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Abstract: This paper investigates the robust stability and stabilization of networked evolutionary
games (NEGs) with time delays. First, a mathematical model is presented to describe the dynamics
of NEG with time-varying delays and disturbances. Second, an auxiliary system is constructed using
the semi-tensor product of matrices and a dimension augmenting technique. Then, a verification
condition of robust stability is derived. Third, in order to stabilize NEG to the Nash equilibrium, the
robust stability problem is transformed into the robust stabilization problem. Moreover, an algorithm
is proposed to design the stabilization controller. Finally, the validity of the results is verified by
an example.
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1. Introduction

In the 1940s, Von et al. [1] investigated game problems using a systematic mathematical
approach. Subsequently, game theory has become a mathematical model used to study
the decision-making behavior of players with rational thinking and learning ability. Note
that interactions among numerous participants may not be evenly mixed. Specifically,
players only interact with their neighbors, not with all players. Thus, interaction structures
among players have attracted the attention of researchers. Numerous works [2–4] have
used network graphs to describe the topology among players, with the nodes representing
players and each edge connecting two interacting players. Based on strategy updating rule,
the game evolves on the network architecture, which is called a networked evolutionary
game (NEG) [5]. With the integration of disciplines, NEG provides a feasible framework
for research into economics, sociology, and biology [6–8].

Finding equilibriums is one of the most important problems in game theory. Be-
cause the participants are capable of learning, their strategies evolve towards higher
revenues [9,10]. Updating strategies in multiple directions makes it difficult to capture
the profile dynamics. The Nash equilibrium [11] is a special combination of strategies in
which each player unilaterally changes strategy without increasing revenues. Therefore,
the stability of a profile at Nash equilibrium has great significance. It is worth noting that
the Nash equilibrium may not be unique. If the NEG is expected to evolve to an optimal
equilibrium, a feasible approach is to design the strategies of certain players to guide the
strategy evolution of others. This is consistent with stabilization theory in control theory.

Players update their strategy by probing the information of their neighbors. How-
ever, certain factors that influence strategy selection should not be ignored. Among them,
signal disturbances and information time delays are two prominent factors. For exam-
ple, signals generated by an external device are disturbances, which interfere with the
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information interaction among players. The information delays caused by communica-
tion equipment can be regarded as bounded time-varying delays. In recent years, many
articles have studied the influence of disturbances and time delays on game dynamics.
For instance, Jimenez et al. [12,13] considered a game with bounded uncertain distur-
bances and obtained the effect of the disturbances on Nash equilibrium; Yuan et al. [14]
designed an event-triggered strategy for nonlinear quadratic games with disturbances;
Yang et al. [15] described the effect of stochastic disturbances on evolutionary game dy-
namics; Qin et al. [16] found that time delay affected the cooperation level of the prisoner’s
dilemma game on a two-dimensional lattice; Stewart et al. [17] revealed that time delay
could promote the emergence of cooperation in an NEG with a small number of players
and strategies. In summary, disturbance and time delay make it difficult to analyze game
dynamics. As far as we know, there are few results on the influence of the combination of
disturbances and time delays on NEG dynamics, attracting us to further investigation.

NEG is a discrete system with finite value in essence. A matrix is an efficient mathe-
matical tool in dealing with discrete systems. The semi-tensor product (STP) of matrices,
proposed by Professor Cheng and his team [18,19], breaks the dimension limitation of
traditional matrix products and enriches the research methods in the modern control field.
In recent years, STP theory has been successfully applied in many fields, such as logical sys-
tems [20], finite games [21,22], graph theory [23], finite automatic machines [24], biological
systems [25–27], and more. Based on the semi-tensor product of matrices, research on finite
games has achieved fruitful results. For example, Cheng et al. [28] constructed the potential
equation and presented the calculation method of the potential function; the orthogonal
decomposition theorem was proposed in [29] based on the vector space structure; and the
algebraic model of NEGs was established in [5] and their dynamic behavior was analyzed,
including stability, controllability, and consistency. With the help of STP theory, it is possible
to solve the robust stability problems of NEGs with time delays.

Compared with the previous works on the stability and stabilization of NEGs, the
highlights of our findings are the following characteristics:

• Using STP of matrices and dimension augmenting technique, an auxiliary system is
constructed to formulate the dynamics of NEGs with time delays and disturbances.
The auxiliary system is a linear-like system. It reduces the difficulty of analyzing NEG
dynamics with time-varying delays.

