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Abstract: The number of research papers interested in studying the social dimension of supply chain
sustainability and resilience is increasing in the literature. However, the social dimension is complex,
with several uncertainty variables that cannot be expressed with a traditional Boolean logic of totally
true or false. To cope with uncertainty, Fuzzy Logic allows the development of models to obtain
crisp values from the concept of fuzzy linguistic variables. Using the Structural Equation Model by
Partial Least Squares (SEM-PLS) and Evolutionary Fuzzy Knowledge, this research aims to analyze
the predictive power of social sustainability characteristics on supply chain resilience performance
in the context of the COVID-19 pandemic with representative cases from Mexico and Chile. We
validate our approach using the Chile database for training our model and the Mexico database
for testing. The fuzzy knowledge database has a predictive power of more than 80%, using social
sustainability features as inputs regarding supply chain resilience in the context of the COVID-19
pandemic disruption. To our knowledge, no works in the literature use fuzzy evolutionary knowledge
to study social sustainability in correlation with resilience. Moreover, our proposed approach is the
only one that does not require a priori expert knowledge or a systematic mathematical setup.

Keywords: social sustainability; resilience; supply chain; Latin America; fuzzy logic; evolutionary
algorithm; SEM-PLS

MSC: 68T05; 62P25

1. Introduction

The sudden interruption in global supply chains due to the confinement during the
COVID-19 pandemic undoubtedly impacted the profitability and permanence of several
supplier companies, especially in emerging economies. Correspondingly, it has provided
lessons in that decision-makers now know how to manage uncertainty and have learned
how to be resilient to future disruptions and identify risks, improve their impacts, and
quickly return to normal conditions after the interruption to sustain their functions; in
addition, they have considered elementary operations in the performance of internal
integration, continuity, agility, and even strategies for sustained competitive advantage [1].
Moreover, a resilient, sustainable supply chain seeks and has the customer himself and his
satisfaction as the ultimate verifier [2].

The aspects that contribute to the resilience of the supply chain are multifactorial.
However, sustainability has been considered one of them. In [3], the authors paved the
way by exploring and demonstrating sustainability as a factor of resilience in the supply
chain, considering the environmental and social aspects. Based on a fuzzy multi-objective
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mathematical model, their analysis integrates resilience and sustainability into a strategic
design to seek compensation solutions from a resiliently sustainable supply chain.

Focusing on the community dimension, Hooks, Macken-Walsh, McCarthy, and
Power [4] showed how the sustainable social dimension of social cohesion and coop-
eration among farmers provided supply chain resilience in Ireland’s rural farming sector.
The same result appears in [5]; by merging the criteria of the LEAN philosophy and the
management of the green supply chain, the authors found that increasing efficiency by
reducing resources in the supply chain favors resilience in the links of the food sector,
thus bringing an impact of social welfare to the community with food supply and with
sufficient control and stability in the local supplier companies of the base of the pyramid.
Environmental and social sustainability favor the chain’s resilience, minimizing the scope
of the so-called “domino effect” phenomenon. The above-mentioned describes the cas-
cading effect triggered by the interruption of some link in the chain, gradually affecting
the others. The work of Ivanov [6] showed that taking care of social aspects favors the
prompt recovery of efficiency, reduction in storage points, inventory security, management
of social and environmental risk management, and the strengthening of factories and
downstream providers.

Studies have already shown that collaboration with a socially sustainable partner in
the production links is not just an aspect of social responsibility with an exogenous impact
on company management. Instead, it has been shown that the culture and practices of
sustainability in the supply chain are linked to internal strengthening and bring advantages
to the operational performance of the supply chain [7,8]. Socially sustainable performance
within the supply chain positively affects the company’s economic performance, as evi-
denced by a study in Sri Lanka, South Asia [9]. Due to the convenience mentioned above,
it has become an urgent issue for the supply chain to address social problems within the
chain (upstream and downstream), especially concerning labor conditions in emerging
countries such as health and safety, child and bonded labor, employee education, wages,
human rights, gender diversity and discrimination, sanitation, philanthropy, engagement,
community employment, as relevant social issues for the manufacturing sector [8].

In the disruptive context of the pandemic, the social aspects of sustainability in the
supply chain’s resilience have been notorious [10]. In the context of the pandemic, the
strategic rooting in strengthening the chains has been vital, from urgent preventive care
for the health of society [11] to regional support, where it has brought about a double
advantage for resilience. Moreover, it sustained regional development, and in turn, the
strengthening of the link with regional suppliers contributed to the recovery of the chain in
emerging contexts in Brazil [12].

