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Abstract: It is known that, to more adequately describe expert knowledge, it is necessary to go
from the traditional (type-1) fuzzy techniques to higher-order ones: type-2, probably type-3 and
even higher. Until recently, only type-1 and type-2 fuzzy sets were used in practical applications.
However, lately, it turned out that type-3 fuzzy sets are also useful in some applications. Because of
this practical importance, it is necessary to design efficient algorithms for data processing under such
type-3 (and higher-order) fuzzy uncertainty. In this paper, we show how we can combine known
efficient algorithms for processing type-1 and type-2 uncertainty to come up with a new algorithm
for the type-3 case.

Keywords: fuzzy techniques; type-2 fuzzy sets; type-3 fuzzy sets; data processing; Zadeh’s extension
principle; efficient algorithms
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1. Outline

Usual data processing algorithms treat data points as if they were exact. In practice,
data come with uncertainty. When data come from experts who describe their knowledge
by using imprecise (“fuzzy”) words from natural language, a natural way to describe the
corresponding uncertainty is to use fuzzy techniques. To get a more accurate representation
of expert uncertainty, it is necessary to use higher-order fuzzy techniques, i.e., go from the
usual [0, 1]-based type-1 techniques to type-2, type-3, and maybe even higher types. In
this paper, we describe efficient algorithms for data processing under such higher-order
fuzzy uncertainty.

The structure of this paper is as follows. In Section 2, we recall the need for data
processing. In Section 3, we recall the need for fuzzy techniques and for higher-order fuzzy
techniques. In Sections 4–6, we recall how data can be processed under type-1, interval
type-2, and general type-2 fuzzy uncertainty. Finally, in Section 7, we use these known
results to come up with new efficient algorithms for data processing under type-3 and
higher-order fuzzy uncertainty. Section 8 contains conclusions and plans for future work.

2. Why Data Processing

One of the main objectives of science is to describe the current state of the world and to
predict its future state. One of the main objectives of engineering is to design new buildings,
gadgets, and/or new algorithms to make this future better. To describe the state of the
world—and to describe the engineered objects—we need to list the numerical values of the
quantities that characterize different natural and artificial objects.

Mathematics 2022, 10, 2361. https://doi.org/10.3390/math10132361 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132361
https://doi.org/10.3390/math10132361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1244-1650
https://orcid.org/0000-0003-2587-4209
https://orcid.org/0000-0001-5798-1426
https://orcid.org/0000-0002-7385-5689
https://doi.org/10.3390/math10132361
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132361?type=check_update&version=2


Mathematics 2022, 10, 2361 2 of 15

Some quantities we can simply measure: we can directly measure the temperature
outside, we can directly measure the distance between the two nearby buildings, etc.
However, many quantities we cannot measure directly: e.g., we cannot directly measure the
distance to a faraway star or the amount of oil in a given oilfield. Furthermore, it is definitely
not possible to directly measure the future state—e.g., future temperature. To estimate such
a difficult-to-measure quantity y, a natural idea is to find easier-to-measure-or-estimate
quantities x1, x2, . . . that are related to the desired quantity y by a known dependence
y = f (x1, x2, . . .). Then, we can measure or estimate the quantities xi, and use the results ỹ
of measurement or estimation to estimate y as ỹ = f (x̃1, x̃2, . . .).

Computing this estimate, i.e., applying the algorithm f (x1, x2, . . .) to the results of
measurements and/or expert estimations is what is usually called data processing—see,
e.g., [1].

3. Need for Fuzzy Uncertainty and Need for Higher-Order Fuzzy Uncertainty
3.1. Need for Fuzzy Uncertainty

Often, estimates for xi come from experts, and experts rarely provide exact values.
Expert knowledge is usually formulated by using imprecise (“fuzzy”) words from natural
language. An experienced driver explaining their driving strategy will not say that in a
certain situation, you need to show down by exactly 5.0 km/h, he/she will probably say
“slow down a little bit”, or “slow down by about 5 km/h”.

We want to use this imprecise knowledge in computer-related data processing. The chal-
lenge is that computers were designed to process numbers, not words from natural language.
So, we need to transform expert statements into computer-understandable numerical form.
For this purpose, Lotfi Zadeh invented fuzzy techniques (see, e.g., [2–7]), where each imprecise
term like “small” is described by assigning, to each possible value x of the corresponding
quantity, the degree m(x)—from the interval [0, 1]—to which, according to the expert, this
value is small. The resulting function m(x) is known as the membership function or, alternatively,
as the fuzzy set. This original idea is also called type-1 fuzzy techniques.

Let us describe this idea in precise terms.

Definition 1 ([2–7]). Let U be a set. By a fuzzy subset of U, or, for short, a fuzzy set, we mean
a function m : U → [0, 1].

Usually, only normalized fuzzy sets are considered, i.e., fuzzy sets for which m(x0) for
some x0 ∈ U.

Definition 2 ([2–6]). A fuzzy set is called normalized if m(x0) = 1 for some x0.

3.2. Fuzzy Numbers

For most terms, the membership function first (non-strictly) increases from 0 and then
(non-strictly) decreases to 0. Such membership functions are known as fuzzy numbers.

Definition 3 ([2–7]). A fuzzy set m : IR → [0, 1] is called a fuzzy number if it satisfies the
following two conditions:

• We have m(x)→ 0 when x → −∞ and when x → +∞.
• There exists a number x0 such that m(x) is (non-strictly) increasing for x ≤ x0 and (non-

strictly) decreasing for x ≥ x0.