• Based on the auxiliary system, an explicit criterion is derived for robust stability. It is
presented as a matrix and is easily verified by mathematical software such as Matlab.

• In order to stabilize NEG to the target equilibrium, the robust stability problem is
transformed into the robust stabilization problem. Based on the auxiliary system,
the necessary and sufficient condition is derived for set stabilization. Moreover, an
algorithm is developed to design the set stabilization controller.

This paper is divided into the following sections. Section 2 introduces basic notation
and the preliminaries of STP; Section 3 presents the NEG model and analyzes its robust
stability; Section 4 discusses set stabilization; and Section 5 provides an example to illustrate
the results. Finally, in Sections 6 and 7, we close with a brief conclusion and point out
several directions for future research.

2. Preliminaries

The basic notation used in the following section is introduced below.

(1) Rm×n is the set of all m× n real matrices
(2) 1n := [1, 1, · · · , 1] ∈ R1×n, 0n := [0, 0, · · · , 0] ∈ R1×n
(3) Dk := {1, 2, · · · , k}
(4) Coli(A)(Rowi(A)) denotes the i-th column (row) of matrix A
(5) δi

n := Coli(In)

(6) ∆n := {δi
n|i = 1, 2, · · · , n}

(7) L = [δi1
n , δi2

n , · · · , δin
n ] is a logical matrix, which is abbreviated as δn[i1, i2, · · · , in]
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(8) Lm×n represents the set of m× n-dimensional logical matrices
(9) ◦ denotes the Hadamard product of matrices

As STP is defined based on the Kronecker product, we first introduce the Kronecker
product and then present the concept and properties of STP.

Definition 1 ([19]). Let X = [xij] ∈ Rm×n, Y = [yij] ∈ Rp×q. Then, the Kronecker product of X
and Y is

X⊗Y :=

 x11Y x12Y · · · x1nY
...

...
...

...
xm1Y xm1Y · · · xmnY

 ∈ Rmp×nq.

Definition 2 ([19]). Let X ∈ Rm×n, Y ∈ Rp×q. Then, the STP of X and Y is

X nY := (X⊗ It/n)(Y⊗ It/p),

where t = lcm(n, p) represents the least common multiple of n and p.

For simplicity of description, the products of all matrices are assumed as STP in the
sequel and the symbol ”n” is omitted unless otherwise specified.

Identify elements 1, 2, · · · , k ∈ Dk as vector form δ1
k , δ2

k , · · · , δk
k ∈ ∆k. There then exists

a one-to-one correspondence from Dk to ∆k. Therefore, Dk and ∆k can be regarded as the
same set, where ∆k is called the vector form ofDk. Based on this, we introduce an important
property to transform logical functions into algebraic forms in the following.

Lemma 1 ([19]). For a mix-valued logical function f (x1, x2, · · · , xn) : ∏n
i=1Dki

→ Dk0 , there
exists a unique matrix M f ∈ Lk0×k such that

f (x1, x2, · · · , xn) = M f x1x2 · · · xn,

where xi ∈ ∆ki
, i = 1, 2, · · · , n and k = ∏n

i=1 ki. In addition, M f is called the structural matrix
of f .

Lemma 2 ([19]). Let X ∈ Rt×1, Y ∈ Rn×1, x ∈ ∆n, y ∈ ∆l , and z ∈ ∆m.

(1) Define W[t,n] = δtn[In ⊗ δ1
t , In ⊗ δ2

t , · · · , In ⊗ δt
t ]. Then, YX = W[t,n]XY.

(2) Define M[n,l,m] = 1n ⊗ Il ⊗ 1m and Φn = Diag{δ1
n, δ2

n, · · · , δn
n}. Then, M[n,l,m]xyz = y

and xx = Φnx.

Definition 3 ([19]). The Khatri-Rao product of two matrices X ∈ Rm×n and Y ∈ Rl×n is

X ∗Y := [Col1(X)⊗ Col1(Y), Col2(X)⊗ Col2(Y), · · · , Coln(X)⊗ Coln(Y)].

3. Formulation and Robust Stability Analysis of NEGs with Time Delays

In this section, we first present the model of NEG with time delays and disturbances.
Then, the algebraic formulation is established to analyze the robust stability of the game.