Nevertheless, during the pandemic, the risk of internal society in companies has
become more acute since it has had severe social implications for the livelihoods and well-
being of workers and their families. In addition, due to the disruption in supply chains,
audits for the care of social issues within companies decreased. The above is a vulnerable
context for workers and employers seeking the survival of businesses at the expense of
labor rights [13]. Although the suggestion of the pre-pandemic and in-pandemic literature
continues to invite the study of social sustainability in the supply chain and demonstrate
the role that sustainability has within resilience, said correlation is not necessarily simple,
linear, and synchronous. The consideration of resilience is usually with a short-term view,
with an immediate reaction to incorporating efficiency. However, sustainable actions do
not immediately affect the resilience and performance of the chain [14], so it is necessary
to study resilience within the chain from a complex perspective [12]. One way of dealing
with these confounding variables within the chain is the path taken by Soleimani et al. [15],
who propose a Genetic Algorithm to solve a fuzzy mathematical programming model
for optimization purposes in the green supply chain. In a systematic review, we found
that several studies have used fuzzy techniques to analyze sustainability and could be
categorized into three groups: those from the business perspective within a sector, those
specialized in social sustainability, and those that analyzed resilience within the supply
chain. Among the studies in the business sector, those in the transport sector stand out, e.g.,
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the research conducted by Bandeira et al. [16], who evaluated sustainability in Brazilian
urban transport, or that of Djekic et al. [17], who proposed a sustainable index in the
Serbian dairy transport sector. Other business studies have focused on social sustainability
in the industrial sector, such as Rajak and Vinodh [18] in India or Cao et al. [19], who
proposed techniques to assess the aspects of social sustainability in the manufacturing
company. Furthermore, the works of Hendiani and Bagherpour [20] and Rostamnezhad
et al. [21] evaluate the social aspects of sustainability in the construction sector. Several
works on sustainability within supply chain resilience have shown how fuzzy models
effectively handle data uncertainty in real scenarios. Some examples are the multi-objective
fuzzy mathematical fuzzy model of Fahimnia and Jabbarzadeh [3] in a case evaluated
in a sportswear multinational based in Australia and China; or the mixed integral multi-
objective nonlinear programming model used by Baghizadeh et al. [22], in the Iranian tire
industry and, recently, Lotfi et al. [23], who used a hybrid fuzzy approach with stochastic
programming in the study of the Sustainable Healthcare Supply Chain (Table 1).

To the extent reviewed here, it is shown that the works that have used fuzzy techniques
sustain a triple methodological constant:

1. Fuzzy mathematical programming that aims at operational optimization.
2. Fuzzy multi-criteria decision-making methods.
3. Fuzzy inference systems using expert knowledge or systematic mathematical tuning.

Our work seeks to differentiate itself by using fuzzy evolutionary knowledge, not to op-
timize but to take out-of-sample prediction of a bivariate predictive relationship between so-
cial sustainability and chain resilience based on a fuzzy engine based on machine learning.
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Table 1. Research on sustainability and its forms of discovering the fuzzy knowledge.

Cite Technique Approach Expert Knowledge Systematic Configuration AI Aspects/Region

[18] FIS Decision-making X X No Social sustainability automotive sector in India.

[19] FIS Decision-making X No No Social sustainability manufacturing sector.

[3] Fuzzy Goal Programming Optimization X X No Supply chain sustainability and resilience. China–Australia.

[15] Fuzzy Multi-objective Optimization No No X Green supply chain.

[16] Fuzzy Multicriteria Decision-making X X No Sustainable urban transportation in Brazil

[24] Fuzzy Multi-Objective Optimization X X No Sustainable supply chain networks.

[25] Fuzzy DEMANTEL-ANP Decision-making X X No Sustainable project management in construction.

[17] FIS Decision-making X X No Transportation sustainability index in Serbia industry.

[26] FIS Decision-making X No No Corporate sustainable European automotive case.

[27] Fuzzy AHP Decision-making No X No Supply chain economic and social sustainability

[20] FIS Decision-making X X No Social sustainability in construction industry.

[21] Fuzzy DEMATEL Decision-making X X No Social sustainability in construction projects.

[28] Fuzzy AHP Decision-making X X No Social sustainable supply chain automotive sector in Turkey.

[22] Fuzzy Mathematical Programming Optimization X X No Resilience and sustainable supply chain Iran

[14] Fuzzy AHP/Fuzzy TOPSIS Decision-making X X No Sustainable supply chain logistics Vietnam.

[29] Fuzzy multi-objective Optimization X X No Resilience and sustainable supply chain.

[23] Fuzzy Mathematical Programming Optimization No X No Resilience and sustainable healt care supply chain.

