
2
(E11 + E22 + E33)

2

∂ψ(µ, λ, c2, c3, c5, c11, c15)

∂c2
= 2 ∑

i

[(
∑

j
Eijj

)(
∑

j
Ejji

)]

∂ψ(µ, λ, c2, c3, c5, c11, c15)

∂c3
=

1
2 ∑

i

(
∑
k

Ekki

)2

∂ψ(µ, λ, c2, c3, c5, c11, c15)

∂c5
= 2 ∑

i

(
∑

j
Eijj

)2

∂ψ(µ, λ, c2, c3, c5, c11, c15)

∂c11
= 2 ∑

i
∑

j
∑ E2

ijk

∂ψ(µ, λ, c2, c3, c5, c11, c15)

∂c15
= 2

[
E2

111 + E2
222 + E2

333 + E2
121 + E2

122

+ E2
231 + E2

131 + E2
133 + E2

232 + E2
233

]
+ 4E123E231 + 4E223E232 + 4E133E331

+ 4E233E332 + 4E112E121 + 4E131E113 + 2E123E132 + 2E122E221

Each load case of the RVE provides a specific energy equivalence relation. Least-
squares is adopted for the properties p = {µ, λ, c2, c3, c5, c11, c15}T . We chose, for each
displacement component, the following polynomial basis:

B =
{

Xc
1, Xc

2, Xc
3, Xc

1Xc
2, Xc

2Xc
3, Xc

1Xc
3, Xc2

1 , Xc2
2 , Xc2

3

}
(55)

which produces an over-determined system with 3× 9 equations and seven unknowns.
For all boundary nodes, we have ic = 1, . . . , 27:

uid(ic) = Bit(ic) (56)

ujd 6=id = 0 (57)

with id = 1+ ic−1
9 and it = 1+MOD[ic − 1, 9]. Table 2 shows all the imposed displacement

cases and the RVE configurations are displayed in Figure 2. In this Figure, � represents the
spherical void diameter. The effect of the spherical voids is clearly shown in Figure 3 for
the three void radii.
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Figure 2. RVE deformed ic = 1, · · · , 27 configurations.

Table 2. Imposed displacements at the RVE boundaries.

X ∈ Γc

ic u1(X) u2(X) u3(X) ic u1(X) u2(X) u3(X) ic u1(X) u2(X) u3(X)

1 B1 0 0 10 0 B1 0 19 0 0 B1

2 B2 0 0 11 0 B2 0 20 0 0 B2

3 B3 0 0 12 0 B3 0 21 0 0 B3

4 B4 0 0 13 0 B4 0 22 0 0 B4

5 B5 0 0 14 0 B5 0 23 0 0 B5

6 B6 0 0 15 0 B6 0 24 0 0 B6

7 B7 0 0 16 0 B7 0 25 0 0 B7

8 B8 0 0 17 0 B8 0 26 0 0 B8

9 B9 0 0 18 0 B9 0 27 0 0 B9
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2.967e+05

4.449e+05
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Figure 3. RVE: contour plots for ψ with B1, B4 and B7 for different void diameters �.

We assess a single cell of the RVE, with the characteristic node distances h = 3.75× 10−5,
h = 5.00× 10−5, h = 7.5× 10−5 and h = 10.0× 10−5. Table 3 shows the evolution of the
constitutive properties for � = 0.4× 10−3, 0.6× 10−3 and 0.8× 10−3.

Table 3. Convergence of properties.

� = 4× 10−4

h (×10−3) µ× 109 λ× 109 c2 × 109 c3 × 109 c5 × 109 c11 × 109 c15 × 109

0.075 73.945 111.273 −58.693 117.387 29.346 42.555 −21.277
0.0625 73.928 110.370 −47.625 95.250 23.812 45.283 −22.641

0.05 73.795 109.453 −45.648 91.297 22.824 45.325 −22.662
0.0375 73.794 108.535 −39.075 78.151 19.537 47.617 −23.808

0 (extrap.) 73.602 105.800 −20.387 40.774 10.194 52.048 −26.024

� = 6× 10−4

h (×10−4) µ× 109 λ× 109 c2 × 109 c3 × 109 c5 × 109 c11 × 109 c15 × 109

0.075 64.866 88.444 −46.959 93.918 23.479 41.557 −20.778
0.0625 64.609 87.515 −41.722 83.445 20.861 42.334 −21.167

0.05 64.515 87.425 −38.058 76.116 19.029 43.695 −21.847
0.0375 64.618 87.406 −33.496 66.992 16.748 44.645 −22.322

0 (extrap.) 64.275 86.256 −20.2349 40.4698 10.117 47.839 −23.919

� = 8× 10−4

h (×10−4) µ× 109 λ× 109 c2 × 109 c3 × 109 c5 × 109 c11 × 109 c15 × 109

0.075 49.960 62.568 −37.702 75.405 18.851 36.828 −18.414
0.0625 49.487 59.008 −31.970 63.940 15.985 37.774 −18.887

0.05 49.532 59.246 −29.966 59.933 14.983 37.995 −18.997
0.0375 49.472 59.103 −26.620 53.240 13.310 38.702 −19.351

