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Abstract: Large-scale group decision-making (LS-GDM) problems are common in the daily life of
human beings. Both information fusion and computing with words (CWW) technologies in LS-GDM
suffer from challenges. In the current research, a proportional hesitant fuzzy linguistic term set
(PHFLTS) will be applied to capture the preferences of sub-groups in LS-GDM, which decreases the
information lost in information fusion processes. Novel fuzzy semantic representation models of
PHFLTS, such as type-1 fuzzy envelope and interval type-2 fuzzy envelope, are respectively studied.
The application of the proposed fuzzy entropies facilitates the CWW process with the PHFLTS under
the framework of a fuzzy linguistic approach. In particular, linguistic uncertainties contained in
the PHFLTS can be reflected in a comprehensive way when the type-2 fuzzy envelope is applied,
which contributes to the decrease in the information lost during the CWW process. A novel LS-GDM
method cooperating with the fuzzy semantic models of PHFLTS is proposed, in which weights for
the sub-groups are determined by size, cohesion, and degree of reliability among the sub-groups.
Finally, the proposed decision method as well as CWW tools are applied to the process of urban
renewal plan selection.

Keywords: large-scale group decision making; proportional hesitant fuzzy linguistic term set; fuzzy
semantic representation model; computing with words

MSC: 68T99

1. Introduction

In the coming era of big data, it is common to collect a massive amount of data
from different sources when dealing with a decision problem. People are increasingly
more interested in pursuing more general decision results by allowing the attendance of
a larger number of participants. A group decision-making problem is called a large-scale
decision-making problem (LS-GDM) [1] if more than 20 decision makers take part in the
decision-making process. The engagement of more decision makers brings more challenges,
and traditional decision-making models for small-scale activities usually fail to meet the
application demands of large-scale situations [2]. In the last years, LS-GDM strategies have
become a hot research topic: Zhou et al. [3] studied a statistics-based approach for LS-GDM
under the incomplete Pythagorean fuzzy information with risk attitude; Wan et al. [4]
studied a personalized, individual, semantics-based consensus reaching process for LS-
GDM with probabilistic linguistic preference relations; Qin et al. [5] proposed a minimum
cost consensus model for a CRP-driven preference optimization analysis in LS-GDM with
the Louvain algorithm; Gou and Xu [6] studied non-cooperative behaviors in LS-GDM with
linguistic preference orderings; Du et al. [7] studied non-cooperative behavior management
in LS-GDM; Song and Hu [8] studied LS-GDM with multiple stakeholders based on
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probabilistic linguistic preference relation; Li et al. [9] studied CRP in LS-GDM based on
bounded confidence and social network; Choi et al. [10] studied circular supply chain
management with LS-GDM in the big data era; Li [11] studied big data-driven fuzzy large-
scale group decision making in the circular economy environment; Liao et al. [12] studied
an interactive consensus-reading model with updated weights of clusters in LS-GDM. Li
and Wei [13] introduced a two-stage dynamic influence model to achieve consensus within
LS-GDM with incomplete information; Cao et al. [14] studied an LS-GDM method based
on topic sentiment analysis to deal with the problem of completely data-driven attribute
information acquisition; Zhong et al. provided a non-threshold and a multi-stage hybrid
consensus model for multi-attribute LS-GDM in [15] and [16], respectively; Li and Wei [17]
provided an LS-GDM approach based on a sub-group weighting model with hesitant fuzzy
linguistic information; Gao et al. [18] presented an opinion leader identification method and
a clustering-based consensus model for LS-GDM; Zheng et al. [19] studied a hesitant fuzzy
linguistic bi-objective clustering method for LS-GDM; Rodríguez et al. studied minimum
cost consensus models and a cohesion-driven consensus reaching process for LS-GDM
in [20,21], respectively.

Although researchers have made contributions to the enrichment of LS-GDM strate-
gies from different points of view, there are still noticeable challenges that need to be
studied, such as: (1) Under linguistic contexts, it is common in LS-GDM to apply linguistic
aggregation operators in order to collect sub-group assessments in the decision making
process. However, the aggregation of linguistic information at the very beginning leads
to heavy information loss; (2) CWW [22,23] in LS-GDM calls for more flexible semantic
representation models in order to support information processing with uncertainties, etc.
The current research makes an effort to explore efficient LS-GDM methodologies in order
to deal with such new challenges.

Noticing that single linguistic terms or 2-tuple values fail to capture the hesitancy
of information in decision making, Rodríguez et al. [24] initially introduced the hesitant
fuzzy linguistic term set (HFLTS), which can be viewed as an extension model of the
hesitant fuzzy set [25–27] in linguistic information contexts and uses several consecutive
linguistic terms to express the preferences for alternatives in decision making. Several
context-free grammars and a structure named comparative linguistic expression (CLE)
were proposed [24,28,29]. CLEs can be generated by context-free grammar in order to
provide more flexibility to the decision makers and to elicit their preferences, and CLE can
be transformed into HFLTS to facilitate the CWW process. To meet complex information
extraction requests in decision making, various extension models of HFLTS have been
proposed, such as the extended hesitant fuzzy linguistic term set (EHFLTS) [30], which
applies non-consecuetive terms to describe the hesitation of decision makers, and the
proportional hesitant fuzzy linguistic term set (PHFLTS). Considering the specific structure
of PHFLTS, i.e., the proportion of single terms in the term set, is determined by the union
of various individuals’ evaluations; thus, it can potentially apply PHFLTS in sub-group
information collection and description. In this way, the application of aggregation operators
could be avoided, and therefore information loss could be decreased in the information
fusion process. Based on this consideration, a novel LS-GDM methodology based on
PHFLTS is proposed, in which the preferences collected from decision makers can be in
different flexible forms such as single terms, HFLTS, and EHFLTS, while the sub-group
evaluations are characterized by PHFLTS.

A fuzzy semantic model represents words or linguistic terms by using fuzzy mem-
bership functions [31], which can be characterized by the parameters of these membership
functions [32]. It is popular to use fuzzy semantic models in CWW, especially the interval
type-2 fuzzy set (IT2-FS), which reflects linguistic uncertainties in a more comprehensive
way than the type-1 fuzzy set, and its structure is simpler than the general type-2 fuzzy
set. To carry out CWW with single words, researchers have proposed various method-
ologies for encoding words into IT2-FS: Mendel [33] proposed the person membership
function approach and the interval end-points approach to encode words into IT-FS; Liu
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and Mendel [34] provided an interval approach to encode words into IT2-FS, which requests
neither fuzzy set knowledge for the information provider nor symmetric shape for the
footprint of uncertainty; Wu and Mendel introduced an enhanced interval approach [35];
in [36], the median interval approach was proposed in which the median boundaries of the
range of membership functions are calculated. Recently, researchers have paid attention
to methodologies that fuzzy encode HFLTS and its extension models by using fuzzy sets.
Liu et al. [29] and Li et al. [37] studied the type-1 fuzzy envelope of HFLTS, which facilitates
CWW with HFLTS under the framework of the fuzzy linguistic approach. Liu et al. [38]
came up with interval type-2 fuzzy envelopes for HFLTS. However, fuzzy encoding tech-
nologies for extensions of HFLTS have rarely been studied. For instance, there is still a large
gap in fuzzy semantic representation models of the extended hesitant fuzzy linguistic term
set (EHFLTS) [30], the possibility distribution of hesitant fuzzy linguistic information [39],
the probabilistic linguistic term set [40], the proportional hesitant fuzzy linguistic term
set (PHFLTS) [41], and so on; this causes difficulties in the CWW process, with linguistic
expressions being provided in more flexible forms than in single terms. In the current
proposal, we apply PHFTS to describe sub-group preferences in LS-GDM, in order to keep
as much information as possible in the information fusion process. To carry out the CWW
process in LS-GDM with PHFLTS, novel fuzzy semantic representation models, named
type-1 and interval type-2 fuzzy envelopes for PHFLTS, will be carefully studied.

The salient features of this proposal are as follows:

(1) In order to decrease the information loss in the preferences collection process, a
novel LS-GDM model is proposed, in which PHFLTS is applied to capture sub-group
hesitation. Both the cohesion and the degree of reliability of the sub-groups can
be reflected and measured based on PHFLTS. A sub-group weight determination
scheme is introduced, taking into account relevant factors such as size, cohesion, and
reliability of sub-groups, which are synthesized when their weights are determined.

(2) To facilitate the CWW process with PHFLTS in LS-GDM under the framework of the
fuzzy linguistic approach, novel fuzzy semantic representation models such as type-1
and interval type-2 fuzzy envelopes for PHFLTS will be initially studied. The current
research extends the fuzzy encoding approaches from single words to PHFLTS, which
increases the flexibility of linguistic preference expression in LS-GDM and further
meets the demands of CWW with less information loss.

(3) Entropy measures of PHFLTS are studied in a comprehensive way in order to evaluate
linguistic uncertainties during the construction of the interval type-2 fuzzy envelope
for PHFLTS. These explorations help to extend the CWW scheme with interval type-2
fuzzy sets from single words to more complex linguistic expressions.

The rest of this paper is structured as follows: Relative concepts are recalled in
Section 2. Axiomatic definitions for fuzzy entropy, hesitant entropy, comprehensive entropy,
and total entropy measures of PHFLTS are introduced in Section 3, as well as specific calcu-
lation formulae. Schemes for obtaining type-1 and type-2 fuzzy envelopes for PHFLTS are
respectively provided in Sections 4 and 5. A novel LS-GDM method based on PHFLTS and
its fuzzy semantic representation models is presented in Section 6. Afterwards, a numerical
example applying the proposals in a real-life situation is provided in Section 7. Finally, the
conclusions are presented in Section 8, as well as a discussion about future works.

2. Preliminary

In this section, we will recall some basic related concepts such as PHFLTS, interval
type-2 fuzzy set, CWW with the fuzzy linguistic approach, and LS-GDM.

2.1. PHFLTS

Traditional linguistic computation techniques for decision making are usually limited
to single words. To increase the flexibility for decision makers in providing their preferences
or evaluations of alternatives with the use of relatively complex expressions close to human
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beings’ cognition, the concept of context-free grammar was initially proposed by Rodríguez
et al. [24], which generates CLE in a formal way.

Let GH = (VN , VT , I, P) be a context-free grammar, in which

VN = {(primary term), (composite term), (unary relation),

(binary relation), (conjunction)}
VT = {at least, at most, between, and, s0, s1, · · · , sg}
I ∈ VN

P = {I ::= (primary term)|(composite term)

(composite term) ::= (unary relation)(primary term)|(binary relation)

(primary term)(conjunction)(primary term)

(primary term) ::= s0|s1| · · · |sg,

(unary relation) ::= at least|at most

(binary relation) ::= between

(conjunction) ::= and}

Three types of CLEs “at most si”, “at least si”, and “between si and sj” could be generated by
using GH . Every CLE can be transformed into an HFLTS, that is, transformation functions
exist to convert CLEs to HFLTSs.

Definition 1 ([24]). Let S = {s0, s1, . . . , sg} be a linguistic term set; an HFLTS on S is an ordered
finite subset of consecutive linguistic terms in S.

The application of HFLTS facilitates the CWW processes with CLE, which allows
for the participants’ hesitation among consecutive terms. Later, the concept of HFLTS is
extended to deal with non-consecutive linguistic terms, giving rise to the extended HFLTS
(EHFLTS).

Definition 2 ([30]). Let S = {s0, s1, . . . , sg} be a linguistic term set; an EHFLTS on S is an
ordered subset of non-consecutive linguistic terms in S, that is,

EHS = {si|si ∈ S} (1)

Another extension of HFLTS, is the concept PHFLTS [41], whose main feature in-
cludes the proportional information of each generalized linguistic term. Definitions of a
proportional linguistic pair and PHFLTS are reviewed below.

Definition 3 ([41]). Let S = {s0, . . . , sg} be a finite and totally ordered linguistic term set with
odd cardinality, and let P = (p0, p1, . . . , pg)T be a proportional vector, where 0 ≤ pi ≤ 1
(i = 0, 1, . . . , g) represent the proportions for linguistic terms si (i = 0, 1, . . . , g). The binary
groups (si, pi) (i = 0, 1, . . . , g) are defined as proportional linguistic pairs.

The proportional linguistic pairs (si, pi) (i = 0, 1, . . . , g) are pairs ordered on S, and
they are ranked according to the ordered linguistic terms si (i = 0, 1, . . . , g).

Definition 4 ([41]). Let S = {s0, s1, . . . , sg} be a linguistic term set. Let Hk
S(k = 1, 2, . . . , n) be

n HFLTSs given by a group of decision makers Ek(k = 1, 2, . . . , n). A PHFLTS for a linguistic
variable θ formed by the union of Hk

S(k = 1, 2, . . . , n), namely PHS , is a set of ordered finite
proportional linguistic pairs and is expressed as follows:

PHS(θ) = {(si, pi)|si ∈ S, i = 0, 1, ..., g}, (2)
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where (p0, p1, . . . , pg)T is a proportional vector, and pi denotes the degree of possibility that the
alternative carries an assessment value si provided by a group of decision makers, with the condition
that ∑

g
i=0 pi = 1 and 0 ≤ pi ≤ 1 (i = 0, 1, . . . , g).