It should be mentioned that sometimes, an additional requirement is added to this
definition: that there exists an interval [x, x] such that m(x) = 0 for all values x outside
this interval.
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3.3. “And”- and “Or”-Operations (T-Norms and T-Conorms)

Expert rules often involve logical connectives like “and” and “or”. For example, a rule
can say that if a car in front of you is close and it slows down a little bit, then you should
break a little bit. Strictly speaking, in this case, we need to find out, for each pair consisting
of a distance value and a change-in-velocity value, the degree to which, for this pair, the
condition “a car in front of you is close and it slows down a little bit” is satisfied. In this
case, we may be able to do it, but, e.g., in medicine, we have rules with 5 or 6 different
conditions. Even if we only try 10 values for each of the 5–6 variables, this still means
asking 105 to 106 questions to an expert—this is not feasible. In such situations, to estimate
the degree of confidence in a composite statement A & B or A ∨ B, the only information we
have is the expert’s degrees of confidence a and b in the original statements A and B.

The algorithm f&(a, b) that estimates the degree of confidence in A & B based on this
information is known as an “and”-operation or, for historical reason, a t-norm.

Definition 4 ([2–6]). An “and”-operation (t-norm) is a function f& : [0, 1]× [0, 1] → [0, 1]
that satisfies the following properties for all a, b, a′, b′, and c:

• f&(a, b) = f&(b, a) (commutativity);
• f&(a, f&(b, c)) = f&( f&(a, b), c) (associativity);
• if a ≤ a′ and b ≤ b′, then f&(a, b) ≤ f&(a′, b′) (monotonicity);
• f&(0, a) = 0 and f&(1, a) = a.

Similarly, the algorithm f∨(a, b) that estimates the degree of confidence in A∨ B based
on this information is known as an “or”-operation or, for historical reason, a t-conorm.

Definition 5 ([2–6]). An “or”-operation (t-conorm) is a function f∨ : [0, 1]× [0, 1] → [0, 1]
that satisfies the following properties for all a, b, a′, b′, and c:

• f∨(a, b) = f∨(b, a) (commutativity);
• f∨(a, f∨(b, c)) = f∨( f∨(a, b), c) (associativity);
• if a ≤ a′ and b ≤ b′, then f∨(a, b) ≤ f∨(a′, b′) (monotonicity);
• f∨(0, a) = a and f∨(1, a) = 1.

The simplest, and frequently used, “and”- and “or”-operations are f&(a, b) = min(a, b)
and f∨(a, b) = max(a, b).

3.4. Operations on Fuzzy Sets

For usual sets, the intersection S1 ∩ S2 of two sets is the set of all of all elements that
belong to the first set S1 and that belong to the second set S2. Similarly, the union S1 ∪ S2
of two sets is the set of all of all elements that belong to the first set S1 or that belong
to the second set S2. Thus, once we have selected “and”- and “or”-operations, we can
define intersection and union of fuzzy sets m1(x) and m2(x) as, correspondingly, m∩(x) =
f&(m1(x), m2(x)) and m∪(x) = f∨(m1(x), m2(x)). In particular, for the usual choice of
f&(a, b) = min(a, b) and f∨(a, b) = max(a, b), we arrive at the following definitions:

Definition 6 ([2–7]). Let U be a set and let m1 : U → [0, 1] and m2 : U → [0, 1] be fuzzy
sets; then:

• by the intersection m∩ = m1 ∩m2 of these fuzzy sets, we mean the set m∩(x) = min(m1(x),
m2(x));

• by the union m∪ = m1∪m2 of these fuzzy sets, we mean the set m∪(x) = max(m1(x), m2(x)).

3.5. Data Processing under Fuzzy Uncertainty

Since fuzzy techniques are practically useful, it is desirable to develop efficient algo-
rithms for data processing under such uncertainty:
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• We know that the quantity-of-interest y is a function y = f (x1, x2, . . .) of several
auxiliary quantities x1, x2, . . .

• We also know, for each i, the membership function mi(xi) that describes, for each real
number xi, the degree to which this number is a possible value of the i-th input.

Based on this information, we want to describe, for each real number y, the degree
m(y) to which this number is a possible value of the quantity of interest.

To determine this degree, let us take into account that a value y is possible if y =
f (x1, x2, . . .) for some possible values xi. We know the degree mi(xi) to which each value
xi is possible. We can therefore use the min “and”-operation to describe, for each tuple
(x1, x2, . . .) for which y = f (x1, x2, . . .), the degree to which all its values are possible—i.e.,.
x1 is possible and x2 is possible, etc. —as min(m1(x1), m2(x2), . . .).

The value y if possible if either the first tuple (x1, x2, . . .) for which y = f (x1, x2, . . .)
is possible, or the second such tuple is possible, etc. We can therefore us the max “or”-
operation to estimate the degree to which y is possible as

m(y) = sup{min(m1(x1), m2(x2), . . .) : y = f (x1, x2, . . .)}. (1)

This formula was first described by Zadeh himself and is therefore known as Zadeh’s
extension principle.

Definition 7 ([2–6]). Let U1, U2, . . . , U be sets, let mi : Ui → [0, 1] be fuzzy sets, and let
f : U1 ×U2 × . . .→ U be a function. By the result m = f (m1, m2, . . .) of applying the function
f to fuzzy sets mi we mean a fuzzy set m : U → [0, 1] defined by the Equation (1).

