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Abstract: Throughout this study, we continue the analysis of a recently found out Gibbs–Wilbraham
phenomenon, being related to the behavior of the Lagrange interpolation polynomials of the continu-
ous absolute value function. Our study establishes the error of the Lagrange polynomial interpolants
of the function |x| on [−1, 1], using Chebyshev and Chebyshev–Lobatto nodal systems with an
even number of points. Moreover, with respect to the odd cases, relevant changes in the shape and
the extrema of the error are given.

Keywords: Lagrange interpolation; Chebyshev nodal systems; Chebyshev–Lobatto nodal systems;
absolute value approximation; rate of convergence; Gibbs–Wilbraham phenomena
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1. Introduction

The Gibbs–Wilbraham phenomenon, introduced in [1], is an important topic in function
approximation and attracts much interest amongst researchers. It appears in different types
of approximations, with its specific characteristics linked to each one. In brief, we can describe
the phenomenon as the peculiar behavior of the approximations of a function with a jump
discontinuity, using the usual Fourier series or different types of interpolation polynomials.
Near the singularity, we have a large oscillation, and far away from the singularity, we
have uniform convergence. Refs. [2–9] are devoted to researching the Gibbs–Wilbraham
phenomena; however, all of them, though in different contexts, only refer to functions with
jump discontinuities. A complete view of the recent research is reflected in [10].

In the recent article [11], we have studied the behavior of the Lagrange interpolators
of |x| based on the Chebyshev and Chebyshev–Lobatto nodal systems with an odd number
of nodal points, or if preferred, when 0 is part of the nodal system. The approximation
of |x| by polynomials is an important topic since the paper of S. Bernstein, see [12]. We
must refer to the introduction of this paper for the relevance of the problem and its possible
development. The most relevant result, studied in depth, is that the approximations
present a new Gibbs–Wilbraham phenomenon case. Indeed, we establish where and when
the phenomenon occurs and give an accuracy approximation.

At least using interpolation, when we have the Gibbs–Wilbraham phenomenon, it is
usual that minor changes in the nodal system have no effect on the shape of the phe-
nomenon nor on its amplitudes, (see [3]). Therefore, we assumed that the study of the same
interpolation problem changing the parity of the nodal systems had no interest, but we
found that this was a mistake. In the present piece of work, we study the behavior of the La-
grange interpolators of |x| based on the Chebyshev and Chebyshev–Lobatto nodal systems
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with even order and, in the end, we conclude that the Gibbs–Wilbraham phenomena are
strongly different in shape and amplitude.

This piece of work maintains a close logical connection with [11], even though we
have reformulated its structure to make it less extensive and easier to read. For instance,
we have recovered some interesting sums. We want to point out the key role of Lemma 2,
which is an important advance with respect to the methods developed in that paper.

The article is structured as follows:

1. After this introductory section, in Section 2, we present two Lagrange interpolatory
problems in the unit circle T, T = {z ∈ T : |z| = 1}, related to the function F(z) =

| z+
1
z

2 |. We must point out that we do not justify the interest of these problems in this
section. The results obtained here will be translated in a well-known and short way
to the real problem in Section 3, which is devoted to the problem and its results
on the real line.

2. In Section 4, we present some numerical examples and the corresponding graphs.
3. Finally, in Section 5, we present the conclusions and further developments.

2. On the Unit Circle

As we have said, we consider two different nodal systems on the unit circle.
One of them, NT , is constituted by the 2n roots of −1 with n = 2p (p a natural number),
being the related nodal polynomial, that we denote by W2n,T(z), just W2n,T(z) = z2n + 1.
The other one, NU , is constituted by the 2n roots of 1 with n = 2p + 1 (p a natural
number), being the related nodal polynomial, that we denote W2n,U(z), just W2n,U(z) =
z2n − 1. An important feature that NT and NU have in common is that i does not belong
to them. Indeed, i is exactly the middle of the arc between two consecutive nodal points.
Moreover, we can denote the systems in a common way by {αk}2n−1

k=0 ; both are equidis-
tributed nodal systems on T and we can think that α0 is ie−i π

2n and that the system is
clockwise ordered (see Figure 1 below). The reasons for these choices and the notation
will be seen clearly in Section 3. We use these nodal systems to interpolate the function

F(z) =
∣∣∣∣ z+ 1

z
2

∣∣∣∣, which is the translation to T of |x| through the Joukowsky transformation

(see [13] for details).