This work Evolutionary Fuzzy Knowledge Machine Learning No No X Social sustainability and resilience Mexico/Chile.
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Evolutionary Algorithms (EAs) are a powerful search technique in the field of artificial
intelligence, where a fitness function guides a search through an evolutionary process.
The fitness function maximizes or minimizes the desired objective function. Examples of
approaches inside the EAs field are Genetic Programming (GP) [30], Evolutionary Strategies
(ES) [31], and Genetic Algorithms (GAs) [32]—the GAs being versatile for applications.
The hybridization between Evolutionary Algorithms and Fuzzy Logic is known as Fuzzy-
Evolutionary Systems [33], Fuzzy-Genetic ones being widespread based on GAs. Therefore,
Fuzzy Logic in hybridization with Evolutionary Algorithms to discover knowledge (fuzzy
evolutionary approach) is convenient, which allows the elaboration of models to obtain
crisp numerical values from the concept of fuzzy linguistic variables. Using a Fuzzy
Inference System (FIS) requires expert knowledge to define their fuzzy knowledge base, a
knowledge base that will have the biases of the expert who defines their knowledge. In
the case of the absence of an expert, a systematic setup to minimize the FIS error can be
performed. However, the approaches mentioned above are not guaranteed as optimal.
We distinguish two optimal values in the optimization literature: local optima and global
optima. Local optima are solutions that seem best in their near search region, while a global
optimum is the best of all possibilities. Systematic configurations and expert knowledge
lead to a local optima solution, leading to the not optimal performance of the FIS. Genetic
Algorithms (GA) can escape local optima to improve even more, which is the principal
motivation in this study—to use artificial intelligence (GAs) to automatically configure the
knowledge base of the FIS without biases.

Two main areas of Fuzzy-Evolutionary systems appear in the literature: (i) the adap-
tation of parameters and operators for optimization [34,35], and (ii) the fuzzy control
system design, using EAs to discover the knowledge base of a FIS. Our work is related
to knowledge discovery, and we will mention some relevant publications next. In [36],
the gold price prediction is studied, the algorithm FURIA [37] performs the fuzzy rules
generation, and an evolutionary algorithm tunes their trapezoidal membership function
parameters. The width of the membership functions of a controller for a robot trajectory
is optimized in [38]. Reference [39] fine-tuned a Fuzzy Controlled Charging System for
Lithium-Ion Batteries by a GA. The non-invasive measurement of a stroke volume was
conducted through the discovery of fuzzy rules by a GA [40]. Some other examples are
crop plantation identification [41], breaking systems [42], and prediction of pipe failures
in water supply networks [43]. Furthermore, a considerable diversity of applications us-
ing Fuzzy-Evolutionary systems can be found in the works [44–54], among others in the
literature. In this work, we use a Genetic Algorithm to produce the set of fuzzy rules.

Several social sustainability works have dealt with real-life scenarios and show how
fuzzy models deal effectively with data uncertainty. Some examples are the multi-objective
fuzzy mathematical model of Fahimnia and Jabbarzadeh [3], the multi-objective mixed-
integer nonlinear programming model used by Baghizadeh, Pahl, and Hu [22], and recently
Lotfi, Kargar, Rajabzadeh, Hesabi, Özceylan [23], who used a hybrid fuzzy with a stochastic
programming approach, among others. In this work, as a methodology, the following
steps are followed: (i) a survey of supply chain managers in Mexico and Chile for data
collection, (ii) the collected data are unified and validated in second-order constructs
through a Structural Equation Model by the Partial Least Squares method (SEM-PLS) with
the SmartPLS software, (iii) two databases are constructed, one for Mexico and one for
Chile, and integers represent the nominal values; (iv) a GA refines the fuzzy outputs of
the FIS, substituting the need for expert knowledge using the Mexico database as training
data; (v) finally, using Chile’s database as testing data, we compute the FIS error. Figure 1
summarizes the methodology of the work.

Therefore, the objective of this paper is, through the application of a fuzzy evolutionary
approach, to evaluate under uncertainty the predictive conditions of social sustainability
factors in the resilience of the Latin supply chain in the context of the COVID-19 pandemic,
with a representative case of Mexico and Chile. The study’s method, results, conclusions,
and social and managerial drivers are presented.
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Figure 1. The diagram of the methodology employed in this work.

2. Methodology

This research employs empirical statistics, and the purpose of this research, according
to Wacker [55], is to empirically verify the theoretical relationships in larger samples of real
businesses. The research has two major phases:

• Validation of the measurement model in terms of its validity and individual consis-
tency and constructs and, finally, simplifying the model with latent measures and
second-order constructs.