3.6. Need for Type-2 Fuzzy Technique

The challenge with type-1 fuzzy technique is that similarly to the fact that an expert
cannot name the exact value of the quantity, the same expert cannot produce the exact
degree m(x). At best, the expert can provide an interval of possible values of this degree—
e.g., [0.6, 0.7]—or even a fuzzy statement like “the degree is close to 0.6”. So, a natural idea
is to allow the degree m(x) to be an interval—which leads to interval-valued fuzzy sets—or
even a fuzzy number corresponding to a statement like “the degree is close to 0.6”—this
leads to so-called type-2 fuzzy sets. In general, an interval [x, x] can be viewed as a fuzzy
set—the degree of confidence is 1 for all the values inside this interval and 0 for all the
values outside this interval. Thus, interval-values fuzzy sets are particular cases of type-2
fuzzy sets. Type-2 fuzzy sets—both interval-valued and general—turned out to be useful
in many applications, see, e.g., [4,8–12].

Definition 8 ([4,5]). Let U be a set, and let I denote the set of all subintervals [m, m] ⊆ [0, 1] of
the interval [0, 1]. By an interval-valued fuzzy subset of U, or, for short, an interval-valued
fuzzy set, we mean a function m : U → I.

In the interval-valued case, for each x, the expert-generated degree of confidence that
x has the desired property (e.g., is small) is an interval m(x) = [m(x), m(x)]. In the general
type-2 fuzzy case, we have the following definition.

Definition 9 ([4,5]). Let U be a set, and let F([0, 1]) denote the set of all fuzzy subsets of the
interval [0, 1]. By a type-2 fuzzy subset of U, or, for short, a type-2 fuzzy set, we mean a function
m : U → F([0, 1]).

In the general type-2 case, for each x and for each number t from the interval [0, 1], the
expert provides a degree to which this number t is a degree of confidence that x has the
desired property (like “small”). We will denote this degree by m(x, t).
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3.7. Operations on Interval-Valued and General Type-2 Fuzzy Sets

To describe union and intersection of interval-valued and general type-2 fuzzy sets, it
is natural to use formulas similar to formulas from Definition 6. To make sense of these
formulas, we need to describe what is the meaning of min(m1, m2) and max(m1, m2) for
the case when mi are both fuzzy sets—but that meaning is already provided by Definition 7,
for the case when U1 = U2 = U = [0, 1] and f (a, b) = min(a, b) or f (a, b) = max(a, b).
Thus, we arrive at the following definitions:

Definition 10 ([4,5]). Let U be a set and let m1 : U → F([0, 1]) and m2 : U → F([0, 1]) be
type-2 fuzzy sets; then:

• by the intersection m∩ = m1 ∩m2 of these type-2 fuzzy sets, we mean the type-2 fuzzy set
m∩(x) = min(m1(x), m2(x)), where, for each x, the result min(m1(x), m2(x)) of applying
the function f (a, b) = min(a, b) to fuzzy sets m1(x) and m2(x) is defined by Definition 7.

• by the union m∪ = m1 ∪ m2 of these type-2 fuzzy sets, we mean the set m∪(x) =
max(m1(x), m2(x)), where, for each x, the result max(m1(x), m2(x)) of applying the func-
tion f (a, b) = max(a, b) to fuzzy sets m1(x) and m2(x) is defined by Definition 7.

One can show that for interval-valued fuzzy sets, when mi(x) = [mi(x), mi(x)], the
resulting interval-valued membership functions m∩(x) and m∪(x) have the following form:

m∩(x) = [min(m1(x), m2(x)), min(m1(x), m2(x))];

m∪(x) = [max(m1(x), m2(x)), max(m1(x), m2(x))].

3.8. Data Processing under Type-2 Fuzzy Uncertainty

Since, as we have mentioned, type-2 fuzzy techniques are practically useful, it is
desirable to develop efficient algorithms for data processing under such uncertainty:

• We know that the quantity-of-interest y is a function y = f (x1, x2, . . .) of several
auxiliary quantities x1, x2, . . ..

• We also know, for each i, the membership function mi(xi) that describes, for each real
number xi, the (fuzzy-valued) degree to which this number is a possible value of the
i-th input.

Based on this information, we want to describe, for each real number y, the (fuzzy-
valued) degree m(y) to which this number is a possible value of the quantity of interest.

To describe the result of applying a function f (x1, x2, . . .) to type-2 fuzzy sets, it is
natural to use the same Equation (1) as for the usual (type-1) fuzzy sets. To make sense of
this formula, we need to describe what is the meaning of its right-hand side when the values
mi(xi) are themselves fuzzy sets—but that meaning is already provided by Definition 7.
Thus, we arrive at the following definition.

Definition 11 ([4]). Let U1, U2, . . . , U be sets, let mi : Ui → F([0, 1]) be type-2 fuzzy sets, and let
f : U1 ×U2 × . . .→ U be a function. By the result m = f (m1, m2, . . .) of applying the function
f to type-2 fuzzy sets mi we mean a fuzzy set m : U → F([0, 1]) defined by the Equation (1), in
which the right-hand side is understood according to Definition 7.

3.9. Need for Type-3 and Higher-Order Fuzzy Techniques

Similarly to the fact that an expert cannot describe their degree of confidence—that x
is small—by a single number, the same expert cannot describe their degree of confidence
that t is a degree of confidence that x is small by a single number. At best, the expert can
provide either an interval [m(x, t), m(x, t)] or a fuzzy number that describes this degree of
confidence. The fuzzy case is known as type-3 fuzzy technique, and the interval-valued case
is known as interval type-3.
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Definition 12 ([13]). Let U be a set, and let F2([0, 1]) denote the set of all type-2 fuzzy subsets of
the interval [0, 1]. By a type-3 fuzzy subset of U, or, for short, a type-3 fuzzy set, we mean a
function m : U → F2([0, 1]).