Between two nodes the arc is
π

n

i α0 α1
α2 n-1α2 n-1 z

Figure 1. A common view of NT and NU near i.

The interpolation on the unit circle is not usually performed on the algebraic poly-
nomial spaces. Instead of this, we use, due to completeness reasons, interpolation in sub-
spaces of the space of Laurent polynomials Λ[z] = P[z]⊕ P[ 1

z ] and usually balanced spaces
are used. Thus, in our case, we interpolate F(z) in the space Λ−n,n−1[z] = Pn−1[z] ⊕
Pn[

1
z ] and we denote the corresponding interpolating polynomials by L−n,n−1(F, z, T) and

L−n,n−1(F, z, U), that is, corresponding to NT and NU , respectively. This problem is well-
known, and in [3], we have given expressions for the interpolation polynomial in a quite
general situation. Next, we translate some of them to our particular conditions.

1. The Laurent polynomials L−n,n−1(F, z, T) and L−n,n−1(F, z, U) have the following
expressions

L−n,n−1(F, z, T) =
W2n,T(z)

2n zn

2n−1

∑
j=0

1
αn−1

j (z− αj)
F(αj), (1)
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and

L−n,n−1(F, z, U) =
W2n,U(z)

2n zn

2n−1

∑
j=0

1
αn−1

j (z− αj)
F(αj). (2)

2. The barycentric formulae of type II for L−n,n−1(F, z, T) and L−n,n−1(F, z, U) are

L−n,n−1(F, z, T) =

2n−1
∑

j=0

1
αn−1

j (z−αj)
F(αj)

2n−1
∑

j=0

1
αn−1

j (z−αj)

and L−n,n−1(F, z, U) =

2n−1
∑

j=0

1
αn−1

j (z−αj)
F(αj)

2n−1
∑

j=0

1
αn−1

j (z−αj)

. (3)

Barycentric formulae are easy to use and numerically stable in the sense of [14] in these
cases.

Using exactly the same ideas as in [11], we can obtain an expression for the error
between F(z) and its interpolants when z is an element of T with <(z), =(z) ≥ 0. We
obtain

E(F, z, T) = F(z)−
2n−1

∑
j=0

F(αj)
1
zn

W2n,T(z)
2nαn−1

j (z− αj)
= −2

2n−1

∑
j=n

F(αj)
W2n,T(z)

zn2n
1

αn−1
j (z− αj)

,

and

E(F, z, U) = F(z)−
2n−1

∑
j=0

F(αj)
1
zn

W2n,U(z)
2nαn−1

j (z− αj)
= −2

2n−1

∑
j=n

F(αj)
W2n,U(z)

zn2n
1

αn−1
j (z− αj)

.

We know that this error is, at most, of order 1
2n and we therefore study 2nE(F, z, T)

and 2nE(F, z, U). After changing the index of the summation, we obtain:

2nE(F, z, T) = −2
W2n,T(z)

in zn

n

∑
`=1

F(α2n−`)
in

αn−1
2n−`(z− α2n−`)

, (4)

and

2nE(F, z, U) = −2
W2n,U(z)

in zn

n

∑
`=1

F(α2n−`)
in

αn−1
2n−`(z− α2n−`)

. (5)

Notice that the only, but relevant, differences between (4) and (5) and the expressions
stated in [11] are just the superior limit of the summation and the corresponding nodal
polynomials.

We can describe z as z = ie−i πd
n . Taking into account the previous description

of the nodal system, we have α` = ie−i
π(`+ 1

2 )
n and α2n−` = iei

π(`− 1
2 )

n (see Figure 1).
These choices make the reinterpretation of the previous expressions possible. Indeed,
it is easy to obtain W2n,T(z)

inzn = 2 cos dπ when n is even and newly W2n,U(z)
inzn = 2 cos dπ when

n is odd.

On the other hand, F(α2n−`) = −
α2n−`+

1
α2n−`

2 = −
iei

π(`− 1
2 )

n + 1

iei
π(`− 1

2 )
n

2 = −<(iei π`
n ) =

sin (`− 1
2 )π

n and
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in

αn−1
2n−`(z− α2n−`)

=
in

αn
2n−`

1
z

α2n−`
− 1

=
in

in
(

ei
π(`− 1

2 )
n

)n
1

ie−i πd
n

iei
π(`− 1

2 )
n

− 1
=

i
(−1)`

e−i
π(d+`− 1

2 )
n − 1

= i(−1)`

−1
2
+ i

cos π(d+`− 1
2 )

2n

2 sin π(d+`− 1
2 )

2n

. (6)

For the last equality, we have used 1
e−ix−1 = − 1

2 + i cos x
2

2 sin x
2

(see [11] for details).