3.1. Model Description

A normal form game, denoted by G, consists of three parts:

(1) The set of players N = {1, 2, · · · , n};
(2) Each player has a strategy set Si = {1, 2, · · · , ki}. The strategies of all players constitute

a profile, and the set of a profile is denoted by S = ∏n
i=1 Si;

(3) Each player has a payoff function, ci : S→ R.

A network graph P describes the topology among players, which consists of nodes
and edges. Each edge is attached to an edge-related fundamental game, Gij, which is played
by neighboring player i and player j. According to strategy updating rules (SURs), the
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game evolves on P, namely, the NEG. Consider that the dynamics of an NEG are affected
by the time-varying delay, τ(t), and external disturbance, ξ j(t), j = 1, 2, · · · , n. Specifically,
τ(t) ∈ {0, 1, · · · , η} depends on the profile, and ξ j(t) ∈ Dq is generated by the following
external disturbance system:

{
αi(t + 1) = hi(α1(t), α2(t), · · · , αl(t)), i = 1, 2, · · · , l;
ξ j(t) = gj(α1(t), α2(t), · · · , αl(t)), j = 1, 2, · · · , n,

(1)

where αi(t) ∈ D$i represents the states of system (1) at time t, ξ j(t) denotes the output of
system (1) at time t, hi : Πl

γ=1D$γ → D$i and gj : Πl
γ=1D$γ → Dq are logical functions, and

i = 1, 2, · · · , l, j = 1, 2, · · · , n.
A detailed introduction of an NEG with time delays and disturbances is provided

below.

Definition 4. A disturbed NEG with time delays is denoted by Gd = (P,GE,F, τ(t), Ξ(t)), where

(1) P is a network graph with node set N = {1, 2, · · · , n} and edge set E ⊂ N × N;
(2) GE = {Gij|(i, j) ∈ E} is a fundamental game set, where Gij is an edge-related fundamental

game played by players i and j;
(3) F = { f1, f2, · · · , fn} is an SUR set, where fi is the SUR of player i ∈ N;
(4) τ(t) ∈ {0, 1, · · · , η} is the time-varying delay that occurs when players receive information

from others;
(5) Ξ(t) = {ξ1(t), ξ2(t), · · · , ξn(t)} is a disturbance set.

Let Ni denote the neighbor set of player i ∈ N. The dynamics of Gd are formulated as

xi(t + 1) = fi({xj(t− τ(t))|j ∈ Ni}, ξi(t)), i = 1, 2, · · · , n, t = 0, 1, · · · , (2)

where xi(t) ∈ Si represents the strategy of player i at time t, fi : ∏j∈Ni
Sj ×Dq → Si is the

SUR of player i. We denote by (x1(t), x2(t), · · · , xn(t)) the profile of Gd at time t.
In addition, the overall payoff ci(t) of player i ∈ N at time t is computed by

ci(t) =
∑j∈Ni

cij(xi(t), xj(t− τ(t)), ξi(t))
|Ni|

, (3)

where cij : Si × Sj × Dq → R denotes the payoff function of player i interacting with
player j.

Subsequently, the dynamics (2) are converted into an algebraic formulation by the
STP method.

3.2. Algebraic Formulation

First, we convert the strategies 1, 2, · · · , ki and disturbances 1, 2, · · · , q into vector form,
δ1

ki
, δ2

ki
, · · · , δ

ki
ki

and δ1
q , δ2

q , · · · , δ
q
q , respectively. Then, xi(t) ∈ ∆ki

, and ξi ∈ ∆q, i = 1, 2, · · · , n.
Applying Lemma 1, the dynamics (2) have the algebraic form as

xi(t + 1) = Fi nj∈Ni xj(t− τ(t))ξi(t), i = 1, 2, · · · , n, (4)

where Fi ∈ Lki×∏j∈Ni
kjq is the structural matrix of fi.

Next, we construct an auxiliary system for (2) using the dimension augmenting
technique. A projection matrix Mi is defined for player i as

Mi = M[1]
i ⊗M[2]

i ⊗ · · · ⊗M[n]
i , i = 1, 2, · · · , n, (5)
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where

M[r]
i =

{
Ikr , if r ∈ Ni;
1kr , otherwise,

r = 1, 2, · · · , n.

Let x(t) = nn
i=1xi(t) ∈ ∆k, z(t) = nt

j=t−η x(j) ∈ ∆k̄, where k = ∏n
i=1 ki and k̄ = kη+1.