0 (extrap.) 48.974 55.411 −15.702 31.404 7.851 40.455 −20.227



Mathematics 2022, 10, 2876 13 of 19

A quadratic fit of p with � will result in:

p(�) =



−74.672�2 +28.037�+74.335
−114.259�2 +43.537�+110.987

54.759�2 −53.998�−7.549
−109.517�2 +107.996�+15.0981
−27.3793�2 +26.9991�+3.77452
−39.7131�2 +18.672�+50.9333
19.8565�2 −9.33602�−25.4666


, � ∈ [0.4, 0.8] (58)

For comparison, a classical homogenization procedure for the same problem will result
in consistent but slightly distinct results. This is to be expected, as closed-form solutions
for the gradient model with the present void problem are not present in the literature. The
results from Chakraborty [30] are adapted, with an equivalent void diameter � correspond-
ing to the reported void fraction, and are shown in Table 4. Since the diameters do not
coincide, we use the quadratic fit for the Lamé parameters (58) to calculate our values.

Table 4. Comparison between homogenized Young’s modulus with the gradient model and classical
closed-form solution [30].

Void Fraction [30] Equivalent� E/E0 [30] Present E/E0 (With Interpolation)

0.065 0.498852 0.91297 0.90633
0.110 0.594472 0.86701 0.83963
0.180 0.700527 0.80543 0.74484
0.270 0.801903 0.73112 0.63378

6. Macroscopic Size Effect

With the fitted properties, we validate the formulation with two exercises: The first
one evaluates the effect of specimen size on the load/displacement results and the second
shows the objectivity of stress components for a V-notched specimen. The first problem
is identified in Figure 4. It is a parallelepiped beam, twice simply supported and under
uniform load. A full 3D analysis is performed with edge effects being observed for the
classical elasticity model, see Figure 4. This figure shows all six stress components for both
models. Figure 5 presents the results for the size effect for three specimens: L = 10, 100 and
1000 mm. As theoretically predicted, smaller specimens show additional stiffness when
the gradient model is considered. In addition, larger values of � decrease the stiffness
of smaller specimens, due to both the reduced elastic modulus and also the effect of the
strain gradient. Figure 6 shows the effect of L in the ratio between the displacements of the
classical elasticity model and the gradient model. The effect is pronounced for the smaller
specimen but then dissipates as the void dimensions become much smaller than the overall
dimensions of the part.

We now consider a notched specimen, as depicted in Figure 7. It consists of a rectan-
gular plate with two sharp notches. In terms of discretization, four point distributions with
lengths h = 0.004, h = 0.003, h = 0.002 and h = 0.0015 are tested. The goal here is to inspect
the notch sensitivity when the strain gradient effect is present in the elastic law. It is known
that singularities disappear in gradient solutions, and therefore discrete objectivity is to be
expected. Contour plots for S22 are shown in Figure 7. For the classical elasticity case, a
sharper stress concentration appears at the notch and this increases with mesh refinement.
Table 5 presents the values of S22 at the monitored node for the aforementioned values of h.
Table 5 reports the notch tip stress components for the two cases and the corresponding
graphical representation is shown in Figure 8. We draw the following conclusions:
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• Stresses converge with point refinement, in contrast with the classical elastic model,
which predicts a singularity.

• Lower discrepancies between finer and coarser point distributions are observed.
• A very smooth stress distribution is visible in the contour plot, even at the notch tip.
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Figure 4. Simply supported beam under uniform pressure: relevant dimensions and S-contour plots
for � = 0.4. Displacement is 10×magnified.
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Figure 5. Size effect for � = 0.4, 0.6 and 0.8 and four beam sizes.
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Figure 7. Notched specimen: geometry and boundary conditions. Dimensions in mm (properties
reported in Table 3 are appropriately scaled).

Table 5. Notched specimen: S22 at the monitored node for � = 0.4, 0.6 and 0.8.

Mesh
Classical Elasticity Gradient Elasticity

� = 0.4 � = 0.6 � = 0.8 � = 0.4 � = 0.6 � = 0.8

h = 0.004 32.20 27.94 21.13 22.76 22.80 23.40
h = 0.003 29.19 25.34 19.16 22.21 22.47 23.27
h = 0.002 33.41 28.99 21.92 24.62 25.08 25.73
h = 0.0015 43.71 37.92 28.68 25.14 26.56 25.41
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Figure 8. Effect of mesh size h on S22 at the monitored node (see Figure 7).
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7. Conclusions

In this work, we introduce a model for finite gradient elasticity, specifically a con-
tinuum containing spherical voids, using a two-stage (and two-scale) approach. In the
first stage, properties for the gradient model are determined from RVE analysis using a
least-squares method. Quadratic displacements are applied to the boundary of the RVE
and energy equivalence is established, which results in an unique set of seven elastic prop-
erties: two for the fourth-order tensor C and five for the sixth-order tensor G. In terms of
discretization, we adopt a meshless method consisting of radial basis function interpolation
with polynomial enrichment and we establish both the first and second derivatives of the
shape functions in closed form. Note that an FE mesh is adopted for integration purposes.
Detailed expressions for the deformation gradient F and its gradient ∇F are shown and
a consistent linearization is performed to ensure the Newton solution. The source code
for this work is available in Github [27]. Validation is performed with two 3D numerical
examples: the first one demonstrates the presence of size effect (i.e., the stiffening of smaller
specimens) and the second example demonstrates the absence of stress singularity and
hence the convergence of the discretization scheme.
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