Hence, we have for z = ie−i πd
n

2nE(F, z, T) = −4 cos dπ
n

∑
`=1

i(−1)`

−1
2
+ i

cos π(d+`− 1
2 )

2n

2 sin π(d+`− 1
2 )

2n

 sin
(`− 1

2 )π

n
=

4 cos dπ
n

∑
`=1

(−1)`
cos π(d+`− 1

2 )
2n

2 sin π(d+`− 1
2 )

2n

sin
(`− 1

2 )π

n
+ 2i cos dπ

n

∑
`=1

(−1)` sin
(`− 1

2 )π

n
, (7)

and the expression is also true for 2nE(F, z, U).

Lemma 1. It holds

(i)
n
∑
`=1

(−1)` sin (`− 1
2 )π

n = − 1
2 sin(n− 1)π sec π

2n = 0.

(ii)
n−1
∑
`=1

(−1)` cos (`− 1
2 )π

n = 1
2 sec π

2n (cos(n− 1)π − 1).

Proof. All the sums that we gather in this lemma can be reconsidered as a sum of different
geometric progressions by taking into account that sin θ = eiθ−e−iθ

2i and cos θ = eiθ+e−iθ

2 .
Thus, the different problems can be confidently solved by a symbolic calculator. We have
used Mathematica® 12.2 (Wolfram, Champaign, IL, USA) in all cases and made some
elementary simplifications when necessary.

Proposition 1. For z = ie−i πd
n , it holds

2nE(F, z, T) = 4 cos dπ
n

∑
`=1

(−1)`
cos π(d+`− 1

2 )
2n

2 sin π(d+`− 1
2 )

2n

sin
(`− 1

2 )π

n
and

2nE(F, z, U) = 4 cos dπ
n

∑
`=1

(−1)`
cos π(d+`− 1

2 )
2n

2 sin π(d+`− 1
2 )

2n

sin
(`− 1

2 )π

n
. (8)

Proof. We can neglect the imaginary part of 2nE(F, z, T) in (7) as a consequence of Lemma 1
(i). We obtain the same result for 2nE(F, z, U) because (7) is valid for it too. We must point
out that the same expression is correct for both errors although we have the difference
in the parity of n, which we need to take into account.

In the next Lemma, we present an auxiliary result, which represents an important
advance in the methods developed in [11].
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Lemma 2. It holds

n

∑
`=1

(−1)`
cos (d+`− 1

2 )π
2n

2 sin (d+`− 1
2 )π

2n

sin
(`− 1

2 )π

n
= Q1,n(d) + Q2,n(d) with

Q1,n(d) =

{
− 1

2 sec π
2n if n even

− 1
2 cos dπ

n if n odd
and (9)

Q2,n(d) = −
1
2

sin
dπ

n

n

∑
`=1

(−1)` cot
(d + `− 1

2 )π

2n
. (10)

Proof. We use `1 = `− 1
2 to simplify the exposition. Because

sin
`1π

n
= sin

(
(d + `1)π

n
− dπ

n

)
= sin

(d + `1)π

n
cos
−dπ

n
+ cos

(d + `1)π

n
sin
−dπ

n
=

2 sin
(d + `1)π

2n
cos

(d + `1)π

2n
cos

dπ

n
−
(

cos2 (d + `1)π

2n
− sin2 (d + `1)π

2n

)
sin

dπ

n
=

2 sin
(d + `1)π

2n
cos

(d + `1)π

2n
cos

dπ

n
+ 2 sin2 (d + `1)π

2n
sin

dπ

n
− sin

dπ

n
.

we have, taking `1 = `− 1
2 ,

n

∑
`=1

(−1)`
cos (d+`1)π

2n

2 sin (d+`1)π
2n

sin
`1π

n
=

1
2

n

∑
`=1

(−1)`
cos (d+`1)π

2n

sin (d+`1)π
2n

(
2 sin

(d + `1)π

2n
cos

(d + `1)π

2n
cos

dπ

n
+ 2 sin2 (d + `1)π

2n
sin

dπ

n

)
+

(
−1

2

)
sin

dπ

n

n

∑
`=1

(−1)`
cos (d+`1)π

2n

sin (d+`1)π
2n

.