Using projection matrix (5), (4) can be further calculated as

xi(t + 1) = Fi Mix(t− τ(t))ξi(t)
= Fi Mi M[kη−τ(t),k,kτ(t) ]z(t)ξi(t)
:= F̂i,τ(t)z(t)ξi(t), i = 0, 1, · · · , n.

(6)

Considering the time-varying delay, there exists a structural matrix Mη ∈ L(η+1)×k
such that

τ(t) = Mη x(t).

Set F̄i = [F̂i,0, F̂i,1, · · · , F̂i,η ]. Then, (6) is equivalent to

xi(t + 1) = F̄i Mη x(t)z(t)ξi(t)
= F̄i MηW[k̄,k](Ikη ⊗ φk)z(t)ξi(t)
:= F̃iz(t)ξi(t), i = 0, 1, · · · , n.

(7)

As for disturbances, let α(t) = nl
i=1αi(t) ∈ ∆ω and ξ(t) = nn

j=1ξ j(t) ∈ ∆qn , where

ω = Πl
i=1$i. According to Lemma 1, there exist two structural matrices Mh,i ∈ Lω×ω and

Mg,j ∈ Lq×ω for hi and gj, respectively, such that{
αi(t + 1) = Mh,iα(t), i = 1, 2, · · · , l;
ξ j(t) = Mg,jα(t), j = 1, 2, · · · , n.

(8)

Consequently, (7) is transformed as

xi(t + 1) = F̃iz(t)Mg,jα(t)
= F̃i(Ik̄ ⊗Mg,j)z(t)α(t)
:= F̈iz(t)α(t), i = 0, 1, · · · , n.

(9)

Using the Khatri–Rao product of matrices, (8) and (9) can be converted into

α(t + 1) = Mhα(t), (10)

and
x(t + 1) = Fz(t)α(t),

where Mh = Mh,1 ∗ Mh,2 ∗ · · · ∗ Mh,n ∈ Lω×ω and F = F̈1 ∗ F̈2 ∗ · · · ∗ F̈n ∈ Lk×ωk̄. From
z(t + 1) = x(t− η + 1)x(t− η + 2) · · · x(t + 1), we derive

z(t + 1) = Ez(t)α(t), (11)

where E ∈ Lk̄×ωk̄. Let β(t) = z(t)α(t) ∈ ∆ωk̄. An auxiliary system is constructed as

β(t + 1) = z(t + 1)α(t + 1)
= Ez(t)α(t)Mhα(t)
= E(Iωk̄ ⊗Mh)(Ik̄ ⊗Φω)β(t)
:= Qβ(t),

(12)

where Q = E(Iωk̄ ⊗Mh)(Ik̄ ⊗Φω) ∈ Lωk̄×ωk̄.
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Remark 1. Disturbance and time delay increase the difficulty of analyzing NEG dynamics. By
dimension augmentation, the dynamic system (2) is equivalently converted into the algebraic system
(12). System (12) is a linear-like system. With an initial state β(0), the state of system (2) can be
intuitively derived from system (12). Next, the dynamics of Gd are investigated based on system
(12).

3.3. Robust Stability Analysis

Before analyzing the stability of Gd, the concepts of robust Nash equilibrium and
robust stability are described below.

Definition 5. Consider the NEG Gd. A profile s∗ = (s∗1 , s∗2 , · · · , s∗n) is a robust-Nash equilibrium
if, for each player, i ∈ N,

ci(s∗i , s∗−i, ξi) ≥ ci(si, s∗−i, ξi), ∀si ∈ Si, ∀ξi ∈ Dq, (13)

where s∗−i = (s∗1 , s∗2 , · · · , s∗i−1, s∗i+1, · · · , s∗n).

It is assumed that s∗ is the robust-Nash equilibrium of Gd in the sequel. With an initial
state β(0), the profile of Gd at time t is denoted by x(t; β(0)).

Definition 6. The NEG Gd is robust stable at the robust-Nash equilibrium s∗ if there exists a
positive integer T such that

x(t; β(0)) = s∗, ∀β(0) ∈ ∆ωk̄, ∀t ≥ T. (14)

Similar to the concept of robust stability, the concept of set stability of a system (12) is
defined. Given a nonempty set V ⊂ ∆ωk̄, system (12) is said to be set stable at V if there
exists an integer T̄ such that

β(t; β(0)) ∈ V, ∀β(0) ∈ ∆ωk̄, ∀t ≥ T̄.