2.2. Interval Type-2 Fuzzy Set

The type-2 fuzzy set theory has been developed well during the past few decades.
Compared with the type-1 fuzzy set, the fuzzy membership degree of a value within the
universe is described by an independent fuzzy set instead of a single crisp value. In this
way, it reflects information uncertainty in a more comprehensive manner. Compared with
the general type-2 fuzzy set, due to the relatively simple structure, the application of the
interval type-2 fuzzy set (IT2 FS) is more common in linguistic information encoding.

Definition 5 ([42–44]). A type-2 fuzzy set Ã in the universe X can be represented by the following
equation:

Ã = {((x, u), µÃ(x, u))|x ∈ X, u ∈ [0, 1]}, (3)

where µÃ is the type-2 membership function, and 0 ≤ µÃ(x, u) ≤ 1.
If µÃ(x, u) = 1, Ã turns into an IT2FS, which can be rewritten as follows:

Ã=
∫

x∈X

∫
u∈Jx

1/(x, u), Jx ⊆ [0, 1], (4)

where x is the primary variable, u is the secondary variable, and Jx is the primary membership of x.
Footprint of uncertainty (FOU) can be presented as the equation below:

FOU(Ã) = {(x, u) : x ∈ X, u ∈ Jx ⊆ [0, 1]}. (5)

An IT2FS Ã is determined by its FOU and

Ã = 1/FOU(Ã), (6)

where the secondary grade is 1 at all points of FOU(Ã).

The upper membership function (UMF) and the lower membership function (LMF)
of Ã are two type-1 fuzzy membership functions that bound FOU. An IT2FS Ã with a
trapezoidal FOU could be presented as Ã = T(a, b, c, d, a′, b′, c′, d′; h); the FOU (shaded
area) is shown in Figure 1.

0

1
UMF

LMF

a b c da' b' c' d'

Figure 1. FOU for a trapezoidal IT2FS Ã [45].

2.3. Fuzzy Linguistic Approach

Most real-life decision-making situations present uncertainty, vagueness, and incom-
plete information. In modeling information under these conditions, the use of linguistic
information has obtained successful results. Among various approaches that model linguis-
tic information, the fuzzy linguistic approach [46] stands out by using linguistic variables
characterized by a label and a semantic value or a syntactic value. The intention of the
fuzzy linguistic approach is to process information by using the fuzzy set theory and
to model the information by using linguistic variables, whose values are usually words
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or sentences rather than numbers. Linguistic variables are obviously less precise than
numbers, therefore they are suitable for describing uncertain information.

CWW is a methodology that uses words or propositions (that are obtained from
natural language) as the computation objects [47]. Its main feature is that both the input
and the output are linguistic information; however, the computation process is numerical.
To facilitate the CWW process with the use of the fuzzy linguistic approach, the syntax and
fuzzy semantics of linguistic variables in a linguistic domain could be defined a priori. In
this work, we adopt a commonly used strategy, i.e., we directly assume that the semantics
of linguistic terms in a linguistic term set S are distributed by triangular fuzzy numbers
within an interval [0, 1]. For instance, S = {s0, s1, . . . , s6} is shown in Figure 2.

0 10.5

s
0

s
1 s

2
s
3

s
4

s
5

s
6

0.17 0.33 0.67 0.83

Figure 2. A linguistic term set S = {s0, s1, s2, . . . , s6}.

2.4. Large-Scale Group Decision Making under a Linguistic Environment

Large-scale group decision making usually indicates more than 20 decision makers
who hold different attitudes regarding a problem, present different opinions concerning
alternatives or solutions, and pursue a commonly accepted decision by carrying out a
decision making process. Different information domains could be considered under the
framework of decision making, including the numerical domain, the interval-valued do-
main, and the linguistic domain. In this proposal, we focus on LS-GDM under the linguistic
environment, which usually consists of the following:

• A problem to be solved;
• A set of alternatives or a set of possible solutions X = {x1, . . . , xn} (n ≥ 2) to the

problem;
• A set of decision makers E = {e1, . . . , em} (m ≥ 20) who express their preferences

with regard to alternatives and try to obtain a common solution to the problem;
• A linguistic domain from which decision makers could build linguistic variables to

express their preferences among alternatives/solutions.

3. Entropy Measures of PHFLTS

One of the main focuses of the current research is the development of a fuzzy encoding
method for PHFLTS. An important construction precondition of interval type-2 fuzzy
encoding is the suitable evaluation of linguistic uncertainty contained in PHFLTS. Therefore,
in this section, entropy measures of PHFLTS will be introduced to evaluate linguistic
uncertainty. Hesitant and fuzzy entropy are respectively provided to evaluate fuzzy
uncertainty and hesitant uncertainty in PHFLTS. Afterwards, comprehensive entropy will
be provided based on the synthesis of two other kinds of uncertainty.

For the convenience of defining the fuzzy entropy of PHFLTS, the fuzzy entropy
measure of linguistic terms is recalled below.

Definition 6 ([48]). A real-valued function E : S→ [0, 1] is an entropy measure for a linguistic
term si ∈ S = {s0, . . . , sg} if it satisfies the following axiomatic requirements:

(E1) E(si) = 0, if and only if si = s0 or si = sg.
(E2) E(si) = 1, if and only if si = s g

2
.

(E3) E(si) ≤ E(sj), if si ≤ sj ≤ s g
2

or si ≥ sj ≥ s g
2
.

(E4) E(si) = E(Neg(si)).
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The fuzzy entropy of the linguistic term si could be computed with E(si) = f ( I(si)
g ),

where the function f : [0, 1]→ [0, 1] satisfies the following conditions (1)–(2):

(1) f (1− x) = f (x), moreover, f (0) = f (1) = 0, f ( 1
2 ) = 1.

(2) f (x) is strictly monotone increasing when x ∈ (0, 0.5] and strictly monotone decreas-
ing when x ∈ [0.5, 1).

In order to construct the hesitant entropy of PHFLTS, we define a function to describe
the deviation degree of the linguistic terms contained in a PHFLTS.

Definition 7. Let S = {s0, s1, . . . , sg} be a linguistic term set, let PHS = {(sα1 , pα1), (sα2 , pα2),
. . . , (sαl , pαl )|pα1,...,l > 0} be a PHFLTS defined on S. The deviation function η(PHS) of a PHFLTS,
PHS is defined by the following equation:

η(PHS) = ∑
j=i+1

l−1

∑
i=1

pαi pαj(I(sαj)− I(sαi )) (7)

where l is the cardinality of PHS, and I(sαj) is the index of the linguistic term set sαj .

Remark 1. If the PHS = {(sα1 , 1)}, then η(PHS) = 0.

This remark declares that the deviation degree reaches the minimum when only one
linguistic term exists in a PHFLTS, which is consistent with the cognition of a human being.

With the knowledge reserve above, the axiomatic definitions of the fuzzy and hesitant
entropies of PHFLTS are provided below.

Definition 8. Let PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|
pα1,...,l > 0} be a PHFLTS on S, and PH(S) be the set of all PHFLTSs on S. Let E f , Eh : PH(S)→
[0, 1] be two mappings; if E f satisfies requirements (F1)–(F5), and Eh satisfies requirements (H1)–(H4),
then E f and Eh are the fuzzy and hesitant entropies of PHFLTS, respectively.

(F1) E f (PHS) = 0, if and only if PHS = {(s0, ps0), (sg, psg)} where ps0 + psg = 1.
(F2) E f (PHS) = 1, if and only if PHS = {(s g

2
, 1)}.

(F3) Let PHS1 = {(st, p1
t )|st ∈ S, t = 0, . . . , g} = {(sα1 , p1

α1
), (sα2 , p1

α2
), . . . , (sαl , p1

αl
)|

p1
α1,...,l

> 0} as well as PHS2 = {(st, p2
t )|st ∈ S, t = 0, . . . , g} = {(sα1 , p2

α1
),

(sα2 , p2
α2
), . . . , (sαl , p2

αl
)|p2

α1,...,l
> 0} be two PHFLTSs on S; if

• p1
αi
> p2

αi
and p1

αj
< p2

αj
(for αi, αj ∈ {α1 . . . , αl}, which satisfy |αi −

g
2 | > |αj −

g
2 |),

• p1
αk

= p2
αk

(for αk ∈ {α1 . . . , αl} and k 6= i, j),

then E f (PHS1) < E f (PHS2).
(F4) If PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), . . . , (sαi , pαi ), . . . , (sαl , pαl )|

pα1,...,l > 0} is a PHFLTS on S, change (sαi , pαi ) to (s′αi
, pαi ) to get a new PHFLTS PHS2 ,

where |αi −
g
2 | > |α′i −

g
2 |, then E f (PHS1) < E f (PHS2).

(F5) E f (PHS) = E f (Neg(PHS)),
where Neg(PHS) = {(sg−αl , pαl ), (sg−αl+1, pαl−1), . . . , (sg−α1 , pα1)}.

(H1) Eh(PHS) = 0, if and only if PHS = {(sα1 , 1)}.
(H2) Eh(PHS) = 1, if PHS = {(s0, 0.5), (sg, 0.5)}.
(H3) Eh(PH1

S) ≤ Eh(PH2
S), if η(PH1

S) ≤ η(PH2
S).

(H4) Eh(PHS) = Eh(Neg(PHS)),
where Neg(PHS) = {(sg−αl , pαl ), (sg−αl+1, pαl−1), . . . , (sg−α1 , pα1)}.

Subsequently, with the introduction of Theorems 1 and 2, we will provide specific
formulae to compute the fuzzy and hesitant entropies of PHFLTS, respectively.
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Theorem 1. Suppose that PHS = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|pα1,...,l > 0} is a PHFLTS
on a linguistic term set S = {s0, s1, . . . , sg}. Let E f (PHS) = ∑l

i=1 pαi E(sαi ), where E(sαi ) is the
fuzzy entropy of linguistic term sαi . Then, E f (PHS) is a fuzzy entropy for PHS.

Proof. (F1) If E f (PHS) = ∑l
i=1 pαi E(sαi ) = 0, then E(sαi ) = 0, where sαi ∈ PHS. Accord-

ing to the axiomatic definition of the fuzzy entropy of linguistic terms, we know that
sαi = s0 or sαi = sg, where sαi ∈ PHS. Therefore, PHS = {(s0, ps0), (sg, psg)}, where
ps0 + psg = 1. On the contrary, if PHS = {(s0, ps0), (sg, psg)}, where ps0 + psg = 1,
then ∑l

i=1 pαi E(sαi ) = 0; that is, E f (PHS) = 0.
(F2) Since ∑l

i=1 pαi = 1, we know that E f (PHS) = ∑l
i=1 pαi E(sαi ) = 1 if and only if

E(sαi ) = 1. From the axiomatic definition of the fuzzy entropy of linguistic terms,
E(si) = 1 if and only if si = s g

2
, then we know that E f (PHS) = ∑l

i=1 pαi E(sαi ) = 1
if and only if PHS = {(s g

2
, 1)}.

(F3) If PHS1 = {(st, p1
t )|st ∈ S, t = 0, . . . , g} = {(sα1 , p1

α1
), (sα2 , p1

α2
), . . . , (sαl , p1

αl
)|

p1
α1,...,l

> 0}, and PHS2 = {(st, p2
t )|st ∈ S, t = 0, . . . , g} = {(sα1 , p2

α1
), (sα2 , p2

α2
), . . . ,

(sαl , p2
αl
)|p2

α1,...,l
> 0} are two PHFLTSs on S, |αi −

g
2 | > |αj −

g
2 | , then E(αi) < E(αj).

If p1
αi

> p2
αi

, p1
αj

< p2
αj

, then p1
αi

E(αi) + p1
αj

E(αj) < p2
αi

E(αi) + p2
αj

E(αj). If p1
αk

=

p2
αk
(k 6= i, j), then ∑l

i=1 p1
αi

E(sαi ) < ∑l
i=1 p2

αi
E(sαi ), and E f (PHS1) < E f (PHS2).

(F4) If (sαt , p1
αt) in PHS1 is changed to (s′αt , p1

αt) to get a new PHFLTS PHS2 , where |αt −
g
2 | > |α′t −

g
2 |, then E(sαt) < E(sα′t

); therefore, ∑l
i=1 p1

αi
E(sαi ) < ∑l

i=1,i 6=t p1
αi

E(sαi ) +

p1
αt E(sα′t

), that is, E f (PHS1) < E f (PHS2).
(F5) From the axiomatic definition of the fuzzy entropy of linguistic terms, E(si) =

E(Neg(si)); therefore, ∑l
i=1 pαi E(sαi ) = ∑l

i=1 pαi E(Neg(sαi )) = ∑l
i=1 pαi E(sg−αi ).

That is, E f (PHS) = E f (Neg(PHS)), where Neg(PHS) = {(sg−αl , pαl ),
(sg−αl+1, pαl−1), . . . , (sg−α1 , pα1)}.

Theorem 2. Suppose that PHS = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|pα1,...,l > 0} is a PHFLTS
on a linguistic term set S = {s0, s1, . . . , sg}. Let Eh(PHS) =

4
g ×∑j=i+1 ∑l−1

i=1 pαi pαj(I(sαj)−
I(sαi )), where I(sαj) is the index of the linguistic term set sαj . Then, Eh(PHS) is a hesitant entropy
for PHS.

Proof.

(H1) If Eh(PHS) = 0, then ∑j=i+1 ∑l−1
i=1 pαi pαj(I(sαj)− I(sαi )) = 0, that is, I(sαj) = I(sαi )

for all sαi , sαj ∈ PHS, so there is only one term contained in PHS, PHS = {(sα1 , 1)};
On the contrary, if PHS = {(sα1 , 1)}, then ∑j=i+1 ∑l−1

i=1 pαi pαj(I(sαj)− I(sαi )) = 0,
therefore, Eh(PHS) = 0.