Thus, we can define Q2,n(d) = − 1
2 sin dπ

n

n
∑
`=1

(−1)` cos
(d+`− 1

2 )π
2n

sin
(d+`− 1

2 )π
2n

, that is, as in (10), and

we can also take

Q1,n(d) =

1
2

n

∑
`=1

(−1)`
cos (d+`1)π

2n

sin (d+`1)π
2n

(
2 sin

(d + `1)π

2n
cos

(d + `1)π

2n
cos

dπ

n
+ 2 sin2 (d + `1)π

2n
sin

dπ

n

)
=

1
2

n

∑
`=1

(−1)`
(

2 cos2 (d + `1)π

2n
cos

dπ

n
+ 2 sin

(d + `1)π

2n
cos

(d + `1)π

2n
sin

dπ

n

)
=

1
2

n

∑
`=1

(−1)`
((

1 + cos
(d + `1)π

n

)
cos

dπ

n
+ sin

(d + `1)π

n
sin

dπ

n

)
=

1
2

(
cos

dπ

n

n

∑
`=1

(−1)` +
n

∑
`=1

(−1)` cos
`1π

n

)
.
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After using Lemma 1 (ii), we obtain for Q1,n(d) the expression

Q1,n(d) =
1
2

(
cos

dπ

n

n

∑
`=1

(−1)` +
1
2

sec
π

2n
(cos(π(n− 1))− 1)

)
.

Notice that Q1,n(d) is affected by the parity of n, and we conclude (9) because,
when n is even, we have Q1,n(d) = − 1

2 sec π
2n , and when n is odd, we have Q1,n(d) =

− 1
2 cos dπ

n .

In the sequel, we use the special function Phi of Hurwitz–Lerch with −1 as first
argument, that is, HurwitzLerchPhi[−1, s, d]. It is defined by

HurwitzLerchPhi[−1, s, d] =
∞

∑
k=0

(−1)k

(k + d)s .

Moreover, in our case, s = 1. Thus, we use HurwitzLerchPhi[−1, 1, d], which we
denote by η(d) (see [15] for the details).

To obtain the main results of this section, we need some intermediate statements that
we gather in Lemmas 3 and 4.

In [11], we have considered the expression P2,n(d) = − 1
2 sin dπ

n

n−1
∑
`=1

(−1)` cos (d+`)π
2n

sin (d+`)π
2n

closely related to Q2,n(d). Next, we obtain some results about P2,n(d) based on that paper.

Lemma 3. It holds:

(i) If − 1
2 ≤ d ≤

√
n, then P2,n(d) = dη(d + 1) +O

(
1√
n

)
, for all n.

(ii) If
√

n− 1
2 ≤ d ≤ n

2 + 1
2 , then P2,n(d) = 1

2 cos dπ
n +O

(
1√
n

)
, when n is even.

(iii) If
√

n− 1
2 ≤ d ≤ n

2 + 1
2 , then P2,n(d) = 1

2 +O
(

1√
n

)
, when n is odd.

Proof. (i), (ii) and (iii) are, respectively, consequences of Propositions 5–7 (ii) of the last
cited paper. Although the limits for d are different (they do not contain 1

2 ), the behaviors
do not change.

Lemma 4. If 0 ≤ d ≤ n
2

, it holds

(i) sin
dπ

2n
sin

(d− 1
2 )π

2n
=

1
2

(
1− cos

dπ

n

)
+O

(
1
n

)
.

(ii)
cos

dπ

2n

cos
(d− 1

2 )π

2n

= 1 +O
(

1
n

)
.

(iii) sin
dπ

n
tan

(d− 1
2 )π

2n
= 1− cos

dπ

n
+O

(
1
n

)
.

(iv) If
√

n ≤ d ≤ n
2

, then
sin

dπ

n

sin
(d− 1

2 )π

2n

= 1 +O
(

1√
n

)
.

Proof. (i) It is obtained thanks to the Mean Value Theorem (MVT). It is verified that

sin
dπ

2n
sin

(d− 1
2 )π

2n
= sin

dπ

2n

(
sin

dπ

2n
− cos ξ

π

4n

)
= sin2 dπ

2n
+O

(
1
n

)
=

1
2

(
1− cos

dπ

n

)
+O

(
1
n

)
.
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We obtain (ii) newly applying the MVT. It is verified that

cos dπ
2n

cos
(d− 1

2 )π

2n

=
cos

(d− 1
2 )π

2n
− sin ξ

π

4n

cos
(d− 1

2 )π

2n

= 1 +O
(

1
n

)
.