Note that as the disturbance system (1) is a finite-valued system, the evolutionary
trajectory starting from initial α(0) ∈ ∆ω can reach corresponding attractors of (1) in finite
time. Assume that γ1, γ2, · · · , γs are the attractors of (1). Let L = {γ1, γ2, · · · , γs},

z∗ = (s∗)η+1,

and

Γ = {z∗ n γi|γi ∈ L}. (15)

Lemma 3. The NEG Gd is robust stable at the robust-Nash equilibrium s∗ if and only if system
(12) is set stable at Γ.

Proof. (Necessity) It is assumed that Gd is robust stable at s∗; then, there exists a positive
integer T which makes Equation (14) valid. According to system (1), if β(0) is given, α(0)
and {ξ(t)|t = 0, 1, 2 · · · } are known. Therefore, the arbitrariness of {ξ(t)|t = 0, 1, 2 · · · } is
equivalent to the arbitrariness of α(0). Set T̂ = T + η. When t ≥ T̂, we obtain z(t) = z∗

and α(t) ∈ L. Hence, β(t) ∈ Γ, ∀t ≥ T̂, ∀β(0) ∈ ∆ωk̄. This implies that system (12) is set
stable at Γ.

(Sufficiency) Assume that system (12) is set stable at Γ. Then, there exists an integer T̄
such that β(t) ∈ Γ holds for any t ≥ T̄ and any β(0) ∈ ∆ωk̄. Notice that β(t) = z(t)n α(t) is
a one-to-one correspondence from ∆k̄ n∆ω to ∆ωk̄. Thus, for any t ≥ T̄ and β(0) ∈ ∆ωk̄, we
obtain z(t) = z∗ and α(t) ∈ L. It can be derived that x(t; β(0)) = s∗, ∀t ≥ T̄, ∀β(0) ∈ ∆ωk̄.
Therefore, Gd is robust stable at s∗.
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Based on Lemma 3, we draw the following verification condition of the robust stability
of Gd.

Theorem 1. The NEG Gd is robust stable at the robust-Nash equilibrium s∗ if and only if there
exists an integer T̃ ≤ ωk̄ such that

∑
δi

ωk̄∈Γ

Rowi(QT̃) = 1ωk̄. (16)

Proof. (Necessity) Suppose that Gd is robust stable at s∗. According to Lemma 3, system
(12) is set stable at Γ. Therefore,

β(t) = Qtβ(0) ∈ Γ

holds for ∀t ≥ T̃, ∀β(0) ∈ ∆ωk̄. Assume that β(0) = δi
ωk̄ and β(T̃) = δ

ε(i)
ωk̄ . Clearly,

(QT̃)ε(i),i = 1. From the arbitrariness of δi
ωk̄, we derive that (16) holds. Notice that the state

space of system (12) is finite; thus, T̃ ≤ ωk̄.
(Sufficiency) Assume that (16) holds. Due to Q being a logical matrix, it can be derived

that (16) remains available for any t ≥ T̃. Then, β(t; β(0)) ∈ Γ holds for any t ≥ T̃ and any
β(0) ∈ ∆ωk̄, which is equivalent to

z(t; β(0)) = z∗, α(t) ∈ L, ∀t ≥ T̃, ∀β(0) ∈ ∆ωk̄.

Clearly, x(t; β(0)) = s∗ holds for any β(0) ∈ ∆ωk̄ and any t ≥ T̃. Consequently, Gd is
robust stable at s∗.

4. Stabilization Analysis of NEGs with Time Delays and Disturbances

If Gd is expected to evolve to an optimal Nash equilibrium, a natural idea is to control
certain players to guide the evolution. In this section, we present the model of Gd with
control players and then investigate the stabilization problem.

4.1. Model Description

Considering Gd = (P,GE,F, τ(t), Ξ(t)), we divide the player set N into control player
set A and state player set B, where A ∪ B = N and A ∩ B = ∅. There is a rule that state
players are subject to their inherent SURs, and the strategies of control players can be
designed. Gd with the above players distinction is denoted as Gcd. Then, the dynamics of
Gcd are formulated as

ai(t + 1) = ϑi({aρ(t− τ(t)), bυ(t− τ(t))|ρ ∈ Ni
A, υ ∈ Ni

B}, ξi(t)), i = 1, 2, · · · , |A|, (17)

where ai(t) is the strategy of a state player i at time t, Ni
A (Ni

B) is the neighbor set of state
players (control players) of player i, ϑi is the SUR of player i, and bv(t) is the strategy of
control player v at time t.