• The application of the fuzzy evolutionary approach

2.1. Measurement Constructs

The instrument’s build employs measures already validated by Mani et al. [8], who
proposed dimensions in a model to measure social sustainability in the supply chain. Four
constructs with four items were used from the said model, resulting in a list of sixteen
measures. The first construct is labor rights (adequate working conditions, strict policy for
the prohibition of forced child labor, periodic labor audits by clients and strict monitoring
of violations of labor rights); the second construct is health and safety (strict health and
safety policy in the workplace, health and hygiene assurance, assurance of drinking water
and sanitation in the community, guide for the implementation of occupational health
and safety measures); the third construct related to social responsibility (development of
local suppliers—provider of the supplier, philanthropic activities/disinterested help and
carry out programs to generate opportunities to develop skills for unemployed youth); and
the fourth construct is inclusion (employment of locals, women, people with disabilities,
marginalized and minorities, policies of gender equality and non-discrimination, growth
opportunity for each employee equally based on merit, and rights and privileges to the
employee regardless of age, sex, race, community, religion or nationality).

For the resilience construct of the supply chain, we use the model proposed by Mandal
and Dubey [56], which consists of six items (ability to return to its original state after being
interrupted quickly, ability to maintain the desired level of connection between its members
at the time of disruption, ability to maintain the desired level of control over structure
and function at the time of disruption, knowledge required to recover from disruptions
and unexpected events, financial capacity to cope with the consequences to shocks and
infrastructure capable of responding quickly to shocks). Both measures are in the context
of the emerging economy of India. In addition to the general information questions, we
formed an instrument of 22 items in 5 constructs. The corresponding corrections to the
wording and clarity of the terms were piloted to determine validity and readability, as
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Heeler and Ray [57] proposed. Later, the survey was sent to a group of experts: academics
for methodological contributions and supply chain professionals. Experts proposed minor
changes and modifications to the questionnaire items. We made the corresponding changes
and modifications.

2.2. Sampling and Collection of Information

Purposeful sampling is employed to extract the relevant information from the group of
people [58]. The information was collected through the database of the professional network
Linkedin, guaranteeing that the subjects who met the profile of purchasing management or
supply chain management answered the survey directly from their account. The search
criteria in the professional network were using the keywords “purchasing manager” and
“supply chain manager,” generating the search in English and Spanish and filtering by
country, Mexico and Chile, thus inviting them to connect to the network, and those who
accepted received a personal message inviting them to answer the survey. Between August
and December 2021, we received nearly 1000 questionnaires, of which 151 useful ones were
received, with a general response rate of 15.1%. Binational responses from Mexico (n = 80)
and Chile (n = 71) were selected (Table 2. The constructs were validated using the SmartPLS
3 structural equation program [59].

Table 2. Sample characteristics.

Characteristic Classification Frequency %

Country
Chile 71 47.02
Mexico 80 52.98
Total 151 100

Size

Large 97 64.24
Medium 19 12.58
Small 21 13.91
Micro 14 9.27
Total 151 100

Commercial coverage

Global 50 33.11
Latin America 21 13.91
Local/regional 20 13.25
National 60 39.74
Total 151 100

Experience in years in supply chain

0–5 45 29.80
6–10 18 11.92
11–20 36 23.84
≥20 33 21.85
Total 151 100

Sex
Male 54 35.76
Female 97 64.24
Total 151 100

2.3. Database and Feature Selection for Machine Learning

Firstly, we want to present the Pearson correlation coefficient of every criterion associ-
ated with supply chain resilience (Figure 2).
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Figure 2. Ranking of the Pearson correlation coefficient for Mexico’s data.

According to Mexico’s data of the ten criteria subjected, issues such as sector, company
size, experience, or gender of the managers interviewed showed an irrelevant correlation
with supply chain resilience. However, the social aspects of social sustainability showed a
significant correlation with the resilience of the Latin supply chain analyzed. The above
aligns with Fahimnia and Jabbarzadeh’s [3] work, supporting the correlation between
sustainability and chain resilience. The most crucial aspect was labor rights, which can be
identified as a sustainability criterion linked to the internal society of the links (see Rajak
and Vinodh [18]), which are the employees, as are internal inclusion and non-discrimination
and health and safety, which also showed a correlation. On the other hand, the criterion
of social responsibility correlates significantly with the chain’s resilience. This aspect can
be related to the commitment of the supplier companies to the external society, which is
the community (see Rajak and Vinodh [18]). These results are consistent with the findings
in the Irish supply chain shown in the work of Hooks, Macken-Walsh, McCarthy, and
Power [4]. They evidenced the association of community governance of farmers as a
socially sustainable aspect that impacted a resilient chain capable of reacting quickly to
disruption—according to Chile’s data, taking into account the same non-relevant criteria
(Figure 3).
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Figure 3. Ranking of the Pearson correlation coefficient for Chile’s data.