Note that cos
(d− 1

2 )π

2n
≥ cos

π

4
as 0 ≤ d ≤ n

2 .
(iii) It is a consequence of (i) and (ii) because

sin
dπ

n
tan

(d− 1
2 )π

2n
= 2 sin

dπ

2n
sin

(d− 1
2 )π

2n
cos dπ

2n

cos (d− 1
2 )π

2n

=

2
(

1
2

(
1− cos

dπ

n

)
+O

(
1
n

))(
1 +O

(
1
n

))
= 1− cos

dπ

n
+O

(
1
n

)
.

(iv) It can be proved in the same way as (ii).

Theorem 1. Let z = ie−i πd
n . If

√
n ≤ d ≤ n

2 , then 2nE(F, z, T) = O( 1√
n ) and 2nE(F, z, U) =

O( 1√
n ).

Proof. First, we prove our thesis for 2nE(F, z, T), that is, when n is even. We know that
2nE(F, z, T) = 4 cos dπ(Q1,n(d) + Q2,n(d)), with Q1,n(d), Q2,n(d)) given in (9) and (10).
We can write

Q2,n(d) = −
1
2

sin
dπ

n

n

∑
`=1

(−1)` cot
(d + `− 1

2 )π

2n
=

−1
2

sin
dπ

n

n−1

∑
`=1

(−1)` cot
(d + `− 1

2 )π

2n
− 1

2
sin

dπ

n
(−1)n cot

(d + n− 1
2 )π

2n
=

sin dπ
n

sin (d− 1
2 )π

n

(
−1

2
sin

(d− 1
2 )π

n

n−1

∑
`=1

(−1)` cot
(d + `− 1

2 )π

2n

)
︸ ︷︷ ︸

∗

+
1
2

sin
dπ

n
tan

(d− 1
2 )π

2n︸ ︷︷ ︸
∗∗

. (11)

This expression is more complex, but it is convenient as we can see that

∗ =
(

1 +O
(

1√
n

))(
1
2

cos
dπ

n
+O

(
1√
n

))
(see Lemma 3 (ii) and Lemma 4 (iv)) and

∗∗ = 1
2

(
1− cos

dπ

n

)
+O

(
1√
n

)

(see Lemma 4 (iii)). Thus, we have Q2,n(d) = 1
2 + O

(
1√
n

)
. Taking into account that

Q1,n(d) = − 1
2 sec π

2n , we have the result for 2nE(F, z, T).
We use the same ideas for 2nE(F, z, U), that is, when n is odd, and we obtain

∗ = (1 +O
(

1√
n

)
)

(
1
2
+O

(
1√
n

))
and

∗∗ = −1
2

(
1− cos

dπ

n

)
+O

(
1√
n

)
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and Q1,n(d) = − 1
2 cos dπ

n . These elements lead us to the same result for 2nE(F, z, U).

Lemma 5. If 0 ≤ d ≤
√

n, then sin
dπ

n
sin(d− 1

2 )π

sin
(d− 1

2 )π

n

= O(1).

Proof. Let us suppose that d ≥ 1. In this case, we write

∣∣∣∣∣∣ sin dπ
n sin(d− 1

2 )π

sin (d− 1
2 )π

n

∣∣∣∣∣∣ ≤
dπ
n

2
π

(d− 1
2 )π

n

=

O(1). When 0 ≤ d ≤ 1 and d 6= 1
2 , we obtain

∣∣∣∣∣∣ sin dπ
n sin(d− 1

2 )π

sin (d− 1
2 )π

n

∣∣∣∣∣∣ ≤
dπ
n (d− 1

2 )π

2
π

(d− 1
2 )π

n

=

O(1).

Lemma 6. If 0 ≤ d ≤
√

n, it holds

cos dπ Q2,n(d) =

cos dπ

−1
2

sin
dπ

n

n

∑
`=1

(−1)`
cos (d+`− 1

2 )π
2n

sin (d+`− 1
2 )π

2n

 = cos(dπ) d η(d +
1
2
) +O

(
1√
n

)
(12)

Proof. Considering (11), we have

cos dπ Q2,n(d) =

cos dπ
sin dπ

n

sin (d− 1
2 )π

n

(
−1

2
sin

(d− 1
2 )π

n

n−1

∑
`=1

(−1)` cot
(d + `− 1

2 )π

2n

)
︸ ︷︷ ︸

∗

+

cos dπ
1
2

sin
dπ

n
tan

(d− 1
2 )π

2n︸ ︷︷ ︸
∗∗

. (13)