Define a(t) = n|A|i=1ai(t) ∈ ∆ka , ã(t) = nt
i=t−ηa(i) ∈ ∆kã , b(t) = n|B|i=1bi(t) ∈ ∆kb

, and

b̃(t) = nt
i=t−ηb(i) ∈ ∆kb̃

. Similar to formulas (4)–(11), the algebraic formulations for Gcd
can be derived as

ã(t + 1) = Ãb̃(t)ã(t)α(t). (18)

Let χ(t) := ã(t)α(t) ∈ ∆ωkã . Referring to (12), an auxiliary system is derived for Gcd as

χ(t + 1) = Hb̃(t)χ(t), (19)

where H ∈ Lωkã×kb̃ωkã .
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4.2. Stabilization Analysis

Based on the auxiliary system (19), we investigate the stabilization problem of Gcd.
Before presenting the key results, we recall the concept of a control-invariant subset as
follows: Λ ⊂ ∆ωkã is a control-invariant subset of system (19) if there exist a time T and
a control sequence {b̃(i)}t

i=0 such that χ(t; χ(0), {b̃(i)}t
i=0) ∈ Λ, ∀t ≥ T. The union of all

control-invariant subsets contained in Λ is called the largest control-invariant subset, and
is denoted by Im(Λ). An algorithm is provided to find the largest control-invariant subset
of Λ in Algorithm 1.

Algorithm 1: Find the largest control-invariant subset Im(Λ).

Step 1: Assume Λ = {δj1
kã

, δ
j2
kã

, · · · , δ
jσ
kã
} and j1 < j2 < · · · < jσ. Set CΛ = Σσ

i=1δ
ji
kã

and
UΛ = δkã [j1, j2, · · · , jσ].
Step 2: Let i = 0, V0 = Λ.

Step 3: If C>Vi
(Σ

kb̃
λ=1Hδλ

kb̃
)UΛ > 0|Vi |, set Im(Λ) = Vi, stop.

Step 4: Compute Vc
i = {δji

ωkã
|[C>Vi

(Σ
kb̃
λ=1Hδλ

kb̃
)UΛ]

i
= 0} and set Vi+1 = Vi \Vc

i .

Step 5: If Vi=1 = ∅, let Im(Λ) = ∅, stop; otherwise, let i = i + 1, return to Step 3 and
repeat the calculation.

System (17) is said to be stabilized at λ ∈ ∆kã , if there exist a positive integer T̂ and
a control sequence {b̃(i)}t

i=0 such that ã(t; χ(0), {b̃(i)}t
i=0) = λ, ∀t ≥ T̂, ∀χ(0) ∈ ∆ωkã .

Assume s∗ is the robust-Nash equilibrium of system (17). Similar to (15), we construct
Γ̃ ⊂ ∆ωkã . With a nonempty set Λ ⊂ ∆ωkã , system (19) is set stabilized at Λ if there
exist a positive integer Ť and a control sequence {b̃(i)}t

i=0 such that χ(t; χ(0), {b̃(i)}t
i=0) ∈

Λ, ∀t ≥ Ť, ∀χ(0) ∈ ∆ωkã .
Next, the robust stabilization problem of Gcd is transformed into the set stabilization

problem of system (19).

Theorem 2. Considering Gcd, the following statements are equivalent.

(1) Gcd is stabilized at the robust-Nash equilibrium s∗ under control.
(2) System (19) is set stabilized at Γ̃.
(3) There exists a positive integer ε ≤ ωkã such that

C>Im(Γ̃)(Σ
kb̃
λ=1Hδλ

kb̃
)ε > 0ωkã . (20)

Proof. (1)⇒ (2) : Similar to the proof of Lemma 3, it is easy to know that (1) is equivalent
to (2).

(2)⇒ (3) : Assume that system (19) is set stabilized at Γ̃. Then, there exist an integer T1
and a control sequence {b̃(i)}t

i=0 such that χ(t; χ(0), {b̃(i)}t
i=0) ∈ Γ̃, ∀t ≥ T1, ∀χ(0) ∈ ∆ωkã .