Chile’s data showed that the most relevant criteria were labor rights and inclusion, and
the least correlated were health and safety. Socio-demographic aspects were also irrelevant.
The joined data of both real representative cases of the supply chain in Mexico and Chile
are shown in Figure 4, the country criterion was not relevant.
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Figure 4. Ranking of the Pearson correlation coefficient for Mexico’s and Chile’s data.

Our final database was made up of more than 150 enterprises of different sizes and sec-
tors, survey results from people at different organizational ranks with eleven characteristics,
the four constructs mentioned above, the items from Table 2, and a construct to measure the
resilience of the supply chain. We collected actual data from two representative countries
of Latin America, Chile and Mexico, for our research and built their respective constructs
(labor rights, health and safety, health and hygiene assurance, social responsibility, and
inclusion). We selected relevant features for the above characteristics by computing the
Pearson correlation between the attributes and the class (resilience of the supply chain)
and ranking them. We found that four characteristics were ranked higher: labor rights,
inclusion, social responsibility, and health/social safety, in that respective order. Therefore,
we select those four features as inputs in our machine learning model. The database can be
consulted at https://github.com/AASantiago/MEX-CHL-Resilience-DB (accessed on 1
January 2022).

2.4. Fuzzy Logic Basics

Fuzzy Logic introduced by Zadeh [60] extended the classical Boolean logic. In Boolean
logic, the statements have two possible answers—true or false, while in Fuzzy Logic, the
statements have a degree of truthfulness known as a degree of membership. A mathematical
function maps input values to a membership degree as a real number ∈ [0, 1] (1.0 for 100%
membership degree). The triangular membership function (see Equation (1)) is a regular
selection in many studies, and in this work, due to its simplicity and effectiveness, plotting
the function shapes a triangle beginning in the parameter a, with the peak in b, ending in c.

µA(x) =


0 i f x ≤ a
x−a
b−a i f a ≤ x ≤ b
c−x
c−b i f b ≤ x ≤ c
0 i f c ≤ x

(1)

The triangle represents a fuzzy set, mapping inputs to different membership degrees.
In this work, we use three granularity levels for the inputs and outputs: low (a = −0.4,
b = 0.0, c = 0.4), mid (a = 0.1, b = 0.5, c = 0.9) and high (a = 0.6, b = 1.0, c = 1.4). We
can determine a Mamdani Fuzzy Inference System (FIS) using linguistic rules and fuzzy
sets. The rules of a FIS (also known as a knowledge base) are of the type IF-THEN, and for
practical purposes, we implement AND rules. In an FIS, the usual operation for AND rules
is the minimum as follows:

https://github.com/AASantiago/MEX-CHL-Resilience-DB
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µA∩B = min(µA, µb) (2)

Equation (2) computes the “and” operation by taking the minimum of the two or more
membership values; once computed, the degree slices the fuzzy output of the rule as a
result of the rule application. The results of all fuzzy rules are combined to obtain one fuzzy
output. For real applications, it is desired to come up with a single crisp output from an
FIS using a process called defuzzification. A widely accepted defuzzification is the center
of mass calculation, implemented in this work as follows:

z =

∫
µA(x)xdx∫
µA(x)dx

(3)

where z is the center of mass, and µA is the membership function A evaluated at x. We use
the crisp outputs z for training our fuzzy knowledge base.

2.5. The Fuzzy Inference System

In this work, we implement a Mamdani Fuzzy Inference System [61] to predict re-
silience with our available database from Section 2.3. Mamdani Fuzzy Inference Systems
use linguistic variables such as hot, warm, or cold instead of numeric thresholds to preserve
the uncertainty of the attributes. Using the linguistic variables, a set of rules known as the
knowledge database maps the inputs of the FIS to the desired output, also as a linguistic
variable. In our particular case of AND rules, we use the min operator in Equation (2) to
slice the fuzzy output of the rule to later be defuzzified using the centroid method from
Equation (3), producing a crisp value. In other words, given the corresponding inputs
for a supply chain resilience value (a surveyed example), we want the FIS to produce the
same crisp output as the example. The idea is to discover a knowledge base that minimizes
the error between the crisp output of the FIS and the training example’s numeric values.
After analyzing relevant features from Section 2.3, we decided to take four inputs for an
FIS implementation: labor rights, health/social safety, social responsibility, and inclusion,
and as a dependent value (output), the resilience of the supply chain. The values of the
inputs and outputs are normalized ∈ [0, 1] to be consistent with the fuzzy sets described
in Section 2.4. We need to generate the set of AND rules with three granularity levels
(low, mid, high) and four inputs, so we have to compute the combinations. The number
of combinations with repetition equals kn, where k is the number of inputs, and n is the
number of granularity levels. The above calculation gives 64 AND rules to be tuned by a
Genetic Algorithm.