The term ∗∗ of (13) is, in our case, O
(

1
n

)
. For the other term, which is the relevant

one, and taking into account that cos dπ = − sin(d− 1/2)π, Lemma 3 (i) and Lemma 5,
we obtain

∗ = cos dπ
sin dπ

n

sin (d− 1
2 )π

n

(
−1

2
sin

(d− 1
2 )π

n

n−1

∑
`=1

(−1)` cot
(d + `− 1

2 )π

2n

)
=

− sin
dπ

n
sin(d− 1/2)π

sin (d−1/2)π
n

(
(d− 1

2
) η(d +

1
2
) +O

(
1√
n

))
=

− sin
dπ

n
sin(d− 1/2)π

sin (d−1/2)π
n

(d− 1
2
) η(d +

1
2
) +O(1)O

(
1√
n

)
.

Therefore, using newly cos dπ = − sin(d− 1/2)π, we obtain
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∗ = cos dπ
sin dπ

n

sin (d− 1
2 )π

n

(d− 1
2
) η(d +

1
2
) +O

(
1√
n

)
=

cos dπ
sin dπ

n
dπ
n

(d− 1
2 )π

n

sin (d−1/2)π
n

d η(d +
1
2
) +O

(
1√
n

)
=

cos(dπ) d η(d +
1
2
)

(
1 +O

(
1
n2

))(
1 +O

(
1
n2

))
+O

(
1√
n

)
. (14)

For the last equality of (14), we have used the well-known facts that x
sin x and sin x

x are
both 1 +O(x2), when x is small. Thus, we can conclude (12).

Theorem 2. Let z = ie−i πd
n and 0 ≤ d ≤

√
n.

(i) If n is even, then 2nE(F, z, T) = 4 cos dπ
(

d η(d + 1
2 )−

1
2 sec π

2n

)
+ O

(
1√
n

)
.

Moreover, for n large enough, 2nE(F, z, T) behaves like 4 cos dπ
(

d η(d + 1
2 )−

1
2

)
and

the error is O
(

1√
n

)
.

(ii) If n is odd, then 2nE(F, z, U) = 4 cos dπ
(

d η(d + 1
2 )−

1
2 cos dπ

n

)
+ O

(
1√
n

)
.

Moreover, for n large enough, 2nE(F, z, U) behaves like 4 cos dπ
(

d η(d + 1
2 )−

1
2

)
and

the error is O
(

1√
n

)
.

Proof. Both facts are straightforward consequences of Proposition 1 and Lemmas 2 and 6.
Both expressions can be approximated by 4 cos dπ

(
d η(d + 1

2 )−
1
2

)
+O

(
1√
n

)
.

We can conclude the following:

1. It appears a Gibbs–Wilbraham phenomenon. Theorem 1 states 2nE(F, z, T) and
2nE(F, z, U) converge uniformly to 0 far from i but, as a consequence of Theorem 2,
they present a strong oscillation close to i. The limits for these behaviors are clearly
stated.

2. An important consequence of Theorem 2 is that we can asymptotically approximate

2nE(F, z, T) (or 2nE(F, z, U)) near i by 4 cos dπ
(

d η(d + 1
2 )−

1
2

)
. Notice that the ex-

trema of the error must be asymptotically near the extrema of the approximation.
It is easy to obtain these last extrema. We have done this by using the sequence
of Mathematica® commands gathered in the extremaerror file of https://github.com/
eberriochoa/Absolute-value-interpolation-The-even-cases (accessed on 2 June 2022).
The results are presented in Table 1.

3. Finally, the more relevant result is that the Gibbs–Wilbraham phenomenon is com-
pletely different with the corresponding phenomenon when i belongs to the nodal
systems (see [11]). This can be appreciated in shapes and extrema.

Table 1. Extrema of 4 cos dπ
(

d η(d + 1
2 )−

1
2

)
.

In the Interval The Extremum is Attained
at (d Value) Being the Extremum

[0, 1
2 ] 0 −2

[ 1
2 , 3

2 ]
0.864497 0.310441

[ 3
2 , 5

2 ]
1.91506 −0.103946

[ 5
2 , 7

2 ]
2.93871 0.0504843

[ 7
2 , 9

2 ]
3.95233 −0.0294926

[ 9
2 , 11

2 ] 4.96111 −0.179272

https://github.com/eberriochoa/Absolute-value-interpolation-The-even-cases
https://github.com/eberriochoa/Absolute-value-interpolation-The-even-cases
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3. Interpolation of |x| on Chebyshev and Chebyshev–Lobatto Nodal Systems with
Even Nodes