In the general type-3 case, for each value s from the interval [0, 1], we provide a
degree—denoted by m(x, t, s)—that s is degree of confidence in the statement “t is a degree
of confidence that x has the desired property”.

3.10. Operations on Type-3 Fuzzy Sets

To describe union and intersection of type-3 fuzzy sets, it is natural to use formulas
similar to formulas from Definition 6. To make sense of these formulas, we need to describe
what is the meaning of min(m1, m2) and max(m1, m2) for the case when mi are both type-2
fuzzy sets—but that meaning is already provided by Definition 11, for the case when
U1 = U2 = U = [0, 1] and f (a, b) = min(a, b) or f (a, b) = max(a, b). Thus, we arrive at the
following definitions:

Definition 13 ([13]). Let U be a set and let m1 : U → F2([0, 1]) and m2 : U → F2([0, 1]) be
type-3 fuzzy sets; then:

• by the intersection m∩ = m1 ∩ m2 of these type-3 fuzzy sets, we mean the type-3 fuzzy
set m∩(x) = min(m1(x), m2(x)), where, for each x, the result min(m1(x), m2(x)) of ap-
plying the function f (a, b) = min(a, b) to type-2 fuzzy sets m1(x) and m2(x) is defined
by Definition 11.

• by the union m∪ = m1 ∪m2 of these type-3 fuzzy sets, we mean the type-3 fuzzy set m∪(x) =
max(m1(x), m2(x)), where, for each x, the result max(m1(x), m2(x)) of applying the function
f (a, b) = max(a, b) to type-2 fuzzy sets m1(x) and m2(x) is defined by Definition 11.

3.11. Is This Worth Considering?

At first glance, the difference between type-2 and type-3 is so subtle and complicated
that one can doubt whether it is necessary to use type-3 in practical applications. Actually,
people doubted that type-2 would be practically useful—and, as we have mentioned,
it turned out that it is often useful. Similarly, it turned out that type-3 techniques are
also useful in many practical cases; see, e.g., [13,14] and references therein. Examples of
successful use of type-3 fuzzy techniques range from improving the quality of automatic
tuning of a television image [15] to more accurate stock market predictions [16].

It should be mentioned that current applications of type-3 fuzzy techniques only use
interval-valued type-3 fuzzy sets, i.e., function m : U → F2([0, 1]) for which, for every m,
the degree m(x) is an interval-valued fuzzy set. This limitation is caused largely by the fact
that processing general type-3 fuzzy sets has been, so far, computationally complicated.
This paper’s new efficient algorithm for processing type-3 fuzzy data will help make
general type-3 more feasible and will, thus, hopefully, will lead to useful applications of
general type-3 fuzzy sets.

3.12. Data Processing under Type-3 Fuzzy Uncertainty

Since, as we have mentioned, type-3 fuzzy techniques are practically useful, it is
desirable to develop efficient algorithms for data processing under such uncertainty.

• We know that the quantity-of-interest y is a function y = f (x1, x2, . . .) of several
auxiliary quantities x1, x2, . . . .

• We also know, for each i, the membership function mi(xi) that describes, for each real
number xi, the (type-2-fuzzy-valued) degree to which this number is a possible value
of the i-th input.

Based on this information, we want to describe, for each real number y, the (type-
2-fuzzy-valued) degree m(y) to which this number is a possible value of the quantity
of interest.
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To describe the result of applying a function f (x1, x2, . . .) to type-3 fuzzy sets, it is
natural to use the same Equation (1) as for type-1 and type-2 fuzzy sets. To make sense
of this formula, we need to describe what is the meaning of its right-hand side when the
values mi(xi) are themselves type-2 fuzzy sets—but that meaning is already provided by
Definition 11. Thus, we arrive at the following definition.

Definition 14. Let U1, U2, . . . , U be sets, let mi : Ui → F2([0, 1]) be type-3 fuzzy sets, and let
f : U1 ×U2 × . . .→ U be a function. By the result m = f (m1, m2, . . .) of applying the function
f to type-3 fuzzy sets mi we mean a fuzzy set m : U → F2([0, 1]) defined by Equation (1), in which
the right-hand side is understood according to Definition 11.

3.13. What about Higher Order Types?

Clearly, an expert cannot provide the exact degree m(x, t, s), so a natural idea is to
allow an expert to provide interval-valued of fuzzy degrees—which leads to type-4, where
for each real number r from the interval [0, 1], we ask the expert to describe their degree of
confidence m(x, t, s, r) that r is a proper value of m(x, t, s).

The expert cannot describe the precise value of m(x, t, s, r), so this value can also be
fuzzy—we get type-5, etc. We can have the following inductive definitions, that describe,
for every natural number L > 3, type-L fuzzy sets and operations on them in terms of
fuzzy sets of type (L− 1).

Definition 15. Let U be a set, and let FL−1([0, 1]) denote the set of all type-(L− 1) fuzzy subsets
of the interval [0, 1]. By a type-L fuzzy subset of U, or, for short, a type-L fuzzy set, we mean a
function m : U → FL−1([0, 1]).