2.6. Evolving Knowledge through a Genetic Algorithm

Although the number of fuzzy rules in our knowledge base is only 64, fine-tuning their
outputs is a high computational effort. To enumerate the possible configurations, we need to
compute their combinations with repetitions kn, where k is equal to 3 (the granularity levels),
and n is equal to 64 (the number of rules), giving a total of 3.43368382× 1030. Because the
above is infeasible to compute in a typical scenario, we use a Genetic Algorithm to tune
the FIS knowledge base. For practicality, we only configure the fuzzy outputs of the rules
and not the membership function parameters, as already defined in Section 2.4 and used as
standard parameters in many studies. We follow the general structure of GAs, as shown in
Figure 5.
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while ! Stop condition do
Parent← Selection(Pop)
o f f Spring← Crossover(Parent)
Mutation(o f f Spring)
Pop← Pop ∪ o f f Spring
EnviromentalSelection(Pop)

end while

Figure 5. The Genetic Algorithms framework includes the steps of selection, crossover, mutation,
and environmental selection.

The fitness function of the GA directly evaluates the FIS classification error produced
by the GA’s individuals between the produced crisp output and the actual value in the
training database. To tune the 64 rules, the GA uses a string of integers of size 64 as
individual (chromosomes) representation, as shown in Figure 6. The integers one, two, and
three represent the low, mid, and high granularity levels, respectively, and each integer is
the fuzzy output of a rule. As a crossover operator, we implement a single-point crossover,
and as a mutation operator, every integer has a probability of being mutated to a random
granularity level.

2 2 3 2 1 1 1 2 3 1 3 2 2 2 1 1 3 1 1 1 . . . . 2 1 2 2 1 2 1 1 2 3

Figure 6. Implemented chromosome representation of length 64, which allows an integer for every
rule. Number one, two, and three represent the low, mid, and high fuzzy output sets, respectively.

3. Experimental Setup

This section describes the experimental settings and how the data are validated. The
split validation approach validates the FIS performance as other machine learning studies.
Chile’s data are the training data for the FIS in the GA, making up 70 examples. The
parameters for the GA execution appear in Table 3. Due to the stochastic nature of the GAs,
we perform 30 independent executions of the GA; the best solution from the 30 executions
is the representative solution. With the best-found solution, we compute the relative
percentage error of the FIS over Mexico’s 81 examples (the testing data).

Table 3. Parameter settings for the proposed Genetic Algorithm.

GA

Crossover: Single-point
Crossover probability: pc = 1.0
Mutation: Random value
Mutation probability: pm = 1.0/n
Population size: 100
Generations: 250

4. Results

Using the statistical software SmartPLS 3.3.7 [59], we performed a reliability analysis
to assess the internal consistency of the latent variables. To better the consistency of the
measures, we generated second-order coefficients for social sustainability and resilience
measures in the supply chain. They result in a single construct of social sustainability. The
measurement model of both the first and second models was validated.

At first, the individual reliability of the indicators was verified, where the expected
threshold is an external load λ ≥ 0.708; although, in social sciences, indicators with a load
λ ≥ 0.500 are valid for reliability [62]. In the first analysis of two indicators, the external
loads obtained a value between 0.996 and 0.597. Then, we assessed the composite reliability
of the construct, where there should be values > 0.70 [62]. The values to evaluate the
consistency of the composite reliability constructs ranged between 0.827 and 0.940 and,
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in terms of the Average Variance Extracted (AVE), the parameters were acceptable, ≥0.5.
We check the discriminant validity of the constructs, ensuring that the constructs were
empirically different from the other constructs included in the structural model. We use the
heterotrait-monotrait (HTMT) correlation ratio, that is, the average of the correlations of
the indicators between constructs, as well as within the same construct [63]. The threshold
value for the HTMT criterion was far from one with a limit of ≤0.800, thus concluding that
there is discriminant validity [62]. Finally, we evaluate the variance inflation factor (VIF),
used to evaluate the collinearity of the indicators, where they had satisfactory values ≤ 3,
according to [62]. The model’s predictive power within the sample had an R2 of 0.318,
while the values of f 2 in the first-order model were irrelevant <0.02.