In the sequel, `m−1(|x|, x, Tm) denotes the Lagrange interpolation polynomial which
interpolates |x| on the Chebyshev nodal system constituted by the m roots of Tm(x),
the Chebyshev polynomial of degree m. Similarly, `m+1(|x|, x, Um) denotes the Lagrange
interpolation polynomial which interpolates |x| on the Chebyshev–Lobatto nodal sys-
tem constituted by the m roots of Um(x), the Chebyshev polynomial of degree m, plus
±1. In both cases, we consider m even. Classical references about Chebyshev polyno-
mials are [16,17]. Taking into account the symmetry of the problem, it is immediate that
`m−1(|x|,−x, Tm) = `m−1(|x|, x, Tm). Thus, `m−1(|x|, x, Tm) cannot have odd monomials,
and it is a polynomial of degree m− 2 at most. Similarly, `m+1(|x|, x, Um) is a polynomial
of degree m at most. If we consider the Joukowsky–Szegő transformation with x and z

related to x =
z+ 1

z
2 , we have that the Chebyshev nodes are related to NT (the 2m roots

of −1) and the Chebyshev–Lobatto nodes are related to NU (the 2m + 2 roots of 1). More-

over, `m−1(|x|,
z+ 1

z
2 , Tm) interpolates F(z) = | z+

1
z

2 | on NT . As `m−1(|x|,
z+ 1

z
2 , Tm) belongs

to Λ−m,m−1[z], we can conclude that `m−1(|x|,
z+ 1

z
2 , Tm) = L−n,n−1(F, z, T). Furthermore,

as this is a roundtrip, we know the behavior of |x| − `m−1(|x|, x, Tm), taking into account

the behavior of | z+
1
z

2 | − L−m,m−1(F, z, T). A similar affirmation is true for `m+1(|x|, x, Um).
Thus, we can state the next theorems.

Theorem 3. For x = sin dπ
m , it holds

1. If
√

m ≤ d ≤ m
2 , then

2m(|x| − `m−1(|x|, x, Tm) = O
(

1√
m

)
and

2(m + 1)(|x| − `m+1(|x|, x, Um) = O
(

1√
m

)
.

2. If 0 ≤ d ≤ m
2 , then

2m(|x| − `m−1(|x|, x, Tm) = 4 cos dπ
(

dη(d + 1
2 )−

1
2

)
+O

(
1√
m

)
and

2(m + 1)(|x| − `m+1(|x|, x, Um) = 4 cos dπ
(

dη(d + 1
2 )−

1
2

)
+O

(
1√
m

)
.

Proof. Take into account the preceding paragraph and Theorems 1 and 2.

4. Numerical Experiments and Graphs

All the graphs which can be seen below have been obtained by using a sequence
of commands of Mathematica® 12.2. We share these codes and the graphs through the link
https://github.com/eberriochoa/Absolute-value-interpolation-The-even-cases (accessed

on 2 June 2022). The representations are always related to the function F(z) = | z+
1
z

2 |
and the interpolation polynomial L−n,n−1(F, z, T) for n = 200. For simplicity, we use
the variable θ, with z = eiθ , in the plots.

We have tested that the graphs for other values of n do not present changes.
Figure 2 presents a general view of the interpolation on the left-hand side. On the right-

hand side, we have the representation considering both functions multiplied by 2n, and we
can appreciate that the interpolation has problems near i, or equivalently θ = π

2 .

https://github.com/eberriochoa/Absolute-value-interpolation-The-even-cases
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0.2
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0.6

0.8

1.0

1.50 1.55 1.60 1.65

10

20

30

Figure 2. A general view of F(z) and L−200,199(F, z, T) on the left and a detailed view of both scaled
functions near i on the right.

Figure 3 gives a good idea of the Gibbs–Wilbraham phenomenon. It presents the dif-
ference between F(z) and L−200,199(F, z, T) multiplied by 2n, that is, 2nE(F, z, T). It is clear
that far enough from ±i, this difference is close to 0. On the other hand, when we are
near the singularities, the function presents an oscillatory behavior. This behavior is more
pronounced the closer we get to the singularities.

1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

Figure 3. A neat view of the Gibbs–Wilbraham phenomena. The representation of 2nE(F, z, T) along
T for n = 200.

Figure 4 gives a good idea of the behavior near i. The figure presents 2nE(F, z, T) and
the approximation given in Theorem 2 along 30 arcs centered in i. We must point out that
the functions are indistinguishable.