(H2) If PHS = {(s0, 0.5), (sg, 0.5)}, then ∑j=i+1 ∑l−1
i=1 pαi pαj(I(sαj) − I(sαi )) = g

4 , and

Eh(PHS) =
4
g ×∑j=i+1 ∑l−1

i=1 pαi pαj(I(sαj)− I(sαi )) = 1.

(H3) From the definition of η(PHS) in Equation (7), it is easy to obtain that Eh(PH1
S) ≤

Eh(PH2
S) if η(PH1

S) ≤ η(PH2
S).

(H4) Since I(sαj)− I(sαi ) = I(sg−αi )− I(sg−αj) for all sαj , sαi ∈ PHS and sg−αi , sg−αj ∈
Neg(PHS), we have Eh(PHS) = 4

g × ∑j=i+1 ∑l−1
i=1 pαi pαj(I(sαj) − I(sαi )) = 4

g ×
∑j=i+1 ∑l−1

i=1 pαi pαj(I(sg−αi )− I(sg−αj)) = Eh(Neg(PHS)).

Based on axiom definitions of fuzzy and hesitant entropies, we propose the axiom def-
inition for the comprehensive entropy of PHFLTS, which reflects the uncertainty contained
in a PHFLTS in a more comprehensive way. The formulae for computing comprehensive
entropy and specific examples will also be introduced.
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Definition 9. Let PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|
pα1,...,l > 0} be a PHFLTS on S, and PH(S) be the set of all PHFLTSs on S. Let E f (PHS) and
Eh(PHS) be the fuzzy and hesitant entropies of PHFLTS, respectively. Let Ec : PH(S)→ [0, 1] be
a mapping; if it satisfies the following requirements, then Ec is a comprehensive entropy of PHFLTS.

(C1) Ec(PHS) = 0, if and only if PHS = {(s0, 1)} or PHS = {(sg, 1)}.
(C2) Ec(PHS) = 1, if and only if PHS = {(s g

2
, 1)}.

(C3) If E f (PHS1) ≤ E f (PHS2) and Eh(PHS1) ≤ Eh(PHS2), then Ec(PHS1) ≤ Ec(PHS2).
(C4) Ec(PHS) = Ec(Neg(PHS)), where

Neg(PHS) = {(sg−αl , pαl ), (sg−αl+1, pαl−1), . . . , (sg−α1 , pα1)}.

Theorem 3. Suppose that a function g : [0, 1]× [0, 1]→ [0, 1] satisfies the following conditions:

(1) g(0, 0) = 0, g(1, 0) = 1.
(2) g(x, y) is strictly monotone increasing with respect to x and y, respectively,

then Ec(PHS) = g(E f (PHS), Eh(PHS)) is a comprehensive entropy measure of the PHFLTS,
PHS.

Example 1. Let g(x, y) = x+γy
1+γy , which satisfies conditions (1) and (2) in Theorem 3, then

Ec(PHS) =
E f (PHS) + γEh(PHS)

1 + γEh(PHS)
(8)

where γ ∈ [0, 1], is a comprehensive entropy measure of PHFLTS, PHS.

There is another approach to synthesizing fuzzy and hesitant entropies. Here, we
propose the concept of total entropy.

Definition 10. Let PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|
pα1,...,l > 0} be a PHFLTS on S, and PH(S) be the set of all PHFLTSs on S. Let E f (PHS) and
Eh(PHS) be fuzzy and hesitant entropies of PHFLTS, respectively. Let Ec : PH(S)→ [0, 1] be a
mapping; if it satisfies the following requirements, then Et is a total entropy of PHFLTS.

(T1) Et(PHS) = 0, if and only if PHS = {(s0, 1)} or PHS = {(sg, 1)}.
(T2) Et(PHS) = 1, if and only if PHS = {(s g

2
, 1)} or PHS = {(s0, 0.5), (sg, 0.5)}.

(T3) If E f (PHS1) ≤ E f (PHS2) and Eh(PHS1) ≤ Eh(PHS2), then Et(PHS1) ≤ Et(PHS2).
(T4) Et(PHS) = Et(Neg(PHS)), where Neg(PHS) = {(sg−αl , pαl ), (sg−αl+1, pαl−1), . . . ,

(sg−α1 , pα1)}.

Theorem 4. Suppose that function f : [0, 1]× [0, 1]→ [0, 1] satisfies the following conditions:

(1) f (0, 0) = 0, f (1, 0) = 1, f (x, y) = f (y, x).
(2) f (x, y) is monotone increasing with respect to x and y, respectively,

then the mapping Et(PHS) = f (E f (PHS), Eh(PHS)) is a total entropy measure of the PHFLTS,
PHS.

Example 2. Let PHS be a PHFLTS, f be a co-norm such as f (x, y) = max(x, y), f (x, y) =
x + y− xy, f (x, y) = min(x + y, 1), which satisfies conditions (1) and (2) in Theorem 4, then

Et(PHS) = f (E f (PHS), Eh(PHS)) (9)

is a total entropy measure of PHS.
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4. Type-1 Fuzzy Envelope of PHFLTS

In this section, the type-1 fuzzy envelope of an PHFLTS will be built according to
the meaning of the corresponding linguistic expressions. To achieve this goal, we first
provide the general process of constructing a type-2 fuzzy envelope for all types of PHFLTS.
Afterwards, specific methodologies for computing the fuzzy envelope of three types of
CLE will be discussed. Finally, the strategies for computing an important parameter that
must be applied in order to complete the specific methodologies for achieving the type-1
fuzzy envelope will be provided.

4.1. General Process

In a linguistic term set S = {s0, s1, . . . , sg}, every single term st(t ∈ {0, . . . , g}) can be
assumed to be a triangular membership function T(at

L, at
M, at

R). To compute the type-1 fuzzy
envelope of an PHFLTS PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl ,
pαl )|pα1,...,l > 0}, only the terms for which the proportion contained in the PHS is larger
than zero should be aggregated when computing the fuzzy envelope. We use a trapezoidal
fuzzy membership function FPHS = T(a, b, c, d) to represent the type-1 fuzzy envelope of
PHFLTS PHS. Let i = min(α1, α2, . . . , αl), and j = max(α1, α2, . . . , αl). Parameters a, b, c, d
in FPHS could be calculated with the following formulas:

a = min{at
L}{t|t∈{0,...,g}∩pt>0}, (10)

if i ≥ 1, then a = ai−1
M ; if i = 0, then a = 0.

b = Ws{ptat
M}{t|t∈{0,...,g}∩pt>0}/pmax, (11)

c = Wt{ptat
M}{t|t∈{0,...,g}∩pt>0}/pmax, (12)

where Ws, Wt are aggregation operators, in which the weights are determined by the
proportions of the linguistic terms in PHFLTS, and pmax = max{pt}{t|t∈{0,...,g}∩pt>0}.

d = max{at
R}{t∈{0,...,g}∩pt>0}, (13)

if j ≤ g− 1, then d = aj+1
M ; if j = g, then d = 1.

In order to be consistent with the research on the fuzzy envelope of HFLTS in [29],
the following two classes of OWA weights will be applied in order to aggregate linguistic
terms in the PHFLTS during the process of computing for the type-1 fuzzy envelope.

Definition 11 ([49]). Let β be a parameter belonging to the unit interval [0, 1]. The first kind of
OWA weights W1 = (w1

1, w1
2, . . . , w1

n)
T is defined as follows:

w1
1 = β, w1

2 = β(1− β), . . . , w1
l−1

2
= β(1− β)

l−3
2 , w1

l+1
2

= (1− β)
l−1

2 .

The second type of OWA weights W2 = (w2
1, w2

2, . . . , w2
n)

T is defined as follows:

w2
1 = β

l−1
2 , w2

2 = (1− β)β
l−3

2 , . . . , w2
l−1

2
= (1− β)β, w2

l+1
2

= 1− β.

4.2. Type-1 Fuzzy Envelope of PHFLTS Corresponding to Linguistic Expression “between si
and sj"

Suppose that for ∀ (st, pt) ∈ PHS, where (pt > 0), we have st 6= s0 and st 6= sg, then
PHS is regarded as a PHFLTS related to the CLE “between si and sj". In the type-1 fuzzy en-
velope of PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|pα1,...,l >

0}, denoted by FPHS = T(a, b, c, d), parameters a and d could be determined by a = aα1
L =

aα1−1
M and d = aαl

R = aαl+1
M ; b and c are determined by the following procedure:
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Reorder the sequence pα1 aα1
M, pα2 aα2

M, . . . , pαl a
αl
M from the largest value to the smallest

one in order to obtain a sequence ξ1, ξ2, . . . , ξl that satisfies ξ1 > ξ2 > · · · > ξl .

(1) If l is odd, then
b = OWAW2(ξ l+1

2
, ξ l+3

2
, . . . , ξl)/pmax (14)

c = OWAW1(ξ1, ξ2, . . . , ξ l+1
2
)/pmax (15)

where pmax = max{pα1 , pα2 , . . . , pαl} and W2 = (w2
1, w2

2, . . . , w2
l+1

2
)T in Equation (14) is

w2
1 = β

l−1
2

1 , w2
2 = (1− β1)β

l−3
2

1 , . . . , w2
l−1

2
= (1− β1)β1, w2

l+1
2

= 1− β1, (β1 ∈ [0, 1]),

and W1 = (w1
1, w1

2, . . . , w1
l+1

2
)T in Equation (15) is

w1
1 = β2, w1

2 = β2(1− β2), . . . ,w1
l−1

2
= β2(1− β2)

l−3
2 , w1

l+1
2

= (1− β2)
l−1

2 , (β2 ∈ [0, 1]).

(2) If l is even, then
b = OWAW2(ξ l+2

2
, ξ l+4

2
, . . . , ξl)/pmax (16)

c = OWAW1(ξ1, ξ2, . . . , ξ l
2
)/pmax (17)

where pmax = max{pα1 , pα2 , . . . , pαl} and W2 = (w2
1, w2

2, . . . , w2
l
2
)T in Equation (16) is

w2
1 = β

l−2
2

1 , w2
2 = (1− β1)β

l−4
2

1 , . . . , w2
l−2

2
= (1− β1)β1, w2

l
2
= 1− β1, (β1 ∈ [0, 1]);

where pmax = max{pα1 , pα2 , . . . , pαl} and W1 = (w1
1, w1

2, . . . , w1
l
2
)T in Equation (17) is

w1
1 = β2, w1

2 = β2(1− β2), . . . ,w1
l−2

2
= β2(1− β2)

l−4
2 , w1

l
2
= (1− β2)

l−2
2 , (β2 ∈ [0, 1]).

4.3. Type-1 Fuzzy Envelope of PHFLTS Corresponding to Linguistic Expression “at Least si"

Suppose that ∃pg > 0 s.t. (sg, pg) ∈ PHS, then PHS is regarded as a PHFLTS related
to “at least si”. Let FPHS = T(a, b, c, d) be the type-1 fuzzy envelope of PHS = {(st, pt)|st ∈
S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|pα1,...,l > 0}. The parameters a = aα1

L =

aα1−1
M , c = d = 1, b are determined by the following equation:

b = OWAW2(pα1 aα1
M, pα2 aα2

M, . . . , pαl a
αl
M)/pmax (18)

where pmax = max{pα1 , pα2 , . . . , pαl} and W2 = (w2
1, w2

2, . . . , w2
l )

T in Equation (18) is

w2
1 = βl−1, w2

2 = (1− β)βl−2, . . . , w2
l−1 = (1− β)β, w2

l = 1− β, (β ∈ [0, 1]).

4.4. Type-1 Fuzzy Envelope of PHFLTS Corresponding to Linguistic Expression “ at Most si"

Suppose that ∃p0 > 0 s.t. (s0, p0) ∈ PHS, then PHS is a PHFLTS related to “at most si",
the type-1 fuzzy envelope of PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2),
. . . , (sαl , pαl )|pα1,...,l > 0} is FPHS = T(a, b, c, d), in which d = aαl

R , a = b = 0, c is determined
by the following equation:

c = OWAW1(pα1 aα1
M, pα2 aα2

M, . . . , pαl a
αl
M)/pmax (19)

where pmax = max{pα1 , pα2 , . . . , pαl} and W1 = (w1
1, w1

2, . . . , w1
l )

T in Equation (19) is shown
below:

w1
1 = β, w1

2 = β(1− β), . . . , w1
l−1 = β(1− β)l−2, w1

l = (1− β)l−1, (β ∈ [0, 1]).

4.5. A Strategy for Determining Parameter β in Uncertainty Evaluation for PHFLTS

The methodology to obtain the parameter β can be different. Here, we only provide
one available method that determines β according to the number of skip terms in PHFLTS
as well as the orness degree. There is a monotone function between the orness degree and
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the value of β in W1 (or W2). The relationship could be described by Equations (20) and
(21), which is shown in Figure 3:

orness(W1) =
n

n− 1
− 1− (1− β)n

(n− 1)β
(20)

orness(W2) =
β− βn

(n− 1)(1− β)
(21)

Figure 3. Functional relationship between the orness measure and parameter β of W1 and W2

(adapted from [49]).

The principle we adopt in determining the value of the orness degree as well as the
value of β is the following: “the more skip terms there are contained in a PHFLTS, the lower
the orness degree of the group is. On the contrary, the fewer skip terms there are contained
in a PHFLTS, the higher the orness degree of the group is”.