Definition 16. Let U be a set and let m1 : U → FL−1([0, 1]) and m2 : U → FL−1([0, 1]) be
type-L fuzzy sets; then:

• by the intersection m∩ = m1 ∩m2 of these type-L fuzzy sets, we mean the type-L fuzzy set
m∩(x) = min(m1(x), m2(x)), where, for each x, the result min(m1(x), m2(x)) of applying
the function f (a, b) = min(a, b) to type-(L− 1) fuzzy sets m1(x) and m2(x) is defined by
Definition 14 (for L = 4) or Definition 17 (for other L).

• by the union m∪ = m1 ∪ m2 of these type-L fuzzy sets, we mean the type-L fuzzy set
m∪(x) = max(m1(x), m2(x)), where, for each x, the result max(m1(x), m2(x)) of applying
the function f (a, b) = max(a, b) to type-(L− 1) fuzzy sets m1(x) and m2(x) is defined by
Definition 14 (for L = 4) or Definition 17 (for other L).

Definition 17. Let U1, U2, . . . , U be sets, let mi : Ui → FL−1([0, 1]) be type-L fuzzy sets, and let
f : U1 ×U2 × . . .→ U be a function. By the result m = f (m1, m2, . . .) of applying the function
f to type-L fuzzy sets mi we mean a fuzzy set m : U → FL−1([0, 1]) defined by the Equation (1), in
which the right-hand side is understood according to Definition 14 (for L = 4) or according to this
same definition (for other L).

3.14. Need for Data Processing under Such Uncertainty

Since type-1, type-2, and type-3 fuzzy techniques are practically useful, it is desirable
to develop efficient algorithms for data processing under such uncertainty. Efficient al-
gorithms for type-1 and type-2 are known—we describe them in the following sections.
Efficient algorithms for type-3 case are described in the last section of this paper.

We do not know yet whether type-4, type-5, etc., will be practically useful, but the fact
that type-2 and type-3 turned out to be useful makes us think that it is quite probable that
higher-order fuzzy sets will be useful. So it makes sense to think of efficient algorithms for
these cases too, and this is what we will do in the same last section.
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4. Effective Algorithms for Data Processing under Type-1 Fuzzy
Uncertainty: Reminder
4.1. How to Actually Perform Data Processing: Analysis of the Problem

Straightforward computation of the Equation (1) requires solving a complex constraint
optimization problem—which is, in general, time-consuming. It is known, however, that
there are more efficient ways to compute m(y). These ways are related to the notion of
α-cuts of a fuzzy sets, which are defined, for each α ∈ (0, 1], as {x : m(x) ≥ α}. For fuzzy
numbers, each α-cut is an interval; we will denote it by x(α) = [m(α), m(α)].

For α = 0, we can use a slightly different formulation of the α-cut: it the closure
x(0) = {x : m(x) > 0} of the set {x : m(x) > 0}.

Definition 18 ([2–6]). Let U be a set, let m : U → [0, 1] be a fuzzy set, and let α ∈ [0, 1] be a real
number. Then, by the α-cut of m, we mean the following set:

• when α > 0, we take {x : m(x) ≥ α};
• when α = 0, we take {x : m(x) > 0}.

In the following text, for simplicity, we will only list the simpler formula which is
valid for α > 0, but, of course, for α = 0, we have to use the more complex formula.

Once we know all the α-cuts, we can reconstruct the membership function as m(x) =
sup{α : x ∈ x(α)}. In particular, if we know α-cuts for α = 0, 0.1, 0.2, . . . , 1.0, then we
can reconstruct m(x) with accuracy 0.1—which is usually sufficient, since experts rarely
produce their degree of confidence with higher accuracy. So, to find m(y), it is sufficient to
find the α-cuts y(α) for the corresponding 11 values α.

Because of the possibility to easily move from the usual representation of the mem-
bership function m(x) and its α-cut representation, sometimes the membership function is
stored by listing the corresponding α-cuts.

To find the α-cuts corresponding to the desired quantity y, we can take into ac-
count that the value m(y) as described by the Equation (1) is larger than or equal to α
if and only if for one of the tuples (x1, x2, . . .) for which y = f (x1, x2, . . . , ), we have
min(m1(x1), m2(x2), . . .) ≥ α. This inequality, in its turn, is equivalent to requiring
that mi(xi) ≥ α for all i. Thus, the α-cut for y is equal to the range of the function
y = f (x1, x2, . . .) when each xi is in the corresponding α-cut:

y(α) = f (x1(α), x2(α), . . .), (2)

where for each sets X1, X2, . . ., the range f (X1, X2, . . .) is defined as

f (X1, X2, . . .) def
= { f (x1, x2, . . .) : x1 ∈ X1, x2 ∈ X2, . . .}. (3)

The problem of computing the range of a function when each input is in a known inter-
val is known as the problem of interval computations; there are efficient general algorithms
for estimating this range, see, e.g., [17–20].

4.2. Comment

In some important cases, interval computation is easy, no general complex algorithms
are needed. For example, if the function f (x1, x2, . . .) is (non-strictly) increasing in each of
its variables, then the smallest value of this function on intervals Xi = [xi, xi] is attained
when each input xi is the smallest, i.e., when xi = xi for all i. Similarly, the largest value
of this function on intervals Xi = [xi, xi] is attained when each input xi is the largest, i.e.,
when xi = xi for all i. Thus,

f ([x1, x1], [x2, x2], . . .) = [ f (x1, x2, . . .), f (x1, x2, . . .)].
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4.3. Resulting Algorithm

• First, if the information about the inputs xi is stored in the form of the usual member-
ship functions mi(xi), we compute, for each i and for each value α ∈ {0, 0.1, . . . , 1.0},
the corresponding α-cut

xi(α) = {xi : mi(xi) ≥ α}.