1.4 1.5 1.6 1.7 1.8

-2.0

-1.5

-1.0

-0.5

Figure 4. A detailed view of the Gibbs–Wilbraham phenomena. The representation of 2nE(F, z, T)
along 30 arcs near i for n = 200.
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Figure 5 is a detail of Figure 4. 2nE(F, z, T) and the approximation given in Theorem 2
along 30 arcs centered in i are presented. We must point out that the functions are indistin-
guishable.

1.50 1.55 1.60 1.65

-2.0

-1.5

-1.0

-0.5

Figure 5. A detailed view of the Gibbs–Wilbraham phenomena. The representation of 2nE(F, z, T)
along 12 arcs near i for n = 200.

Figure 6 shows us an important difference between the Gibbs–Wilbraham phenomenon

in the interpolation of the jump function, defined by F(z) =

{
1 z ∈ T,<(z) ≥ 0
−1 z ∈ T,<(z) < 0

, and

the Gibbs–Wilbraham phenomenon in the interpolation of the absolute value function.
The Gibbs–Wilbraham phenomenon does not depend on the parity of the nodal system
in the first case; meanwhile, it depends on the parity in the second one.

In Figure 6 (at the left), we represent the Lagrange interpolation polynomials of the jump
function based on the roots of T200(x) (in black) and on the roots of T201(x) (in blue); it is
remarkable that the Gibbs–Wilbraham phenomena are similar in shape and extrema.

On the other hand, Figure 6 (at the right) presents the Lagrange interpolation poly-
nomials of the absolute value based on the roots of T200(x) (in black) and on the roots
of T201(x) (in blue); it is remarkable that the Gibbs–Wilbraham phenomena are completely
different in shape and extrema.

1.50 1.55 1.60 1.65

-1.0

-0.5

0.5

1.0

1.50 1.55 1.60 1.65

-2.0

-1.5

-1.0

-0.5

0.5

1.0

Figure 6. Left: Noninfluence of the parity on the error, n odd and even and Lagrange interpolation
of jump function. Right: Influence of parity on error, n odd and even and Lagrange interpolation
of |x|.

5. Conclusions and Future Work

The objective of this work is not to suppress the Gibbs–Wilbraham phenomena, but
a better knowledge of them could help to develop the research with this goal. Refs. [18,19]
are interesting papers of this research line.

We think that there is a lot of possible future work related to the Gibbs–Wilbraham
phenomena for functions with very local singularities.
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First of all, we have evidence about the phenomenon when the singularity is 0 (or
±i thinking in T). Therefore, we must perform some work to extend our knowledge
to problems related to arbitrary points.

A second point of interest is the order of the derivative which has the singularity.
We have evidence only for 0 (Jump function) and 1 (absolute value), but it is clear that
the same problem for derivatives of greater order could be of interest. In this sense,
we want to emphasize the role that Lemma 2, a key point in this article, could play
in the development of this research.

6. Materials and Methods

To perform the numerical experiments included in this piece of work, we have used
the notation and formulae included in the paper. We created three programs which can be
obtained at the url https://github.com/eberriochoa/Absolute-value-interpolation-The-
even-cases (accessed on 2 June 2022). These files are the text of notebooks elaborated with
Mathematica ® 12.2. These programs (notebooks) should run correctly with recent previous
versions and future versions because we use only simple commands. Furthermore, we do
not use compiled routines.

7. Discussion

Recently, we have published the paper [11], which presents the behavior of the La-
grange interpolation polynomial of the continuous absolute value function, using Cheby-
shev and Chebyshev–Lobatto systems with an odd number of points.

The aim of the present piece of work is to continue the analysis of this new Gibbs–
Wilbraham phenomenon. Our study establishes the error of the Lagrange polynomial
interpolants of the function |x| on the bounded interval [−1, 1], using Chebyshev and
Chebyshev–Lobatto nodal systems with an even number of points.

It could be thought that there is no novelty in this approach. Indeed, at the beginning,
we thought that the results would have to be the same or quite similar. Nevertheless,
as we said in our introduction, this is a presumed idea. Moreover, relevant changes
with respect to the odd cases in the shape and the extrema of the error are given. This
is an important difference with the usual Gibbs–Wilbraham phenomenon related to the
Lagrange interpolation of functions with jump discontinuities.

We think that the findings presented in our paper would be useful for applied math-
ematicians and numerical analysts interested in the reconstruction of a function using
Lagrange interpolation and approximation theory.
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