Reference [29] discussed how to determine the value of β according to the meaning of
linguistic expressions when no skip terms exist in an HFLTS. The linguistic expressions
can be classified into three types: “at least si”, “at most si”, “between si and sj”. In the
current research, the value of β for computing the fuzzy envelope of PHFLTS should not
only be determined by the corresponding expressions, but also by the value of skip terms
in PHFLTS. If no skip terms exist in a PHFLTS, the orness degree of the decision maker
reaches the maximum value, and the parameter β can be computed by using the approach
in [29]. The more skip terms exist in a PHFLTS, the lower the orness degree of information
should be. Considering the relationship between the value of β and the orness degree
shown in Figure 3, the lower the orness degree is, the smaller the value of β should be.
From this viewpoint, we can adopt the value of β to determine the maximum value of the
orness degree; in this way, we can build a scheme that computes β according to the number
of skipped terms.

Based on the analysis above, a novel strategy determining the value of β for the
computation of the fuzzy envelope of PHFLTS is provided as follows:

For the convenience of discussion, the value of skipped terms contained in a PHFLTS
PHS = {(st, pt)|st ∈ S, t = 0, . . . , g} = {(sα1 , pα1), (sα2 , pα2), . . . , (sαl , pαl )|pα1,...,l > 0} is
denoted by φ; therefore, φ = (αl − α1 + 1)− l.

• For the PHFLTS corresponding to the expression “at least si”:
If φ = 0, then β = α1

g , which is obtained from β = i
g in [29], and the orness reaches

its maximum, which can be computed by Equations (20) and (21). If φ = g− 1, then
the orness reaches its minimum, and orness= 0 and β = 0, which is also computed by
Equations (20) and (21). The value of φ increases from 0 to g− 1, while β decreases
from β = α1

g to 0. A function f can be defined as follows:

f : [0, g− 1]→ [0,
α1

g
]
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where β = f (φ), which satisfies the following boundary conditions:

f (0) =
α1

g
, f (g− 1) = 0

Moreover, it is easy to find a linear function that satisfies such conditions:

β =
α1

g(g− 1)
(g− 1− φ) (22)

• For the PHFLTS corresponding to the expression “between si and sj”:

If φ = 0, then β1 = g−(αl−α1)
g−1 , which is obtained from β1 = g−(j−i)

g−1 in [29], and the
orness reaches its maximum, which can be computed by Equations (20) and (21). If
φ = g− 1, then the orness reaches its minimum, orness= 0 and β1 = 0, which is also
computed by Equations (20) and (21). The value of φ1 increases from 0 to g− 1, while
β1 decreases from β1 = g−(αl−α1)

g−1 to 0. A function f can be defined as follows:

f1 : [0, g− 1]→ [0,
g− (αl − α1)

g− 1
],

where β1 = f1(φ), which satisfies the following boundary conditions:

f1(0) =
g− (αl − α1)

g− 1
, f1(g− 1) = 0

Moreover, it is easy to find a linear function that satisfies such conditions:

β1 =
g− (αl − α1)

(g− 1)2 (g− 1− φ) (23)

If φ = 0, then β2 = (αl−α1)−1
g−1 , which is obtained from β2 = (j−i)−1

g−1 in [29], and the
orness reaches its maximum, which can be computed by Equations (20) and (21). If
φ = g− 1, then the orness reaches its minimum, orness= 0 and β2 = 0, which is also
computed by Equations (20) and (21). The value of φ increases from 0 to g− 1, while
β2 = 0 decreases from β2 = (αl−α1)−1

g−1 to 0. A function f2 can be defined as follows:

f2 : [0, g− 1]→ [0,
(αl − α1)− 1

g− 1
],

where β2 = f2(φ), which satisfies the following boundary conditions:

f2(0) =
(αl − α1)− 1

g− 1
, f2(g− 1) = 0

Moreover, it is easy to find a linear function that satisfies such conditions:

β2 =
(αl − α1)− 1

(g− 1)2 (g− 1− φ) (24)

Lemma 1. If φ = 0, then β1 + β2 = 1.

Proof. β1 + β2 = g−(αl−α1)
(g−1)2 (g − 1− φ) + (αl−α1)−1

(g−1)2 (g − 1− φ) = 1
g−1 (g − 1− φ).

Then, if φ = 0, then β1 + β2 = 1 .

• For the PHFLTS corresponding to the expression “at most si”:
If φ = 0, then β = αl

g , which is obtained from β = αl
g in [29], and the orness reaches

its maximum, which can be computed by Equations (20) and (21). If φ = g− 1, then
the orness reaches its minimum, orness= 0 and β = 0, which is also computed by
Equations (20) and (21). The value of φ increases from 0 to g− 1, while β decreases
from β = αl

g to 0. A function f can be defined as follows:
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f : [0, g− 1]→ [0,
αl
g
],

where β = f (φ), which satisfies the following boundary conditions:

f (0) =
αl
g

, f (g− 1) = 0

Moreover, it is easy to find a linear function that satisfies such conditions:

β =
αl

g(g− 1)
(g− 1− φ) (25)

5. Type-2 Fuzzy Envelope of PHFLTS

For the PHFLTS, PHS, transformed from a CLE, ll, its type-2 fuzzy envelope can be
presented as an IT2FS:

F̃PHS = 1/FOU(F̃PHS) (26)

whose footprint is

FOU(F̃PHS) = {(x, u) : x ∈ X, u ∈ [max{0, FPHS(x)− Ec(PHS)}, FPHS(x)]}. (27)

where FPHS(x) is the type-1 fuzzy envelope, which should be computed according to the
type of linguistic expression. Compared with the type-1 fuzzy envelope, an extra parameter
h can be determined by h = 1− Ec(PHS) in the parameterized representation of trapezoidal
IT2FS, PHS, i.e., F̃PHS = T(a, b, c, d, a′, b′, c′, d′; h) (see Figure 1) (According to Equations
(26) and (27), if a, b, c, d and h are determined, other parameters a′, b′, c′, d′ can be easily
computed based on them. For instance, for a PHFLTS corresponding to “between si and
sj”, we have a′ = b− (b− a)h, b′ = b, c′ = c, d′ = c + (d− c)h.).

In this proposal, we will use the equation Ec(PHS) =
E f (PHS)+γ(PHS)Eh(PHS)

1+γ(PHS)Eh(PHS)
to eval-

uate the uncertainty contained in the type-2 fuzzy envelope of a PHFLTS PHS. Several
principles are proposed here to determine the value of the parameter γ(PHS):

(P1) γ(PHS) = 1 if PHS = {(s0, p1), . . . , (sg, pg)|p1,...,g > 0}.
This principle indicates that the importance degree of hesitancy reaches its highest
when all terms appear in the PHFLTS.

(P2) γ(PHS) = 0 if PHS = {(sα1 , 1)}.
This principle indicates that the importance degree of hesitancy reaches its lowest
when there is no hesitancy in a PHFLTS.

(P3) γ(PHS) < γ(PH′S) if PHS = {(sα1 , pα1), . . . , (st, pt), . . . , (sαl , pαl )|pα1,...,l > 0},
and PH′S = {(sα1 , pα1), . . . , (st, pt1), (s f , pt2), . . . , (sαl , pαl )|pα1,...,l > 0}, where pt =
pt1 + pt2 .
This principle indicates that when a new term is added in a PHFLTS, the importance
degree of hesitancy should be increased.

(P4) If PHS = {(sα1 , pα1), . . . , (st, pt), . . . , (sαl , pαl )|pα1,...,l > 0}, and
PHS1 = {(sα1 , pα1), . . . , (st, pt1), (s f1 , pt2), . . . , (sαl , pαl )|pα1,...,l > 0},
PHS2 = {(sα1 , pα1), . . . , (st, pt1), (s f2 , pt2), . . . , (sαl , pαl )|pα1,...,l > 0},
where pt = pt1 + pt2 , and |t1 − g

2 | < |t2 − g
2 |, then γ(PHS1) > γ(PHS2).

This principle indicates that when two different terms are added in a PHFLTS
HS, the change of γ(PHS) is positively related to the fuzzy degree of the added
linguistic term.

(P5) γ(PHS) = γ(Neg(PHS)).
This principle indicates the importance degree of hesitancy should be the same for
a PHFLTS and its negative because the hesitancy degree is the same.
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Following the five principles above, researchers could easily find different functions
to compute the value of the parameter γ(PHS); here, we only provide a simple function as
an example:

Let sk = (ak
L, ak

M, ak
R) (0 ≤ k ≤ g), for any PHFLTS PHS = {(sα1 , pα1), . . . , (sαl , pαl )|

pα1,...,l > 0},

γ(PHS) =


∑

αl
k=α1

f (ak
M)

∑
g
k=0 f (ak

M)
, if α1 < αl .;

0, if α1 = αl .
(28)

where

f (x) =

{
x + 1 x ∈ [0, 0.5];
2− x, x ∈ [0.5, 1].

(29)

Theorem 5. The γ(PHS) defined by Equation (28) satisfies principles (P1)–(P5).

Proof.
(1) When PHS = {(s0, p1), . . . , (sg, pg)|p1,...,g > 0}, it is easy to obtain the following:
∑αl

k=α1
f (ak

M) = ∑
g
k=0 f (ak

M). Therefore, γ(PHS) = 1.
(2) When PHS = {(sα1 , 1)}, it can be viewed as PHS = {(sα1 , pα1), . . . , (sαl , pαl )|pα1,...,l > 0}
and α1 = αl ; in this way, γ(PHS) = 0.
(3) If PHS = {(sα1 , pα1), . . . , (st, pt), . . . , (sαl , pαl )|pα1,...,l > 0}, and
PH′S = {(sα1 , pα1), . . . , (st, pt1), (s f , pt2), . . . , (sαl , pαl )|pα1,...,l > 0}, where pt = pt1 + pt2 ,

then
∑

αl
k=α1

f (ak
M)

∑
g
k=0 f (ak

M)
<

∑
αl
k=α1

f (ak
M)+ f (a f

M)

∑
g
k=0 f (ak

M)
, that is, γ(PHS) < γ(PH′S).

(4) If |t1− g
2 | < |t2− g

2 |, then f (at1
M) > f (at2

M), therefore,
∑

αl
k=α1

f (ak
M)+ f (a

t1
M)

∑
g
k=0 f (ak

M)
>

∑
αl
k=α1

f (ak
M)+ f (at2

M)

∑
g
k=0 f (ak

M)
.

That is, γ(PHS1) > γ(PHS2).

(5) Neg(PHS) = {(sg−αl , pαl ), (sg−αl+1, pαl−1), . . . , (sg−α1 , pα1)}. Since ag−k
M = 1− ak

M and

a0
M = 0, ag

M = 1, we have f (ag−k
M ) = f (ak

M). Therefore,
∑

αl
k=α1

f (ak
M)

∑
g
k=0 f (ak

M)
=

∑
g−α1
k=g−αl

f (ak
M)

∑
g
k=0 f (ak

M)
, that is,

γ(PHS) = γ(Neg(PHS)).

5.1. Comparative Analysis: Type-1 and Type-2 Fuzzy Envelopes of PHFLTS

Type-1 and type-2 fuzzy envelopes will be compared based on computation complexity,
information lost, and feasibility.

(1) From the point of view of computation complexity: The main difference is reflected
by the parameter determination process. The complexity of type-1 fuzzy envelopes is
a bit lower since only four parameters (i.e., the four parameters a, b, c, d in T(a, b, c, d))
need to be computed to achieve a trapezoidal fuzzy number as the type-1 fuzzy
envelope for PHFLTS, while five parameters (i.e., the five parameters a, b, c, d, h in
T(a, b, c, d, a′, b′, c′, d′, h)) need to be determined to achieve the corresponding type-2
fuzzy envelope for PHFLTS. The extra parameter h is determined on the basis of the
linguistic uncertainty contained in the PHFLTS, which can be evaluated by using the
proposed entropy measures.

(2) From the point of view of information lost: During the past few decades, IT2FS
has been a widely accepted tool in the presentation of linguistic information. The
current work is an extension study of the fuzzy encoding approach for linguistic
information; we extend the IT2FS encoding technique from single words to more
complex linguistic expressions. Compared with the type-1 fuzzy envelope, when the
type-2 fuzzy envelope is applied, the uncertainties contained in linguistic information
can be evaluated by using the proposed comprehensive entropy. Therefore, more
information can be reflected and restored during the process of CWW. In this way, the
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information lost could be decreased, which is the main reason why we recommend
the use of the type-2 fuzzy envelope.

(3) From the point of view of feasibility: There are plenty of research that pay attention
to decision making based on either type-1 fuzzy sets or type-2 fuzzy sets. Therefore,
as long as the fuzzy envelopes of PHFLTSs can be computed, most decision-making
problems based on PHFLTS can be transformed into decision-making problems
based on type-1 or type-2 fuzzy sets; then, the decision results can be obtained.
The proposed fuzzy envelopes allow the CWW process that is based on PHFLTS in
decision making follow the framework of the fuzzy linguistic approach. Hence, these
two fuzzy representation models can make the CWW process with PHFLTS feasible.

6. An LS-GDM Approach Based on PHFLTS

In this section, the problem formulation and a framework overview of the main
decision strategies are introduced. Afterwards, a detailed presentation of an LS-GDM
method is provided.