(Recall that for α = 0, we will have to use a slightly more complex formula.)
• Then, for each value α from the above list, we use an interval computation algo-

rithm to compute the range y(α) = f (x1(α), x2(α), . . .). These ranges form the α-cut
representation of the desired membership function m(y).

• Finally, if we want to represent this membership function in the usual form, we
compute m(y) = max{α : y ∈ y(α)}.

4.4. How Many Computation Steps Do We Need

These computations need to be repeated for all α. So, if we use 11 values α =
0, 0.1, . . . , 1.0, then, to find the result of data processing under type-1 fuzzy uncertainty, we
need to apply an interval computations algorithm 11 times.

5. Data Processing under Interval-Valued Fuzzy Uncertainty: Reminder
5.1. Formulation of the Problem

In the interval-valued case, the relation between m(y) and mi(xi) is described by the
same Equation (1); the main difference is that now, values m(y) and mi(xi) are not numbers
but intervals.

The corresponding efficient algorithms are described in [21,22].

5.2. Interval Case: Analysis of the Problem

In the interval case, each value mi(xi) is an interval [mi(xi), mi(xi)]. The right-hand
side of the Equation (1) is a non-strictly increasing function of all the values mi(xi). Thus,
the desired range is equal to [m(y), m(y)], where

m(y) = sup{min(m1(x1), m2(x2), . . .) : y = f (x1, x2, . . .)} and

m(y) = sup{min(m1(x1), m2(x2), . . .) : y = f (x1, x2, . . .)}.

These are exactly formulas (1) for membership functions mi(xi) and mi(xi). So, to com-
pute each of the two bounds m(y) and m(y), we can use the efficient α-cut-based algorithm.

5.3. Interval Case: Resulting Algorithm

We are given interval-valued membership functions [mi(xi), mi(xi)].

• Based on each of these membership functions, for each i and for each value α from the
given list, we compute the orrepsonding α-cuts as:

xi(α) = {xi : mi(xi) ≥ α} and xi(α) = {xi : mi(xi) ≥ α}.

• We compute the α-cuts y(α) and y(α) for the endpoints m(y) and m(y) of the interval-
valued membership function [m(y), m(y)] as follows:

y(α) = f (x1(α), x2(α), . . .) and y(α) = f (x1(α), x2(α), . . .).

• Finally, the compute the endpoints m(y) and m(y) of the desired interval-valued
membership function [m(y), m(y)] as

m(y) = max{α : y ∈ y(α)} and m(y) = max{α : y ∈ y(α)}.
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5.4. How Many Computation Steps Do We Need

These computations need to be repeated for all α. So, if we use 11 values α =
0, 0.1, . . . , 1.0, then, to find the result of data processing under type-2 fuzzy uncertainty, we
need to apply an interval computations algorithm 2× 11 = 22 times.

6. Data Processing under General Type-2 Fuzzy Uncertainty: Reminder
6.1. Formulation of the Problem

In the general type-2 case, the relation between m(y) and mi(xi) is described by the
same Equation (1); the main difference is that now, values m(y) and mi(xi) are not numbers
but fuzzy sets.

The corresponding efficient algorithms are described in [21,22].

6.2. General Type-2 Case: Analysis of the Problem

In the general type-2 case, m(y) and mi(xi) are fuzzy numbers. In this case, we can use
the general type-1 result that the processing of fuzzy numbers is equivalent to computing
the ranges of the processing function on different α-cuts. In this case, the data processing is
described by the Equation (1).

To distinguish α-cuts of the original membership functions for xi and y and the α-cuts
of each fuzzy number m(y) and mi(xi), we will use the letter β for the new alpha-cuts.
Thus, we get the following for each β:

m(y)(β) = sup{min(m1(x1)(β), m2(x2)(β), . . .) : y = f (x1, x2, . . .)},

where
m(y)(β)

def
= {t : m(y, t) ≥ β} and mi(xi)(β)

def
= {t : mi(xi, t) ≥ β}.

For fuzzy numbers, β-cuts are intervals, and the corresponding relation (1) is increas-
ing. Thus, the above formula means that to get the lower endpoint m(y)(β) of a y’s β-cut,
we need to use only lower endpoints for β-cuts for xi, and similarly for the upper endpoints:

m(y)(β) = sup{min(m1(x1)(β), m2(x2)(β), . . .) : y = f (x1, x2. . . .)} and

m(y)(β) = sup{min(m1(x1)(β), m2(x2)(β), . . .) : y = f (x1, x2, . . .)}.

Each of these formulas is, in effect, Zadeh’s extension principle for the corresponding
membership functions. Thus, there formulas can be reformulated in terms of α-cuts of the
corresponding membership functions:

y(α, β) = f (x1(α, β), x2(α, β), . . .) and

y(α, β) = f (x1(α, β), x2(α, β), . . .),

where
y(α, β)

def
= {y : m(y)(β) ≥ α}, xi(α, β)

def
= {xi : mi(xi)(β) ≥ α},

y(α, β)
def
= {y : m(y)(β) ≥ α}, xi(α, β)

def
= {xi : mi(xi)(β) ≥ α}.

Hence, we arrive at the following algorithm:

6.3. General Type-2 Case: Resulting Algorithm

We start with type-2 membership functions mi(xi, t).