For the sake of parsimony in the explanation of the model and preparation for a
mathematical explanation of the fuzzy knowledge logic technique, we decided to generate
a construct of second molecular order from the measures related to social sustainability,
prioritizing information on the common variance effect, that is, the variance shared by each
of the dimensions [64]. The coefficients of the latent variables were taken from the result of
the validation of the first-order measurement model. The resulting values were validated.
Table 4 shows the values of satisfactory latent loads (λ) for the case of the new construct of
the second-order of social sustainability (SS), with satisfactory values that oscillate between
0.789 and 0.873. The latent variable of resilience in the supply chain (RES_SC), with a load
value (λ) of 1, is due to the one-dimensional condition of the latent variable coefficient. The
construct items, coefficients, and latent variables have satisfactory composite reliability and
AVE values. It is clear how the model within the sample substantially improves the effect
size of f 2 with a value of 0.438, going from an almost null effect to a medium one. The
HTMT criterion also improved, being further from one, with a value of 0.591.

Table 4. Individual reliability of the item and convergent validity of the construct: second order.

Construct Loads (λ) Cronbach (α) Composite Reliability AVE

I. Social Sustainability ( f 2, 0.438) 0.856 0.903 0.699

1. Labor rights in SC 0.873

2. Healt and safety in SC 0.789

3. Social responsability in SC 0.812

4. Inclusion in SC 0.867

II. Resilience in SC (R2, 0.305) (HTMT, 0.591) 1.000 1.000 1.000

It is essential to notice that Genetic Algorithms are stochastic by nature, but we are not
determining the performance of the GA; instead, we are benchmarking the performance
of the FIS. FISs are deterministic; therefore, we can compute the exact relative error value
produced by the best-found fuzzy knowledge database in the training phase against the
test data (Mexico’s data). The best fuzzy rules found by the GA in the training phase are in
Table 5. With the rules from Table 5, we compute an absolute error of 12.97, equivalent to
about 13 examples wrongly classified from 81, with an 84% classification accuracy; however,
this absolute error could be the sum of slight differences between crisp values, and for some
decisions makers, these differences would be insignificant. Therefore, we have a predictive
power of the resilience in the supply chains of more than 80%, based on features related to
social sustainability. Our proposed FIS is a powerful tool for decisions and policymakers
in organizations.
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Table 5. The 64 rules of the Fuzzy Knowledge base.

AND Antecedents Consequent

Labor-Rights Social-Responsibility Inclusion Social-Security Resilience-Supply-Chain

Low Low Low Low Low
Low Low Low Mid High
Low Low Low High Low
Low Low Mid Low High
Low Low Mid Mid Low
Low Low Mid High Mid
Low Low High Low Mid
Low Low High Mid Low
Low Low High High High
Low Mid Low Low High
Low Mid Low Mid Mid
Low Mid Low High Low
Low Mid Mid Low Mid
Low Mid Mid Mid Low
Low Mid Mid High Low
Low Mid High Low Mid
Low Mid High Mid High
Low Mid High High Mid
Low High Low Low Mid
Low High Low Mid High
Low High Low High High
Low High Mid Low High
Low High Mid Mid Low
Low High Mid High Mid
Low High High Low Mid
Low High High Mid High
Low High High High Mid
Mid Low Low Low Low
Mid Low Low Mid Low
Mid Low Low High High
Mid Low Mid Low Low
Mid Low Mid Mid Mid
Mid Low Mid High Mid
Mid Low High Low Low
Mid Low High Mid High
Mid Low High High High
Mid Mid Low Low Low
Mid Mid Low Mid High
Mid Mid Low High High
Mid Mid Mid Low High
Mid Mid Mid Mid High
Mid Mid Mid High High
Mid Mid High Low Mid
Mid Mid High Mid High
Mid Mid High High High
Mid High Low Low Low
Mid High Low Mid High
Mid High Low High High
Mid High Mid Low High
Mid High Mid Mid High
Mid High Mid High Mid
Mid High High Low Mid
Mid High High Mid Mid
Mid High High High High
High Low Low Low High
High Low Low Mid Mid
High Low Low High Mid
High Low Mid Low Mid
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Table 5. Cont.