6.1. Problem Formulation

Suppose that there are t decision makers G = {d1, d2, . . . , dt} (t ≥ 30) who provide
preferences on n alternatives X = {x1, x2, . . . , xn}. A linguistic term set S will be available to
decision makers who can apply single terms, HFLTS, CLEs, and EHFLTS as their preferences
with flexibility. The aim is to rank the alternatives, and the alternative with the maximum
utility value will be selected as the most desirable decision.

6.2. Framework Overview

The decision framework could be stated as written below and is illustrated in Figure 4.

Subgroup preference 
matrix

Calculate Envelope 
of PHFLTS

Subgroup Utility Value 
Calculation

Cluster and 
Information Fusion

Subgroup Weights 
Calculation

Group Utility Value
Calculation

Information Collection

…

HFLTS EHFLTS
EHFLTS

HFLTS
SINGLE	
TERM

HFLTS SINGLE	
TERM

…
Size

Cohesion

Reliability

PHFLTS
Interval	type-2	
fuzzy	set

Figure 4. Large-scale muti-attribute linguistic group decision making.

(1) Information collection.
At this stage, every decision maker is requested to express their preferences from the
alternatives by using single terms or HFLTS or EHFLTS. In this way, the t preference
matrix is obtained.

(2) Cluster and information fusion.

• Cluster principle.
In order to make a group decision based on the assessments provided from a
large group of decision makers, first of all, we should select a suitable cluster
approach to classify the large-scale group into several small-scale sub-groups.
At this stage, our expectation is to “classify the decision makers who hold
similar opinions into one class”.

• Cluster objective.
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For each alternative with respect to each criteria, group evaluations gathered
from all decision makers in a sub-group will form a PHFLTS. This process is
called an information-fusion process. We expect the linguistic terms contained
in each EHFLT to be consecutive rather than discrete. From the view point of
position in the linguistic-term set, linguistic terms contained in each EHFLT
should be “the closer, the better”. Meanwhile, we expect the number of linguistic
terms in an EHFLT to be “the less, the better". To illustrate this, the sub-group
evaluation PHS1 = {s1, s3, s4} is more expected than PHS2 = {s1, s3, s6}, and
PHS3 = {s3, s4} is more expected than PHS4 = {s1, s3, s4}.
Our objective is just to put adjacent linguistic terms together after the classifica-
tion. Therefore, the similarity of two linguistic terms si and sj could be briefly
evaluated by using the euclidean distance between their subscripts i and j.

• Cluster method.
In the current research, we suggest the use of the cluster method based on the fuzzy
equivalence relationship when the cluster starts with linguistic terms/HFLTSs
and results with PHFLTSs. In this way, (1) the fuzzy property of linguistic
values could be considered; (2) compared with the fuzzy-c means approach, it
can avoid a possible unreasonable cluster result caused by the inappropriate
selection of the initial cluster center; (3) the computation process is simple.

(3) Best alternative selection.

• Computation tool.
The proposed fuzzy representation models, i.e., fuzzy envelopes of PHFLTS,
will be adopted as the computation tool during the CWW process.

• Alternative selection.
We will compute the utility values for alternatives and then select the one with
the largest utility value as the best selection.

6.3. Method Description

Following the outlines in Section 6.2, a detailed description of the proposed decision
method is given.

1. Cluster and information fusion.
To classify decision makers in an LS-GDM problem into several sub-groups, the cluster
scheme based on a fuzzy equivalence relation [50] is extended in order to deal with
linguistic decision matrices formed by terms in S = {s0, s1, . . . , sg}.
(1) The construction of similarity matrix.

Firstly, we should select an approach to compute the similarity between two lin-
guistic decision matrices. Suppose that there are two linguistic decision matrices,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

 (30)

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
. . . . . . . . . . . .
bn1 bn2 . . . bnn

 (31)

where aij, bij ∈ S (i, j ∈ {1, . . . , n}).
The similarity between these two matrices is defined as follows:

1−
∑n

i=1 ∑n
j=1 |p(aij)− p(bij)|k

gk · n2 (32)
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where the parameter k is a positive integer. It can be noticed that the larger the
value of k is, the larger the similarity will be. The value of k could be selected
and adjusted according to the cluster performance.

Remark 2. Suppose that aij = {sα1 , . . . , sαq}, we can define p(aij) =
α1+···+αq

q .
More specifically, when only one term exists in aij, p(aij) will be the subscript of the
linguistic term. For instance, for aij = s6, we have p(aij) = 6.

There are t decision makers, therefore the similarity matrix is constructed as a
t× t matrix:

R =


r11 r12 . . . r1t
r21 r22 . . . r2t
. . . . . . . . . . . .
rt1 rt2 . . . rtt

 (33)

where rij =

1 i = j;

1− ∑n
i=1 ∑n

j=1 |p(aij)−p(bij)|k

gk ·n2 , i 6= j.

(2) Compute the transitive closure and the fuzzy equivalence relationship. If
Rh · Rh = Rh, then Rh is the fuzzy equivalence relationship. Denote Rh = (rh

ij).

(3) Choose a threshold value γ and use the α − cut theory to obtain a dynamic
cluster result.
From the transitive closure Rh = (rh

ij), construct a matrix R∗ = (r∗ij) by r∗ij ={
1 r∗ij ≥ γ;

0, r∗ij < γ.
The initial selection of the value γ depends on the expectations from the simi-
larity of the evaluations of decision makers within the sub-groups. It could be
adjusted until the expected number of clustered sub-groups is obtained.

(4) Adjust the threshold value and obtain several clusters.
If r∗ij = 1, this means that decision makers di and dj should be clustered into one
class. In this way, we obtain different clusters. The cluster result could be easily
adjusted by controlling γ. If the number of clusters is too large, we can decrease
the threshold value γ; conversely, we can increase the threshold value γ.

2. Obtain the sub-group preference matrix.
Suppose that the group G is classified into G1, G2, . . . , G f ( f < t) after the cluster
process. There are h decision makers in a sub-group Gk (1 ≤ k ≤ f ), which are
denoted as (dk

1, dk
2, . . . , dk

h). The preference provided by the decision maker dk
l (∀l ∈

{1, 2, . . . , h}) on xi over xj is denoted by aij,kl .
Then, the group preference of Gk on xi over xj forms a PHFLTS,

PH(Gk ,i,j)
S = {(si, pi)|si ∈ aij,kl , l ∈ {1, 2, . . . , h}, pi =

4(si)

�(aij,kl)
} (34)

where �(aij,kl) is the number of all terms in aij,kl (l ∈ {1, 2, . . . , h}), 4(si) is the
number of si in all aij,kl (l ∈ {1, 2, . . . , h}); repeat terms should not be deleted when
�(aij,kl) and4(si) are computed.

3. Compute the interval type-2 fuzzy envelopes of PHFLTSs.
To avoid confusion, we set rules to compute the fuzzy envelope for PHFLTSs accord-
ing to the corresponding CLEs.

• If s0 ∈ PHS, sg /∈ PHS, then the interval type-2 fuzzy envelope of the PHFLTS,
PHS is computed according to the CLE “ at most si”;
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• If s0 /∈ PHS, sg ∈ PHS, then the interval type-2 fuzzy envelope of the PHFLTS,
PHS is computed according to the CLE “ at least si”;

• If s0 ∈ PHS, sg ∈ PHS, or s0 /∈ PHS, sg /∈ PHS, then the interval type-2 fuzzy
envelope of the PHFLTS, PHS is computed according to the CLE “ between si
and sj”.

Note: For the convenience of discussion, we denote the type-2 fuzzy envelope of
PHFLTS, PHS as F̃PHS .

4. Compute the utility values for alternatives according to the sub-group preference.
Suppose that the group decision matrix of a sub-group Gl could be presented as
follows:

Gl =


PH(Gl ,1,1)

S PH(Gl ,1,2)
S . . . PH(Gl ,1,n)

S
PH(Gl ,2,1)

S PH(Gl ,2,2)
S . . . PH(Gl ,2,n)

S
. . . . . . . . . . . .

PH(Gl ,n,1)
S PH(Gl ,n,2)

S . . . PH(Gl ,n,n)
S

 (35)

The utility value of xi (according to evaluation of sub-group Gl) is computed by the
following equation:

uGl (xi) =
1
n

n

∑
j=1

R(F̃
PH

(Gl ,i,j)
S

) (36)

where R(F̃
PH

(Gl ,i,j)
S

) is the rank value of the type-2 fuzzy set F̃
PH

(Gl ,i,j)
S

, which is intro-

duced in [51] (Refer to Equation (6) in [51] in order to see more details of the rank
values of type-2 fuzzy sets).

5. Determine the weights for sub-groups.
Three different factors will be considered when we compute the weights for sub-
groups in the proposed decision scheme.

• Size: The more members there are in a sub-group, the larger the weight of this
sub-group should be;

• Cohesion[52]: The higher the level of togetherness that the preferences of a
sub-group has, the larger the weight of this sub-group should be;

• Reliability: The higher the level of reliability that a sub-group has, the larger the
weight of this sub-group should be.

Since size is a commonly used index in sub-group weight determination in LS-GDM,
and cohesion has also been proved a useful index in [52] during the sub-group weight
determination progress, here, we only explain “the reliability of the assessments of a
sub-group”, which is first postulated in the current work in a detailed way. After the
cluster process, we hope that the opinions of decision makers within a sub-group are
close to each other. Suppose that the gathered preference of this sub-group for one
alternative over another alternative is {si, si+1, si+2}, then we think that the degree of
“decision makers in a sub-group are close to each other” is higher than the situation
when the gathered preference is {si, si+2}. This is because in the former situation,
for each decision maker in this sub-group, there is another decision maker who
provides a preference that is close to him/her. That is, assessments among the sub-
groups are closer, and no obvious inharmonious mechanisms exist. The sub-group is
more reliable when the gathered preference is {si, si+1, si+2} rather than {si, si+2}. In
summary, the more continuous the linguistic terms in a PHFLTS are, the more reliable
the corresponding preference of a sub-group is. On the contrary, the more discrete,
the less reliable.
Subsequently, we will introduce specific measures to compute the “Size”, “Cohe-
sion”, and “Reliability” of a sub-group when PHFLTSs are applied in LS-MALGDM
problems.
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• Size:
The size of sub-group (Gl) is computed by:

Size(Gl) =
|Gl |
|G| (37)

where |Gl | denotes the number of members in sub-group Gl , and |G| denotes the
number of members in group G.

• Cohesion:
The preference of sub-group Gl for alternative xi over xj(i, j ∈ {1, . . . , n}) is a
PHFLTS, denoted by the following equation:

PH(Gl ,i,j)
S = {(s(Gl ,i,j)

α1 , p(Gl ,i,j)
α1 ), (s(Gl ,i,j)

α2 , p(Gl ,i,j)
α2 ), . . . , (s(Gl ,i,j)

αl(Gl ,i,j)
, p(Gl ,i,j)

α2 )} (38)

Let I(sαk ) be the index of linguistic term sαk . The cohesion of sub-group (Gl) on
xi over xj(i, j ∈ {1, . . . , n}) is computed by

Cohesion(Gl , i, j) = 1−

∑δ1<δ2,δ1,δ2∈{α1,...,αl(Gl ,i,j)}
p
(Gl ,i,j)
δ2

p
(Gl ,i,j)
δ1

(I(s
(Gl ,i,j)
δ2

)−I(s
(Gl ,i,j)
δ1

))

C2
l(Gl ,i,j)

+ 1

g + 1
(39)

The cohesion of sub-group (Gl) is computed by

Cohesion(Gl) = 1−
∑1≤i,j≤n(

∑δ1<δ2,δ1,δ2∈{α1,...,αl(Gl ,i,j)}
p
(Gl ,i,j)
δ2

p
(Gl ,i,j)
δ1

(I(s
(Gl ,i,j)
δ2

)−I(s
(Gl ,i,j)
δ1

))

C2
l(Gl ,i,j)

+ 1)

(g + 1) · n2 (40)

• Reliability:

Let #(PH(Gl ,i,j)
S ) be the number of linguistic terms in the PHFLTS, PH(Gl ,i,j)

S . The
preference reliability of sub-group (Gl) for xi over xj is computed by

Reliability(Gl , i, j) =
#(PH(Gl ,i,j)

S )

I(s(Gl ,i,j)
αl(Gl ,i,j)

)− I(s(Gl ,i,j)
α1 ) + 1

(41)

The reliability of sub-group (Gl) is computed by

Reliability(Gl) =

∑1≤i,j≤n
#(PH

(Gl ,i,j)
S )

I(s
(Gl ,i,j)
αl(Gl ,i,j)

)−I(s
(Gl ,i,j)
α1 )+1

n2 (42)

The three indices above are synthesized by using the function below:

α(Gl) = (1 + Size(Gl))
γ1·Cohesion(Gl)+γ2·Reliability(Gl) (43)

where γ1, γ2 > 0 are respectively used to control the impact of cohesion and reliability
during the process in order to compute the weights of the sub-groups.
Finally, the weight for sub-group Gl is computed by the following equation:

w(Gl) =
α(Gl)

∑
f
h=1(α(Gh))

, ∀l ∈ {1 . . . , f } (44)

where f is the number of sub-groups after clustering.
6. Compute the utility value of alternatives according to the group preferences.

The utility value of xi is computed by
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u(xi) =
f

∑
l=1

w(Gl) · uGl (xi) (45)

where w(Gl) is the weight of sub-group Gl computed by Equation (44), and uGl (xi) is
the sub-group utility value computed by Equation (36).