• First, for each i and for each value β from the given list, we compute the β-cuts

[mi(xi)(β), mi(xi)(β)]
def
= {t : mi(xi, t) ≥ β}.
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• Then, for each i and for each pair of values (α, β) from the given list, we compute
the α-cuts

xi(α, β)
def
= {xi : mi(xi)(β) ≥ α} and xi(α, β)

def
= {xi : mi(xi)(β) ≥ α}.

• For each α and β, we then use an interval computation algorithm to compute:

y(α, β) = f (x1(α, β), x2(α, β), . . .) and

y(α, β) = f (x1(α, β), x2(α, β), . . .).

• Based on these intervals, for each β, we compute

m(y)(β) = sup{α : y ∈ y(α, β)} and m(y)(β) = sup{α : y ∈ y(α, β)}.

• Finally, we compute the desired membership function

m(y, t) = max{β : t ∈ [m(y)(β), m(y)(β)]}.

6.4. How Many Computation Steps Do We Need

These computations need to be repeated for all α and β. So, if for each of these two
parameters, we use 11 values α, β = 0, 0.1, . . . , 1.0, then, to find the result of data processing
under type-2 fuzzy uncertainty, we need to apply an interval computations algorithm
2× 112 = 242 times.

7. Data Processing under Type-3 (and Higher Order) Fuzzy Uncertainty:
A New Algorithm
7.1. Formulation of the Problem

Let us show the above type-2 algorithms can be used to come with an efficient algo-
rithm for the type-3 case.

7.2. Type-3 Case: Analysis of the Problem

In the type-3 case, each value m(y) and mi(xi) is a type-2 fuzzy set. Thus, we have the
relation (1) between these type-2 fuzzy sets. So, based on the algorithm presented in the
previous section, for each pair of values β and γ from the interval [0, 1], we have:

m(y)(β, γ) =

sup{min(m1(x1)(β, γ), m2(x2)(β, γ), . . .) : y = f (x1, x2, . . .)} (4)

and
m(y)(β, γ) =

sup{min(m1(x1)(β, γ), m2(x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (5)

where
m(y)(β, γ) = [m−(y)(β, γ), m+(y)(β, γ)]

def
= {t : m(y, t)(γ) ≥ β},

mi(xi)(β, γ) = [m−i (xi)(β, γ), m+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β},

m(y)(β, γ) = [m−(y)(β, γ), m+(y)(β, γ)]
def
= {t : m(y, t)(γ) ≥ β},

mi(xi)(β, γ) = [m−i (xi)(β, γ), m+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β},

and
[m(y, t)(γ), m(y, t)(γ)] def

= {s : m(y, t, s) ≥ γ},

[mi(xi, t)(γ), mi(xi, t)(γ)] def
= {s : mi(xi, t, s) ≥ γ}.
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The corresponding transformation (1) is non-strictly increasing, thus the
Equations (4) and (5) lead to similar relations between endpoints of the
corresponding intervals:

m−(y)(β, γ) =

sup{min(m−1 (x1)(β, γ), m−2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (6)

m+(y)(β, γ) =

sup{min(m+
1 (x1)(β, γ), m+

2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (7)

m−(y)(β, γ) =

sup{min(m−1 (x1)(β, γ), m−2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}, (8)

m+(y)(β, γ) =

sup{min(m+
1 (x1)(β, γ), m+

2 (x2)(β, γ), . . .) : y = f (x1, x2, . . .)}. (9)

Each of the Equations (6)–(9) is, in effect, Zadeh’s extension principle for the corre-
sponding membership functions. Thus, there formulas can be reformulated in terms of
α-cuts of the corresponding membership functions:

y−(α, β, γ) = f (x−1 (α, β, γ), x−2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+1 (α, β, γ), x+2 (α, β, γ), . . .),

y−(α, β, γ) = f (x−1 (α, β, γ), x−2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+
1 (α, β, γ), x+

2 (α, β, γ), . . .),

where

y−(α, β, γ)
def
= {y : m−(y)(β, γ) ≥ α}, x−i (α, β, γ)

def
= {xi : m−i (xi)(β, γ) ≥ α},

y+(α, β, γ)
def
= {y : m+(y)(β, γ) ≥ α}, x+i (α, β, γ)

def
= {xi : m+

i (xi)(β, γ) ≥ α},

y−(α, β, γ)
def
= {y : m−(y)(β, γ) ≥ α}, x−i (α, β, γ)

def
= {xi : m−i (xi)(β, γ) ≥ α},

y+(α, β, γ)
def
= {y : m+(y)(β, γ) ≥ α}, x+

i (α, β, γ)
def
= {xi : m+

i (xi)(β, γ) ≥ α}.

Hence, we arrive at the following algorithm.

7.3. Type-3 Case: Resulting Algorithm

We start with type-3 membership functions mi(xi, t, s).

• First, for every i and for all γ from the selected list of values, we compute:

[mi(xi, t)(γ), mi(xi, t)(γ)] def
= {s : mi(xi, t, s) ≥ γ}.

• Then, for each i, β, and γ, we compute:

[m−i (xi)(β, γ), m+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β} and

[m−i (xi)(β, γ), m+
i (xi)(β, γ)]

def
= {t : mi(xi, t)(γ) ≥ β}.

• Then, for each i, α, β, and γ, we compute

x−i (α, β, γ)
def
= {xi : m−i (xi)(β, γ) ≥ α},

x+i (α, β, γ)
def
= {xi : m+

i (xi)(β, γ) ≥ α},

x−i (α, β, γ)
def
= {xi : m−i (xi)(β, γ) ≥ α},
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x+
i (α, β, γ)

def
= {xi : m+

i (xi)(β, γ) ≥ α}.