AND Antecedents Consequent

Labor-Rights Social-Responsibility Inclusion Social-Security Resilience-Supply-Chain
High Low Mid Mid High
High Low Mid High High
High Low High Low Low
High Low High Mid Low
High Low High High High
High Mid Low Low Low
High Mid Low Mid High
High Mid Low High High
High Mid Mid Low Mid
High Mid Mid Mid High
High Mid Mid High High
High Mid High Low Mid
High Mid High Mid High
High Mid High High High
High High Low Low Low
High High Low Mid Low
High High Low High High
High High Mid Low Low
High High Mid Mid Mid
High High Mid High High
High High High Low Low
High High High Mid Mid
High High High High High

From the experimental results, we can assert that we have a second-order model
with valid latent variable coefficients for each construct. The above allows parsimony
in the data that are appropriate for generating the predictive rules of the fuzzy analysis.
Nevertheless, the evaluated supplier cases are low for fair wages, production ethics, and
employee training.

5. Discussion and Conclusions

Our fuzzy technique results showed the relevance of social aspects within the business
sectors and were consistent with fuzzy evaluation works performed in the business sectors,
as is the case of Rajak and Vinodh [18] and Hendiani and Bagherpour [20]. They found
social aspects relevant to the company both inside and outside the company. Regarding the
relevant aspects in the care of the internal society or human capital, issues such as health
and safety practices resulted. Likewise, equal opportunities and education in the workplace
also arose. In the aspects referring to the care of the external society or community, issues of
support for safety, employment and health systems resulted. Support for smaller suppliers
was also relevant.

In the studies focused on the supply chain, our results also show consistency with
other findings, such as those of the work of Yıldızbaşı et al. [28] in the automotive sector in
Turkey, where the criteria of safety and occupational health practices, non-discrimination
and social responsibility with the community and human rights were significant. Likewise,
the research of Ðurić et al. [27], who employed a fuzzy AHP technique and from the risk
perspective, showed the relevance of social aspects in the chain in terms of the risk to
the resilience of unhealthy working environments and danger to the health and safety of
employees, as well as issues such as human rights, inclusion, benefit to the communities
surrounding the links in the chain and the focal companies. Specifically, in the context of the
health crisis caused by the COVID-19 disease, there have been recent diffuse studies that
evaluate the resilience of the supply chain, some focused on the environmental dimension
of sustainability, highlighting aspects such as the optimization of natural resources in the
chain (such as the work of Lotfi, Kargar et al. [23]).
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Recently, research on chain resilience has reinforced the social aspects of sustainability,
such as that of Wang et al. [65]. From a fuzzy logic based on experts, they determined
that health and safety are relevant attributes of a socially sustainable supplier within
the Vietnamese logistics sector. Likewise, the research of Nayeri et al. [29] assesses, as a
socially sustainable factor for chain resilience, the opportunity for permanent jobs and
human rights security in the work area. Our results focused exclusively on the relevance
of social issues of sustainability. We utilize a fuzzy technique that has scarcely been used
in sustainable approaches and supply chain resilience. We propose a Genetic Algorithm
for generating fuzzy evolutionary knowledge to predict the bivariate relationship between
social sustainability and Latin supply chain resilience through artificial machine intelligence.
Although the work of Soleimani et al. [15] also proposes a Genetic Algorithm, they use
it for fuzzy mathematical programming, and the distinction between their work and
ours is that their model aims at optimization and focuses on the environmental aspect
of sustainability and, our model, has an approach focused on prediction and the social
aspect of sustainability. Within the sample that our systematic review of the literature
yielded, we did not find a work that contains the criteria of our research. This research
aimed to analyze the predictive power of social sustainability criteria on the performance
of supply chain resilience in the context of the COVID-19 pandemic. In summary, based
on fuzzy evolutionary learning, we conclude that the aspects of labor rights, health and
safety, inclusion, and social responsibility in the Latin supply chain contribute significantly
to the predictability of the supply chain resilience in the representative cases of Mexico
and Chile. In terms of managerial implications, a call is made to decision-makers to resize
social welfare issues within the links of the chain. These results demonstrate that caring for
the welfare of people, inside and outside the supplier companies, is not an issue exogenous
to the company. It is not mere external altruism but rather endogenous strategic aspects
that impact the capacity to sustain the Latin supply chain in the face of current and future
disruptions. We invite supply chain managers to strengthen the supply chain’s resilience
by taking care of the indicators related to adequate working conditions, strict surveillance
of labor rights violations, occupational health, and safety policies for the external society,
such as the development of local suppliers, as well as philanthropic activities/selfless help
and carrying out programs to generate skill development opportunities for unemployed
youth. For future lines of research, we will continue confirming the predictive power of
fuzzy evolutionary knowledge concerning the influence of social aspects of sustainability
in the Latin supply chain in different contexts, even at different times to know if the results
are consistent outside of the pandemic context.
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