Next, we prove that system (19) is stabilized at Im(Γ̃) by contradiction. Suppose that
there exist χ(0) = δ

j
ωkã

and t1 > T1 such that χ(t1; δ
j
ωkã

, {b̃(i)}t1
i=0) /∈ Im(Γ̃). Considering

that system (19) is set stabilized at Γ̃, we derive χ(t1; δ
j
ωkã

, {b̃(i)}t1
i=0) ∈ Γ̃ \ Im(Γ̃). This is

contrary to Im(Γ̃) being the largest control-invariant subset of Γ̃. Therefore, system (19)
is set stabilized at Im(Γ̃). Then, there exist an integer T2 ≤ ωkã and a control sequence
{b̃(i)}t

i=0 such that χ(t; χ(0), {b̃(i)}t
i=0) ∈ Im(Γ̃) holds for any t ≥ T2 and any χ(0) ∈ ∆ωkã .

Consequently, (20) holds.
(3) ⇒ (2) : Suppose that (20) holds. This implies that for any χ(0) ∈ ∆ωkã , there

exists a control sequence {b̃(i)}ε
i=0 such that χ(ε; χ(0), {b̃(i)}ε

i=0) ∈ Im(Γ̃). According to
the definition of the largest control-invariant subset, we know that for any χ(0) ∈ ∆ωkã
there exists {b̃(i)}t

i=0 such that χ(t; χ(0), {b̃(i)}t
i=0) ∈ Im(Γ̃) ⊂ Γ̃, ∀t ≥ ε. Consequently,

system (19) is set stabilized at Γ̃.
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Algorithm 2 is presented below to design b̃(t) = Υχ(t) in order to ensure that Gcd is
stabilized at the robust-Nash equilibrium.

Algorithm 2: Design control matrix Υ such that b̃(t) = Υχ(t) and
χ(t; χ(0), b̃(t)) ∈ Γ̃.

Step 1: Let V0 = Im(Γ̃). Assume Ci = 0kb̃×ωkã , i = 1.
Step 2: For j = 1, 2, · · · , kb̃, r = 1, 2, · · · , ωkã, if Col(j−1)ωkã+r(H) ∈ Vi−1, set [Ci]jr = 1.
Step 3: Calculate Ki = {δr

ωkã
|Colr(Ci) 6= 0>kb̃

}. Set Vi = Ki \
⋃i−1

j=0 Vj.
Step 4: If Vi = ∅, there is no Υ. Stop the calculation.
Step 5: If

⋃i
j=0 Vj = ∆ωkã , set i∗ = i; otherwise, set i = i + 1 and go back to Step 2.

Step 6: Set C0 = C1. Υ is designed as Colr(Υ) ∈ {φ ∈ ∆kb̃
|φ ◦ Colr(Cj) = φ}, where

δr
ωkã
∈ Vj, j = 0, 1, · · · , i∗. Stop.

5. Example
5.1. Model Description

Consider an NEG G1
d = (P,GE,F, τ(t), Ξ(t)) which has three players, N = {1, 2, 3},

and a strategy set S1 = S2 = S3 = {1, 2}. The detailed information is as follows.

(1) The network graph P is shown in Figure 1.

Figure 1. Network graph of Gp.

(2) There are two edge-related fundamental games, G12 and G13; the payoff matrices are
provided in Tables 1 and 2.

Table 1. Payoff Matrix of G12

C|SD2 1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

c1 1 2 2 1 1 1 0 1 2 0 0 3 3 0 4 2
c2 0 1 2 1 0 0 2 0 1 2 1 0 0 1 2 4

Table 2. Payoff Matrix of G13

C|SD2 1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

c1 1 2 2 0 2 0 1 0 4 1 4 1 2 0 1 4
c3 1 0 1 4 1 1 2 3 0 0 1 0 1 3 1 2

(3) Imitating the strategy of the neighbor who has the optimal payoff is the SUR of each
player, namely,

xi(t + 1) =

{
xi(t), if ci(t) ≥ cj(t), j ∈ Ni;
xj(t), if ci(t) < cj(t), j ∈ Ni.

(4) τ(t) = [0, 1, 0, 1, 1, 1, 0, 0]x(t).
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(5) The external disturbance system is{
α(t + 1) = Mhα(t);
ξ j(t) = Mg,jα(t), j = 1, 2, 3,

where Mh = δ4[1, 3, 4, 1], Mg,1 = δ2[1, 2, 1, 2], Mg,2 = δ2[2, 1, 1, 2], Mg,3 = δ2[1, 1, 2, 2].