• For each α, β, and γ, we then use an interval computation algorithm to compute:

y−(α, β, γ) = f (x−1 (α, β, γ), x−2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+1 (α, β, γ), x+2 (α, β, γ), . . .),

y−(α, β, γ) = f (x−1 (α, β, γ), x−2 (α, β, γ), . . .),

y+(α, β, γ) = f (x+
1 (α, β, γ), x+

n (α, β, γ), . . .).

• Next, for each y, β, and γ, we compute

m−(y)(β, γ) = max{α : y ∈ y−(α, β, γ)},

m+(y)(β, γ) = max{α : y ∈ y+(α, β, γ)},

m−(y)(β, γ) = max{α : y ∈ y−(α, β, γ)},

m+(y)(β, γ) = max{α : y ∈ y+(α, β, γ)}.

• For each y, t, and γ, we compute

m(y, t)(γ) = max{β : t ∈ [m−(y)(β, γ), m+(y)(β, γ)]} and

m(y, t)(γ) = max{β : t ∈ [m−(y)(β, γ), m+(y)(β, γ)]}.

• Finally, for all y, t and s, we compute

m(y, t, s) = max{γ : s ∈ [m(y, t)(γ), m(y, t)(γ)]}.

7.4. What about Higher Order Fuzzy Sets?

In this section, we showed how processing type-2 fuzzy information can be used
to processing type-2 fuzzy information. This reduction was based on the fact that in the
type-3 case, each value m(y) and mi(xi) is a type-2 fuzzy set. Thus, we have the relation (1)
between these type-2 fuzzy sets.

Similarly, in the type-4 case, each value m(y) and mi(xi) is a type-3 fuzzy set. Thus, we
have the relation (1) between these type-3 fuzzy sets—and we can use the above algorithm
to process these values. Similarly, for every level L, in the type-L case, each value m(y) and
mi(xi) is a type-(L− 1) fuzzy set. Thus, we have the relation (1) between these type-(L− 1)
fuzzy sets. This way, we can reduce processing type-L fuzzy sets to processing type-(L− 1)
fuzzy sets; similarly, we can reduce processing type-(L− 1) fuzzy sets to processing type-
(L− 2) fuzzy sets, etc., until we get to the known algorithms for processing type-1 and
type-2 fuzzy sets.

7.5. How Many Computational Steps Do We Need

The only (minor) problem with processing type-3 and higher-order fuzzy sets is that
as we go to higher and higher order, the computational complexity increases. Indeed:

• For type-1, for each y, the desired information m(y) consists of a single number. In
this case, if we use 11 values of α, we need to use an interval computation algorithm
11 times.

• For type-2, for each y, we need to find the values m(y, t) corresponding to different
values t ∈ [0, 1]. If we use 11 values for t, we thus need at least 11 times more
computations than in the type-1 case—and indeed, we need order of 11× 11 calls to
an interval computation algorithm—namely, 2× 112 calls.

• For type-3, for each y, we need to find the values m(y, t, s) corresponding to different
values t, s ∈ [0, 1]. If we use 11 values of each of the variables t and s, we thus need at
least 112 times more computations than in the type-1 case—and indeed, we need order
of 112 × 11 = 113 calls to an interval computation algorithm—namely, 22 × 113 calls.
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• In general, for type-L, for each y, we need to find the values m(y, t1, . . . , tL−1) cor-
responding to different values t1,×, tL−1 ∈ [0, 1]. If we use 11 values for each of
the variables ti, we thus need at least 11L−1 times more computations than in the
type-1 case—and indeed, as one can show by induction over L, we need order of
11L−1× 11 = 11L calls to an interval computation algorithm—namely, 2L−1× 11L calls.

8. Conclusions and Future Work
8.1. Conclusions

Usual data processing algorithms treat data points as if they were exact. In practice,
data come with uncertainty. When data come from experts who describe their knowledge
by using imprecise (“fuzzy”) words from natural language, a natural way to describe the
corresponding uncertainty is to use fuzzy techniques. To get a more accurate representation
of expert uncertainty, it is necessary to use higher-order fuzzy techniques, i.e., go from the
usual [0, 1]-based type-1 techniques to type-2, or even to higher-order: type-3 etc.

In many practical applications, the use of type-2 fuzzy uncertainty leads to better
results. To more efficiently handle such situations, efficient algorithms have been proposed,
and used, for data processing under type-2 fuzzy uncertainty.

Recently, it has been shown that in several applications, the use of type-3 fuzzy tech-
niques leads to further improvements. In view of these successes, it has become necessary
to develop efficient algorithms for data processing under such uncertainty. In this paper,
we show how to use the existing efficient type-2 algorithms to design efficient algorithms
for data processing under type-3 (and, if needed, higher-order) fuzzy uncertainty.

8.2. Future Work

Now that an efficient algorithm for data processing under general type-2 fuzzy un-
certainty has been designed, a natural next step is to implement it and to apply it to
different practical situations—with hope that in some of these applications it will lead to
better results.

It is also desirable to take into account that, in addition to fuzzy techniques, there are
many other techniques for representing and processing uncertainty. Many of these tech-
niques have been successfully combined with type-1 and even type-2 fuzzy sets to produce
even more adequate results. For example, type-2 fuzzy techniques have been successfully
combined with rough sets; see, e.g., [23–27]. In view of these successes, it is desirable to try
to combine type-3 fuzzy approach with these alternative uncertainty techniques.
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