7. Case Study: Application to Urban Renewal Plan Selection

In this section, the proposed LS-GDM methodology is applied to an urban renewal
plan selection problem. Detailed solution procedures will be provided after a brief problem
description.

7.1. Problem Description

Since the beginning of 2020, the transformation of old areas in Shanghai has been
accelerated. So far, 400,000 square meters and about 19,700 households with houses below
the secondary old lane have been transformed. As an innovative measure to accelerate
the transformation of old areas and urban organic renewal, the Shanghai urban renewal
center was officially inaugurated and established on 13 July 2020, mainly promoting the
transformation of old areas, old houses, urban villages, and other urban renewal projects.
It was noted that decision-making problems were involved in the process of urban renewal,
such as the optimizations of the old district reconstruction scheme, the old housing re-
construction scheme, and the urban village project investment scheme. The traditional
information processing method obviously cannot meet the requirements of a comprehen-
sive evaluation of the decision-making scheme. The complexity of urban renewal requires
that the interests of the government, developers, residents, and other parties must be taken
into account. Therefore, most of the decision-making problems faced by the urban renewal
task are large-scale group decision-making problems, which need the support of an appro-
priate group decision-making model and advanced decision-making technology. To select
the appropriate targeted plan, suppose that the government invited 30 representatives
(denoted by t1, t2, . . . , t30) from different interests to evaluate four alternatives x1, x2, x3, x4.
These representatives are allowed to provide their preference matrix, with items in the
form of HFLTS, EHLFT, or single terms in the linguistic term set S = {s0 = Horrible, s1 =
Very bad, s2 = Bad, s3 = Medium, s4 = Good, s5 = Very good, s6 = Excellent}(see the
fuzzy semantic representation of S in Figure 2). To save space, 30 initial preference matrices
(denoted by T1, T2, . . . , T30) have been included in Appendix A.

7.2. Solution to the Sample Problem

1. Cluster and information fusion.
There are 30 decision makers who provide evaluations by using the linguistic term
set S = {s0, s1, . . . , s6}, therefore t = 30 and g = 6. Without loss of generality, we set
k = 2, r1 = r2 = 0.5, and r = 0.99. According to the classification strategy introduced,
the group is classified into five sub-groups, i.e.,
G1 = {t1, t2, t3, t5, t7}, G2 = {t4, t6, t8, t20, t21}, G3 = {t9, t10, t17, t18, t19, t22, t28, t29, t30},
G4 = {t11, t12, t13, t14, t15, t16}, G5 = {t23, t24, t25, t26, t27}.

2. Obtain sub-group preference matrix.
From each sub-group, the evaluations on alternative xi with parameter ej are gathered
to form a PHFLTS. In this way, the evaluation of the five sub-groups could be obtained
as follows.

G1 =


{(s3, 1.0)} {(s0, 0.455), (s1, 0.455), (s2, 0.091)} {(s3, 0.5), (s4, 0.5)} {(s1, 0.5), (s3, 0.4), (s4, 0.1))}

{(s5, 0.455), (s6, 0.455), (s4, 0.091)} {(s3, 1.0)} {(s3, 0.5), (s4, 0.5)} {(s5, 0.4), (s6, 0.4), (s4, 0.2)}
{(s2, 0.5), (s3, 0.5)} {(s2, 0.5), (s3, 0.5)} {(s3, 1.0)} {(s2, 0.5), (s3, 0.5)}

{(s3, 0.4), (s5, 0.5), (s2, 0.1)} {(s0, 0.4), (s1, 0.4), (s2, 0.2)} {(s3, 0.5), (s4, 0.5)} {(s3, 1.0)}


G2 =


{(s3, 1.0)} {(s3, 0.222), (s5, 0.556), (s4, 0.111), (s6, 0.111)} {(s2, 1.0)} {(s4, 0.357), (s5, 0.286), (s6, 0.357)}

{(s1, 0.625), (s3, 0.25), (s2, 0.125)} {(s3, 1.0)} {(s5, 0.5), (s6, 0.5)} {(s3, 0.667), (s2, 0.333)}
{(s4, 1.0)} {(s0, 0.5), (s1, 0.5)} {(s3, 1.0)} {(s5, 1.0)}

{(s0, 0.357), (s1, 0.286), (s2, 0.357)} {(s3, 0.667), (s4, 0.333)} {(s1, 1.0)} {(s3, 1.0)}
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G3 =


{(s3, 1.0)} {(s4, 0.263), (s5, 0.474), (s3, 0.263)} {(s2, 0.692), (s0, 0.077), (s3, 0.154), (s1, 0.077)} {(s4, 0.32), (s5, 0.36), (s6, 0.32)}

{(s1, 0.474), (s2, 0.263), (s3, 0.263)} {(s3, 1.0)} {(s5, 0.471), (s6, 0.353), (s3, 0.118), (s4, 0.059)} {(s5, 0.5), (s6, 0.333), (s4, 0.167)}
{(s4, 0.692), (s6, 0.077), (s3, 0.154), (s5, 0.077)} {(s0, 0.353), (s1, 0.471), (s3, 0.118), (s2, 0.059)} {(s3, 1.0)} {(s5, 0.4), (s6, 0.333), (s4, 0.2), (s3, 0.067)}

{(s0, 0.32), (s1, 0.36), (s2, 0.32)} {(s1, 0.5), (s0, 0.333), (s2, 0.167)} {(s0, 0.333), (s1, 0.4), (s2, 0.2), (s3, 0.067)} {(s3, 1.0)}



G4 =


{(s3, 1.0)} {(s4, 0.5), (s6, 0.5)} {(s4, 1.0)} {(s4, 1.0)}

{(s0, 0.5), (s2, 0.5)} {(s3, 1.0)} {(s5, 1.0)} {(s2, 1.0)}
{(s2, 1.0)} {(s1, 1.0)} {(s3, 1.0)} {(s2, 1.0)}
{(s2, 1.0)} {(s4, 1.0)} {(s4, 1.0)} {(s3, 1.0)}


G5 =


{(s3, 1.0)} {(s3, 0.5), (s5, 0.5)} {(s4, 0.833), (s3, 0.167)} {(s3, 0.833), (s5, 0.167)}

{(s1, 0.5), (s3, 0.5)} {(s3, 1.0)} {(s3, 0.8), (s4, 0.2)} {(s6, 1.0)}
{(s2, 0.833), (s3, 0.167)} {(s3, 0.8), (s2, 0.2)} {(s3, 1.0)} {(s4, 0.5), (s6, 0.4), (s5, 0.1)}
{(s3, 0.833), (s1, 0.167)} {(s0, 1.0)} {(s0, 0.4), (s2, 0.5), (s1, 0.1)} {(s3, 1.0)}


3. Compute the interval type-2 fuzzy envelopes of PHFLTSs.

The context-free grammar GH = (vN, VT, I, P) in [24] will be applied during the process of
computing the interval type-2 fuzzy envelopes of PHFLTSs. Let T(a, b, c, d, a′, b′, c′, d′; h)
be the type-2 fuzzy envelope of a PHFLTS, PHS. Following the scheme introduced
in Section 4, to compute parameters a, b, c, d for the PHFLTS corresponding to the
CLE “at least si", the parameter β is calculated by using Equation (22); for the PHFLTS
corresponding to the CLE “between si and sj", the parameters β1 and β2 are calculated
by using Equation (23) and Equation (24), respectively; for the PHFLTS corresponding
to the CLE “at most si", the parameter β is calculated by using Equation (25). Following
the scheme introduced in Section 5, to compute parameter h, it is necessary to evaluate
the uncertainty contained in PHFLTS; we also adopt the comprehensive entropy

Ec(PHS) =
E f (PHS)+γ(PHS)Eh(PHS)

1+γ(PHS)Eh(PHS)
to calculate the uncertainties, where γ(PHS) is

computed by Equations (28) and (29). In this way, we can compute the interval type-2
fuzzy envelope of each PHFLTS; the evaluations obtained from the five sub-groups
are fuzzy-encoded and presented below.

G1 =


(0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0, 0, 0.070, 0.5, 0, 0, 0.070, 0.333; 0.611) (0.333, 0.5, 0.667, 0.833, 0.491, 0.5, 0.667, 0.675; 0.053) (0.0, 0.149, 0.241, 0.833, 0.120, 0.149, 0.241, 0.358; 0.197)
(0.5, 0.674, 1, 1, 0.568, 0.674, 1, 1; 0.611) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.333, 0.5, 0.667, 0.833, 0.491, 0.5, 0.667, 0.675; 0.053) (0.5, 0.741, 1, 1, 0.611, 0.741, 1, 1; 0.541)

(0.167, 0.333, 0.5, 0.667, 0.324, 0.333, 0.5, 0.509; 0.053) (0.167, 0.333, 0.5, 0.667, 0.324, 0.333, 0.5, 0.509; 0.053) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0)
(0.167, 0.333, 0.5, 0.667, 0.325, 0.333, 0.5, 0.509; 0.053) (0.167, 0.227, 0.539, 1.0, 0.215, 0.227, 0.539, 0.629; 0.197) (0, 0, 0.093, 0.5, 0, 0, 0.093, 0.313; 0.541) (0.333, 0.5, 0.667, 0.833, 0.491, 0.5, 0.667, 0.675; 0.053)


G2 =


(0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.333, 0.246, 1, 1, 0.273, 0.246, 1, 1; 0.310) (0.167, 0.333, 0.333, 0.5, 0.315, 0.333, 0.333, 0.352; 0.111) (0.5, 0.815, 1, 1, 0.668, 0.815, 1, 1; 0.465)

(0.0, 0.147, 0.173, 0.667, 0.109, 0.147, 0.173, 0.300; 0.258) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.667, 0.972, 1, 1, 0.761, 0.972, 1, 1; 0.693) (0.167, 0.167, 0.5, 0.667, 0.167, 0.167, 0.5, 0.506; 0.035)
(0.5, 0.667, 0.667, 0.833, 0.648, 0.667, 0.667, 0.685; 0.111) (0, 0, 0.028, 0.333, 0, 0, 0.028, 0.239; 0.693) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.667, 0.833, 0.833, 1.0, 0.759, 0.833, 0.833, 0.907; 0.444)

(0, 0, 0.141, 0.5, 0, 0, 0.141, 0.308; 0.465) (0.333, 0.333, 0.5, 0.833, 0.333, 0.333, 0.5, 0.512; 0.035) (0.0, 0.167, 0.167, 0.333, 0.093, 0.167, 0.167, 0.241; 0.444) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0)


G3 =


(0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.333, 0.352, 0.463, 1.0, 0.348, 0.352, 0.463, 0.576; 0.210) (0, 0, 0.197, 0.667, 0, 0, 0.197, 0.275; 0.166) (0.5, 0.778, 1, 1, 0.650, 0.778, 1, 1; 0.461)

(0.0, 0.181, 0.204, 0.667, 0.143, 0.181, 0.204, 0.301; 0.210) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.333, 0.271, 1, 1, 0.301, 0.271, 1, 1; 0.479) (0.5, 0.593, 1, 1, 0.544, 0.593, 1, 1; 0.522)
(0.333, 0.171, 1, 1, 0.198, 0.171, 1, 1; 0.166) (0, 0, 0.120, 0.667, 0, 0, 0.120, 0.382; 0.479) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.333, 0.333, 1, 1, 0.333, 0.333, 1, 1; 0.449)
(0, 0, 0.136, 0.5, 0, 0, 0.136, 0.304; 0.461) (0, 0, 0.080, 0.5, 0, 0, 0.080, 0.299; 0.522) (0, 0, 0.135, 0.667, 0, 0, 0.135, 0.374; 0.449) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0)


G4 =


(0.333, 0.5, 0.5, 0.6676, 0.5, 0.5, 0.5, 0.5; 0.0) (0.5, 0.844, 1, 1, 0.669, 0.844, 1, 1; 0.509) (0.5, 0.667, 0.667, 0.833, 0.648, 0.667, 0.667, 0.685; 0.111) (0.5, 0.667, 0.667, 0.833, 0.648, 0.667, 0.667, 0.685; 0.111)
(0, 0, 0.089, 0.5, 0, 0, 0.0890.298; 0.509) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.667, 0.833, 0.833, 1.0, 0.759, 0.833, 0.833, 0.907; 0.444) (0.167, 0.333, 0.333, 0.5, 0.315, 0.333, 0.333, 0.352; 0.111)

(0.167, 0.333, 0.333, 0.5, 0.315, 0.333, 0.333, 0.352; 0.111) (0.0, 0.167, 0.167, 0.333, 0.093, 0.167, 0.167, 0.241; 0.444) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.167, 0.333, 0.333, 0.5, 0.315, 0.333, 0.333, 0.352; 0.111)
(0.167, 0.333, 0.333, 0.5, 0.315, 0.333, 0.333, 0.352; 0.111) (0.5, 0.667, 0.667, 0.833, 0.648, 0.667, 0.667, 0.685; 0.111) (0.5, 0.667, 0.667, 0.833, 0.648, 0.667, 0.667, 0.685; 0.111) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0)


G5 =


(0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.333, 0.5, 0.833, 1.0, 0.466, 0.5, 0.833, 0.867; 0.201) (0.333, 0.100, 0.667, 0.833, 0.121, 0.100, 0.667, 0.682; 0.090) (0.333, 0.167, 0.5, 1.0, 0.178, 0.167, 0.5, 0.535; 0.070)

(0.0, 0.167, 0.5, 0.667, 0.133, 0.167, 0.5, 0.534; 0.201) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.333, 0.167, 0.5, 0.833, 0.170, 0.167, 0.5, 0.507; 0.021) (0.833, 1.0, 1, 1, 0.833, 1.0, 1, 1; 1.0)
(0.167, 0.100, 0.333, 0.667, 0.106, 0.100, 0.333, 0.363; 0.090) (0.167, 0.083, 0.5, 0.667, 0.085, 0.083, 0.5, 0.504; 0.021) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0) (0.5, 0.559, 1, 1, 0.533, 0.559, 1, 1; 0.441)

(0.0, 0.033, 0.5, 0.667, 0.031, 0.033, 0.5, 0.512; 0.070) (0, 0, 0.0, 0.167, 0, 0, 0.0, 0.167; 1.0) (0, 0, 0.119, 0.5, 0, 0, 0.119, 0.287; 0.441) (0.333, 0.5, 0.5, 0.667, 0.5, 0.5, 0.5, 0.5; 0.0)


4. Compute the utility values of alternatives according to the sub-group preference.

By applying Equation (36), we obtain the following:
uG1(x1) = 5.206, uG2(x1) = 6.641, uG3(x1) = 6.043, uG4(x1) = 6.852, uG5(x1) = 5.989;
uG1(x2) = 7.356, uG2(x2) = 6.066, uG3(x2) = 6.658, uG4(x2) = 5.611, uG5(x2) = 6.486;
uG1(x3) = 5.237, uG2(x3) = 6.094, uG3(x3) = 6.414, uG4(x3) = 4.665, uG5(x3) = 5.748;
uG1(x4) = 5.497, uG2(x4) = 4.827, uG3(x4) = 4.645, uG4(x4) = 5.725, uG5(x4) = 4.725.