The dynamics of G1
d are formulated as

x1(t + 1) = f1(x1(t− τ(t)), x2(t− τ(t)), x3(t− τ(t)), ξ1(t)),
x2(t + 1) = f2(x1(t− τ(t)), x2(t− τ(t)), ξ2(t)),
x3(t + 1) = f3(x1(t− τ(t)), x3(t− τ(t)), ξ3(t)).

5.2. Robust Stability Analysis

Using the semi-tensor product of matrices, the auxiliary system is constructed as

β(t + 1) = Qβ(t),

where Q ∈ L256×256. The evolutionary trajectory of G1
d is described by Figure 2, from

which we can see that the trajectories initialized from any profiles are stabilized at two
equilibriums, (s1, s1, s1) and (s2, s2, s2).

Figure 2. Dynamics of Gp.

A calculation shows that δ1
4 is the unique fixed point of the disturbance system. We

can find an integer T = 5 such that Row1(Q5) + Row253(Q5) = 1256. Clearly, Γ = {δ1
64 n

δ1
4 , δ64

64 n δ1
4}. According to Theorem 1, G1

d is robust stable at Nash equilibriums (s1, s1, s1)
and (s2, s2, s2).

5.3. Robust Stabilization Analysis

Assuming that (s2, s2, s2) is an optimal Nash equilibrium, we consider the control
problem. Let player 1 be a control player and players 2 and 3 be state players; G1

d with
player classification is rewritten as G1

cd. The dynamics of G1
cd are described as{

a1(t + 1) = ϑ1(b(t− τ(t)), a1(t− τ(t)), ξ2(t)),
a2(t + 1) = ϑ2(b(t− τ(t)), a2(t− τ(t)), ξ3(t)),

where ϑ1 = f2, ϑ2 = f3, and the time delay is τ(t) = [0, 1, 0, 1]a(t).
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We intend to control player 1 to steer G1
cd to be stabilized at (s2, s2). According

to (18) and (19), an auxiliary system is constructed as χ(t + 1) = Hb̃(t)χ(t), where
H ∈ L64×256, and Γ̃ = {δ16

16 n δ1
4} := {δ61

64}. Clearly, Im(Γ̃) = δ61
64 . A calculation shows

Row61(∑4
i=1 Hδi

4)
5 > 064. Per Theorem 2, χ(t) can be steered to Γ̃.

According to Algorithm 2, one feasible choice of Υ is Υ = δ4[4, 4, 4, · · · , 4, 4, 4] ∈ L4×64.
Under the controller b̃(t) = Υχ(t), we derive that χ(t; χ(0), {b̃(i)}t

i=0) = δ61
64 holds for any

t ≥ 5 and any χ(0) ∈ ∆64, and then G1
cd is stabilized at δ16

16 = (s2, s2).

6. Problems

The method presented in this paper is helpful for analyzing the robust stability of
NEGs with disturbances and time delays. An efficient algorithm is provided to design the
stabilization controller such that the NEG can be stabilized at the robust-Nash equilibrium.
However, two problems have not been solved.

Problem 1. According to the results obtained in this paper, the stability of Gd at s∗ is equivalent to
the stability at Γ. This implies that the Nash equilibrium remains affected by disturbances. Is there a
way to keep the Nash equilibrium from being disturbed?

Problem 2. The design of the controller is affected by the disturbance as well. Is it possible to find
a method by which a controller can be designed that is not affected by the disturbance?

7. Conclusions

In this paper, the robust stability and stabilization of NEGs with time delays have
been studied. The evolutionary trajectory of the NEG is difficult to track because of the
time delays and disturbances. Two higher-order auxiliary systems have been established
using the dimension augmenting technique in order to resolve these difficulties. Unlike
continuous systems, the effect of time delay on discrete systems can be eliminated via
the dimension augmenting technique. In this case, the robust stability of the NEG can be
investigated just as for non-delay systems. Based on the auxiliary system, necessary and
sufficient conditions for robust stability and stabilization, respectively, have been obtained.
Moreover, an algorithm has been proposed to design the state-feedback controller. Finally,
the validity of the conclusions has been verified by an example.
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