5. Determine the weights for sub-groups.
Adopt Equations (37), (40), and (42) to compute the sub-group size, cohesion, and
reliability, respectively, and then adopt Equation (44) to compute the sub-group
weights; it is easy to obtain w(G1) = 0.194, w(G2) = 0.195, w(G3) = 0.216, w(G4) =
0.201, and w(G5) = 0.194.

6. Decision result calculation.
By applying Equation (45), we obtain the following: u(x1) = 6.149, u(x2) = 6.434,
u(x3) = 5.643, and u(x4) = 5.079; then, alternative x2 is the decision result.

7. Numerical Comparison
Following the same weight-determination scheme and decision-making strategy, if the
type-1 fuzzy envelope of PHFLTS is applied in this LS-GDM problem, by applying the
magnitude [53] of the trapezoidal fuzzy number as the rank value, the utility values
can be computed as u(x1) = 0.518, u(x2) = 0.539, u(x3) = 0.440, and u(x4) = 0.329.
It is obvious that u(x2) > u(x1) > u(x3) > u(x4), and therefore the best alternative is
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also x2, which is consistent with the result when the type-2 fuzzy envelope is applied.
However, since IT2FS can restore more linguistic uncertainty than the type-1 fuzzy
set, the application of the proposed type-2 fuzzy envelope will contribute to a more
precise result in specific decision-making situations (see more detailed discussions in
Section 5.1).

8. Conclusions and Future Works

LS-GDM problems widely exist in daily life, which brings challenges to both the
information-fusion process and the CWW process. In the current proposal, the application
of PHFLTS in sub-group preference description avoids the use of aggregation operators at
the very beginning of decision making. In this way, it decreases information loss during the
information-fusion process. Fuzzy envelopes have been constructed, and the application
of the proposed linguistic information representation models facilitates the CWW process
with PHFLTS under the framework of the fuzzy linguistic approach. The proposed type-2
fuzzy envelope contributes to the development of the fuzzy encoding technique, from
single words to more complex linguistic forms, i.e., PHFLTS, which facilitates the flexibility
of decision makers in expressing their preferences in decision making.

In the near future, the following research will be carried out:

• Interval type-2 fuzzy encoding techniques need to be further developed, from single
words to more flexible linguistic expressions.

• The fuzzy encoding technology for linguistic expressions in various forms still need
to be further developed in the near future.

• More strategies adopting PHFLTS to solve LS-GDM problems need to be explored in
order to pursue a suitable decision result in a flexible way.

• Consensus models need to be studied under the framework of LS-LSGDM with
PHFLTS.
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Appendix A. Decision Matrices

G1 =


{s3} {s0, s1} {s3, s4} {s1, s3}
{s5, s6} {s3} {s3, s4} {s5, s6}
{s2, s3} {s2, s3} {s3} {s2, s3}
{s3, s5} {s0, s1} {s3, s4} {s3}



G2 =


{s3} {s0, s1} {s3, s4} {s1, s3}
{s5, s6} {s3} {s3, s4} {s5, s6}
{s2, s3} {s2, s3} {s3} {s2, s3}
{s3, s5} {s0, s1} {s3, s4} {s3}



G3 =


{s3} {s0, s1, s2} {s3, s4} {s1, s3}

{s4, s5, s6} {s3} {s3, s4} {s4}
{s2, s3} {s2, s3} {s3} {s2, s3}
{s3, s5} {s2} {s3, s4} {s3}
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G4 =


{s3} {s3, s5} {s2} {s4, s5, s6}
{s1, s3} {s3} {s5, s6} {s3}
{s4} {s0, s1} {s3} {s5}

{s0, s1, s2} {s3} {s1} {s3}



G5 =


{s3} {s0, s1} {s3, s4} {s1}
{s5, s6} {s3} {s3, s4} {s4, s5, s6}
{s2, s3} {s2, s3} {s3} {s2, s3}
{s5} {s0, s1, s2} {s3, s4} {s3}



G6 =


{s3} {s3, s5} {s2} {s4, s5, s6}
{s1, s3} {s3} {s5, s6} {s2}
{s4} {s0, s1} {s3} {s5}

{s0, s1, s2} {s4} {s1} {s3}



G7 =


{s3} {s0, s1} {s3, s4} {s1, s3, s4}
{s5, s6} {s3} {s3, s4} {s5, s6}
{s2, s3} {s2, s3} {s3} {s2, s3}
{s2, s3, s5} {s0, s1} {s3, s4} {s3}



G8 =


{s3} {s4, s5} {s2} {s4, s6}
{s1, s2} {s3} {s5, s6} {s2, s3}
{s4} {s0, s1} {s3} {s5}
{s0, s2} {s3, s4} {s1} {s3}



G9 =


{s3} {s4, s5} {s2} {s4, s5, s6}
{s1, s2} {s3} {s5, s6} {s5}
{s4} {s0, s1} {s3} {s5, s6}

{s0, s1, s2} {s1} {s0, s1} {s3}



G10 =


{s3} {s3, s5} {s0, s2} {s4, s5, s6}
{s1, s3} {s3} {s3, s5} {s5}
{s4, s6} {s1, s3} {s3} {s4, s5}
{s0, s1, s2} {s1} {s1, s2} {s3}



G11 =


{s3} {s4, s6} {s4} {s4}
{s0, s2} {s3} {s5} {s2}
{s2} {s1} {s3} {s2}
{s2} {s4} {s4} {s3}

 G12 =


{s3} {s4, s6} {s4} {s4}
{s0, s2} {s3} {s5} {s2}
{s2} {s1} {s3} {s2}
{s2} {s4} {s4} {s3}



G13 =


{s3} {s4, s6} {s4} {s4}
{s0, s2} {s3} {s5} {s2}
{s2} {s1} {s3} {s2}
{s2} {s4} {s4} {s3}

 G14 =


{s3} {s4, s6} {s4} {s4}
{s0, s2} {s3} {s5} {s2}
{s2} {s1} {s3} {s2}
{s2} {s4} {s4} {s3}



G15 =


{s3} {s4, s6} {s4} {s4}
{s0, s2} {s3} {s5} {s2}
{s2} {s1} {s3} {s2}
{s2} {s4} {s4} {s3}

 G16 =


{s3} {s4, s6} {s4} {s4}
{s0, s2} {s3} {s5} {s2}
{s2} {s1} {s3} {s2}
{s2} {s4} {s4} {s3}



G17 =


{s3} {s4, s5} {s2, s3} {s4, s5, s6}
{s1, s2} {s3} {s5, s6} {s5, s6}
{s3, s4} {s0, s1} {s3} {s6}
{s0, s1, s2} {s0, s1} {s0} {s3}



G18 =


{s3} {s3, s5} {s1, s2} {s4, s5, s6}
{s1, s3} {s3} {s5} {s4, s5}
{s4, s5} {s1} {s3} {s5, s6}
{s0, s1, s2} {s1, s2} {s0, s1} {s3}



G19 =


{s3} {s4, s5} {s2} {s4, s5}
{s1, s2} {s3} {s5, s6} {s5}
{s4} {s0, s1} {s3} {s6}
{s1, s2} {s1} {s0} {s3}
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G20 =


{s3} {s5, s6} {s2} {s4, s5, s6}
{s1} {s3} {s5, s6} {s3}
{s4} {s0, s1} {s3} {s5}

{s0, s1, s2} {s3} {s1} {s3}



G21 =


{s3} {s5} {s2} {s4, s5, s6}
{s1} {s3} {s5, s6} {s3}
{s4} {s0, s1} {s3} {s5}

{s0, s1, s2} {s3} {s1} {s3}



G22 =


{s3} {s4, s6} {s2, s3} {s4, s5, s6}
{s1, s2} {s3} {s4, s6} {s6}
{s3, s4} {s0, s2} {s3} {s6}
{s0, s1, s2} {s0} {s0} {s3}



G23 =


{s3} {s3, s5} {s4} {s3}
{s1, s3} {s3} {s3} {s6}
{s2} {s3} {s3} {s4, s6}
{s3} {s0} {s0, s2} {s3}



G24 =


{s3} {s3, s5} {s4} {s3}
{s1, s3} {s3} {s3} {s6}
{s2} {s3} {s3} {s4, s5}
{s3} {s0} {s1, s2} {s3}



G25 =


{s3} {s3, s5} {s3, s4} {s3}
{s1, s3} {s3} {s3} {s6}
{s2, s3} {s3} {s3} {s4, s6}
{s3} {s0} {s0, s2} {s3}



G26 =


{s3} {s3, s5} {s4} {s3}
{s1, s3} {s3} {s4} {s6}
{s2} {s2} {s3} {s4, s6}
{s3} {s0} {s0, s2} {s3}



G27 =


{s3} {s3, s5} {s4} {s3, s5}
{s1, s3} {s3} {s3} {s6}
{s2} {s3} {s3} {s4, s6}
{s1, s3} {s0} {s0, s2} {s3}



G28 =


{s3} {s3, s5} {s2} {s4, s5, s6}
{s1, s3} {s3} {s5, s6} {s4, s6}
{s4} {s0, s1} {s3} {s5}

{s0, s1, s2} {s0, s2} {s1} {s3}



G29 =


{s3} {s3, s5} {s2} {s4, s5, s6}
{s1, s3} {s3} {s5, s6} {s6}
{s4} {s0, s1} {s3} {s3, s4, s5}

{s0, s1, s2} {s0} {s1, s2, s3} {s3}



G30 =


{s3} {s3, s4, s5} {s2} {s5, s6}

{s1, s2, s3} {s3} {s3, s5} {s5}
{s4} {s1, s3} {s3} {s4, s5}
{s0, s1} {s1} {s1, s2} {s3}


References
1. Hong, C.X.; Rong, L. Improved clustering algorithm and its application in complex huge group decision-making. Syst. Eng.

Electron. 2006, 28, 1695–1699.
2. Palomares, I.; Martínez, L.; Herrera, F. A Consensus Model to Detect and Manage Noncooperative Behaviors in Large-Scale

Group Decision Making. IEEE Trans. Fuzzy Syst. 2014, 22, 516–530. [CrossRef]
3. Zhou, Y.; Zheng, C.; Goh, M. Statistics-based approach for large-scale group decision-making under incomplete Pythagorean

fuzzy information with risk attitude. Knowl.-Based Syst. 2021, 235, 107654. [CrossRef]

http://doi.org/10.1109/TFUZZ.2013.2262769
http://dx.doi.org/10.1016/j.knosys.2021.107654


Mathematics 2022, 10, 2368 26 of 27

4. Wan, S.P.; Yan, J.; Dong, J.Y. Personalized individual semantics based consensus reaching process for large-scale group decision
making with probabilistic linguistic preference relations and application to COVID-19 surveillance. Expert Syst. Appl. 2021,
191, 116328. [CrossRef]

5. Qin, J.; Li, M.; Liang, Y. Minimum cost consensus model for CRP-driven preference optimization analysis in large-scale group
decision making using Louvain algorithm. Inf. Fusion 2022, 50, 121–136. [CrossRef]

6. Gou, X.; Xu, Z. Managing noncooperative behaviors in large-scale group decision-making with linguistic preference orderings:
The application in Internet Venture Capital. Inf. Fusion 2021, 69, 142–155. [CrossRef]

7. Du, Z.; Yu, S.M.; Xu, X. Managing noncooperative behaviors in large-scale group decision-making: Integration of independent
and supervised consensus-reaching models. Inf. Sci. 2020, 531, 119–138. [CrossRef]

8. Song, Y.; Hu, J. Large-scale group decision making with multiple stakeholders based on probabilistic linguistic preference relation.
Appl. Soft Comput. 2019, 80, 712–722. [CrossRef]

9. Li, Y.; Kou, G.; Peng, Y. Consensus reaching process in large-scale group decision making based on bounded confidence and
social network. Eur. J. Oper. Res. 2022, 303, 790—802. [CrossRef]

10. Choi, T.M.; Yue, C. Circular supply chain management with large scale group decision making in the big data era: The
macro-micro model. Technol. Forecast. Soc. Chang. 2021, 169, 120791. [CrossRef]

11. Li, X. Big data-driven fuzzy large-scale group decision making (LSGDM) in circular economy environment. Technol. Forecast. Soc.
Chang. 2022, 175, 121285.

12. Liao, H.; Wu, Z.; Tang, M.; Wan, Z. An interactive consensus reaching model with updated weights of clusters in large-scale
group decision making. Eng. Appl. Artif. Intell. 2022, 107, 104532. [CrossRef]

13. Li, S.; Wei, C. A two-stage dynamic influence model-achieving decision-making consensus within large scale groups operating
with incomplete information - ScienceDirect. Knowl.-Based Syst. 2020, 189, 105132. [CrossRef]

14. Cao, J.; Xu, X.; Yin, X.; Pan, B. A Risky Large Group Emergency Decision-making Method Based on Topic Sentiment Analysis.
Expert Syst. Appl. 2022, 195, 116527. [CrossRef]

15. Zhong, X.; Xu, X.; Pan, B. A non-threshold consensus model based on the minimum cost and maximum consensus-increasing for
multi-attribute large group decision-making. Inf. Fusion 2022, 77, 90–106. [CrossRef]

16. Zhong, X.; Xu, X.; Yin, X. A multi-stage hybrid consensus reaching model for multi-attribute large group decision-making:
Integrating cardinal consensus and ordinal consensus—ScienceDirect. Comput. Ind. Eng. 2021, 158, 107443. [CrossRef]

17. Li, S.; Wei, C. A large scale group decision making approach in healthcare service based on sub-group weighting model and
hesitant fuzzy linguistic information. Comput. Ind. Eng. 2020, 144, 106444. [CrossRef]

18. Gao, P.; Jing, H.; Xu, Y. A k-core decomposition-based opinion leaders identifying method and clustering-based consensus model
for large-scale group decision making. Comput. Ind. Eng. 2020, 150, 106842. [CrossRef]

19. Zheng, Y.; Xu, Z.; He, Y.; Tian, Y. A hesitant fuzzy linguistic bi-objective clustering method for large-scale group decision-making.
Expert Syst. Appl. 2021, 168, 114355. [CrossRef]

20. Rodríguez, R.M.; Labella, A.; Nunez Cacho, P.; Molina-Moreno, V.; Martínez, L. A comprehensive minimum cost consensus
model for large scale group decision making for circular economy measurement. Technol. Forecast. Soc. Chang. 2022, 175, 121391.
[CrossRef]

21. Rodríguez, R.M.; Labella, A.; Sesma-Sara, M.; Bustince, H.; Martínez, L. A Cohesion-driven Consensus Reaching Process for Large
Scale Group Decision Making under a Hesitant Fuzzy Linguistic Term Sets Environment. Comput. Ind. Eng. 2021, 155, 107158.
[CrossRef]

22. Zadeh, L.A. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 1996, 4, 103–111. [CrossRef]
23. Zadeh, L.A. From Computing with Numbers to Computing with Words. Ann. N. Y. Acad. Sci. 2001, 929, 221–252. [CrossRef]

[PubMed]
24. Rodríguez, R.M.; Martínez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 2012,

20, 109–119. [CrossRef]
25. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
26. Verma, R. Operations on hesitant fuzzy sets: Some new results. J. Intell. Fuzzy Syst. 2015, 29, 43–52. [CrossRef]
27. Hu, J.; Yang, Y.; Zhang, X.; Chen, X. Similarity and entropy measures for hesitant fuzzy sets. Int. Trans. Oper. Res. 2018,

25, 857–886. [CrossRef]
28. Rodríguez, R.M.; Martínez, L.; Herrera, F. A group decision making model dealing with comparative linguistic expressions based

on hesitant fuzzy linguistic term sets. Inf. Sci. 2013, 241, 28–42. [CrossRef]
29. Liu, H.; Rodríguez, R.M. A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision

making. Inf. Sci. 2014, 258, 220–238. [CrossRef]
30. Wang, H. Extended hesitant fuzzy linguistic term sets and their aggregation in group decision making. Int. J. Comput. Intell. Syst.

2015, 8, 14–33.
31. Rodríguez, R.M.; Martínez, L. An analysis of symbolic linguistic computing models in decision making. Int. J. Gen. Syst. 2013,

42, 121–136. [CrossRef]
32. Bonissone, P.P.; Decker, K.S. Selecting Uncertainty Calculi and Granularity: An Experiment in Trading-Off Precision and

Complexity. Mach. Intell. Pattern Recognit. 1986, 4, 217–247.
33. Mendel, J.M. Computing with words and its relationships with fuzzistics. Inf. Sci. 2007, 6, 988–1006. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2021.116328
http://dx.doi.org/10.1016/j.inffus.2021.11.001
http://dx.doi.org/10.1016/j.inffus.2020.12.003
http://dx.doi.org/10.1016/j.ins.2020.03.100
http://dx.doi.org/10.1016/j.asoc.2019.04.036
http://dx.doi.org/10.1016/j.ejor.2022.03.040
http://dx.doi.org/10.1016/j.techfore.2021.120791
http://dx.doi.org/10.1016/j.engappai.2021.104532
http://dx.doi.org/10.1016/j.knosys.2019.105132
http://dx.doi.org/10.1016/j.eswa.2022.116527
http://dx.doi.org/10.1016/j.inffus.2021.07.006
http://dx.doi.org/10.1016/j.cie.2021.107443
http://dx.doi.org/10.1016/j.cie.2020.106444
http://dx.doi.org/10.1016/j.cie.2020.106842
http://dx.doi.org/10.1016/j.eswa.2020.114355
http://dx.doi.org/10.1016/j.techfore.2021.121391
http://dx.doi.org/10.1016/j.cie.2021.107158
http://dx.doi.org/10.1109/91.493904
http://dx.doi.org/10.1111/j.1749-6632.2001.tb05718.x
http://www.ncbi.nlm.nih.gov/pubmed/11357866
http://dx.doi.org/10.1109/TFUZZ.2011.2170076
http://dx.doi.org/10.1002/int.20418
http://dx.doi.org/10.3233/IFS-151568
http://dx.doi.org/10.1111/itor.12477
http://dx.doi.org/10.1016/j.ins.2013.04.006
http://dx.doi.org/10.1016/j.ins.2013.07.027
http://dx.doi.org/10.1080/03081079.2012.710442
http://dx.doi.org/10.1016/j.ins.2006.06.008


Mathematics 2022, 10, 2368 27 of 27

34. Liu, F.; Mendel, J.M. Encoding Words Into Interval Type-2 Fuzzy Sets Using an Interval Approach. IEEE Trans. Fuzzy Syst. 2009,
16, 1503–1521. [CrossRef]

35. Wu, D.; Mendel, J.M.; Coupland, S. Enhanced Interval Approach for Encoding Words Into Interval Type-2 Fuzzy Sets and Its
Convergence Analysis. IEEE Trans. Fuzzy Syst. 2011, 20, 499–513.

36. Tahayori, H.; Sadeghian, A. Median interval approach to model words with interval type-2 fuzzy sets. Int. J. Adv. Intell. Paradig.
2012, 4, 313–336. [CrossRef]

37. Li, C.C.; Rodríguez, R.M.; Martínez, L.; Dong, Y.; Herrera, F. Personalized individual semantics based on consistency in hesitant
linguistic group decision making with comparative linguistic expressions. Knowl. Based Syst. 2018, 145, 156–165. [CrossRef]

38. Liu, Y.; Rodríguez, R.M.; Hagras, H.; Liu, H.; Qin, K.; Martínez, L. Type-2 fuzzy envelope of hesitant fuzzy linguistic term set: a
new representation model of comparative linguistic expression. IEEE Trans. Fuzzy Syst. 2019, 27, 2312–2326. [CrossRef]

39. Wu, Z.B.; Xu, J.P. Possibility distribution-based approach for MAGDM with hesitant fuzzy linguistic information. IEEE Trans.
Cybern. 2016, 46, 694–705. [CrossRef]

40. Pang, Q.; Wang, H.; Xu, Z. Probabilistic Linguistic Term Sets in Multi-Attribute Group Decision Making. Inf. Sci. 2016,
369, 128–143. [CrossRef]

41. Chen, Z.S.; Chin, K.S.; Li, Y.L.; Yang, Y. Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making.
Inf. Sci. 2016, 357, 61–87. [CrossRef]

42. Mendel, J.M. Type-2 fuzzy sets and systems: an overview. Comput. Intell. Mag. IEEE 2007, 2, 20–29. [CrossRef]
43. Mendel, J.M.; Hagras, H.; Bustince, H.; Herrera, F. Comments on “Interval Type-2 Fuzzy Sets are Generalization of Interval-Valued

Fuzzy Sets: Towards a Wide View on Their Relationship”. IEEE Trans. Fuzzy Syst. 2016, 24, 249–250. [CrossRef]
44. Mendel, J.M.; Rajati, M.R.; Sussner, P. On clarifying some definitions and notations used for type-2 fuzzy sets as well as some

recommended changes. Inf. Sci. 2016, 340, 337–345. [CrossRef]
45. Wu, D.; Mendel, J.M. A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2

fuzzy sets. Inf. Sci. 2008, 179, 1169–1192. [CrossRef]
46. Zadeh, L. The concept of a linguistic variable and its application to approximate reasoning-I, II, III. Inf. Sci. 1975, 8, 199–249.

301–357. 43–80. [CrossRef]
47. Mendel, J.M.; Zadeh, L.A.; Trillas, E.; Yager, R.; Lawry, J.; Hagras, H.; Guadarrama, S. What Computing with Words Means to Me

[Discussion Forum]. Comput. Intell. Mag. IEEE 2010, 5, 20–26. [CrossRef]
48. Wei, C.; Rodríguez, R.M.; Martínez, L. Uncertainty Measures of Extended Hesitant Fuzzy Linguistic Term Sets. IEEE Trans. Fuzzy

Syst. 2018, 26, 1763–1768. [CrossRef]
49. Fileva, D.; Yagerb, R.R. On the issue of obtaining OWA operator weights. Fuzzy Sets Syst. 1998, 94, 157–169. [CrossRef]
50. Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic—Theory and Applications; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995.
51. Lee, L.W.; Chen, S.M. Fuzzy multiple attributes group decision-making based on the extension of TOPSIS method and interval

type-2 fuzzy sets. In Proceedings of the 2008 International Conference on Machine Learning and Cybernetics, San Diego, CA,
USA, 11–13 December 2008; Volume 6, pp. 3260–3265.

52. Rodríguez, R.M.; Labella, Á.; Tré, G.D.; Martínez, L. A large scale consensus reaching process managing group hesitation.
Knowl.-Based Syst. 2018, 159, 86–97. [CrossRef]

53. Abbasbandy, S.; Hajjari, T. A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math. Appl. 2009, 57, 413–419.
[CrossRef]

http://dx.doi.org/10.1109/TFUZZ.2008.2005002
http://dx.doi.org/10.1504/IJAIP.2012.052074
http://dx.doi.org/10.1016/j.knosys.2018.01.011
http://dx.doi.org/10.1109/TFUZZ.2019.2898155
http://dx.doi.org/10.1109/TCYB.2015.2413894
http://dx.doi.org/10.1016/j.ins.2016.06.021
http://dx.doi.org/10.1016/j.ins.2016.04.006
http://dx.doi.org/10.1109/MCI.2007.380672
http://dx.doi.org/10.1109/TFUZZ.2015.2446508
http://dx.doi.org/10.1016/j.ins.2016.01.015
http://dx.doi.org/10.1016/j.ins.2008.12.010
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1109/MCI.2009.934561
http://dx.doi.org/10.1109/TFUZZ.2017.2724023
http://dx.doi.org/10.1016/S0165-0114(96)00254-0
http://dx.doi.org/10.1016/j.knosys.2018.06.009
http://dx.doi.org/10.1016/j.camwa.2008.10.090

	Introduction
	Preliminary
	PHFLTS
	Interval Type-2 Fuzzy Set
	Fuzzy Linguistic Approach
	Large-Scale Group Decision Making under a Linguistic Environment

	Entropy Measures of PHFLTS
	Type-1 Fuzzy Envelope of PHFLTS
	General Process
	Type-1 Fuzzy Envelope of PHFLTS Corresponding to Linguistic Expression ``between si and sj"
	Type-1 Fuzzy Envelope of PHFLTS Corresponding to Linguistic Expression ``at Least si"
	Type-1 Fuzzy Envelope of PHFLTS Corresponding to Linguistic Expression `` at Most si"
	A Strategy for Determining Parameter  in Uncertainty Evaluation for PHFLTS

	Type-2 Fuzzy Envelope of PHFLTS 
	Comparative Analysis: Type-1 and Type-2 Fuzzy Envelopes of PHFLTS

	An LS-GDM Approach Based on PHFLTS
	Problem Formulation
	Framework Overview
	Method Description

	Case Study: Application to Urban Renewal Plan Selection
	Problem Description
	Solution to the Sample Problem

	Conclusions and Future Works
	Appendix A
	References

