
Citation: Alfaro-Garcia, V.G.;

Blanco-Mesa, F.; León-Castro, E.;

Merigo, J.M. Bonferroni Weighted

Logarithmic Averaging Distance

Operator Applied to Investment

Selection Decision Making.

Mathematics 2022, 10, 2100. https://

doi.org/10.3390/math10122100

Academic Editors: José Álvarez-García,

María de la Cruz del Río-Rama and

Mar Arenas-Parra

Received: 18 May 2022

Accepted: 14 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Bonferroni Weighted Logarithmic Averaging Distance Operator
Applied to Investment Selection Decision Making
Victor G. Alfaro-Garcia 1 , Fabio Blanco-Mesa 2 , Ernesto León-Castro 3,* and Jose M. Merigo 4

1 Facultad de Contaduría y Ciencias Administrativas, Universidad Michoacana de San Nicolas de Hidalgo,
Gral. Francisco J. Múgica S/N, C.U., Morelia 58030, Mexico; victor.alfaro@umich.mx

2 Facultad de Ciencias Económicas y Administrativas, Escuela de Administración de Empresas,
Universidad Pedagógica y Tecnológica de Colombia, Tunja 150001, Colombia; fabio.blanco01@uptc.edu.co

3 Faculty of Economics and Administrative Sciences, Universidad Católica de la Santísima Concepción, Av.
Alonso de Ribera 2850, Concepción 4030000, Chile

4 Department of Management Control and Information Systems, School of Economic and Business,
University of Chile, Av. Diagonal Paraguay, 257, Santiago 8330015, Chile; jose.merigo@uts.edu.au

* Correspondence: eleon@ucsc.cl

Abstract: Distance measures in ordered weighted averaging (OWA) operators allow the modelling of
complex decision making problems where a set of ideal values or characteristics are required to be met.
The objective of this paper is to introduce extended distance measures and logarithmic OWA-based
decision making operators especially designed for the analysis of financial investment options. Based
on the immediate weights, Bonferroni means and logarithmic averaging operators, in this paper
we introduce the immediate weights logarithmic distance (IWLD), the immediate weights ordered
weighted logarithmic averaging distance (IWOWLAD), the hybrid weighted logarithmic distance
(HWLD), the Bonferroni ordered weighted logarithmic averaging distance (B-OWLAD) operator,
the Bonferroni immediate weights ordered weighted logarithmic averaging distance (B-IWOWLAD)
operator and the Bonferroni hybrid weighted logarithmic distance (HWLD). A financial decision
making illustrative example is proposed, and the main benefits of the characteristic design of the
introduced operators is shown, which include the analysis of the interrelation between the modelled
arguments required from the decision makers and the stakeholders, and the comparison to an ideal set
of characteristics that the possible companies in the example must portray. Moreover, some families,
particular cases and brief examples of the proposed operators, are studied and presented. Finally,
among the main advantages are the modeling of diverse perspectives, attitudinal characteristics and
complex scenarios, through the interrelation and comparison between the elements with an ideal set
of characteristics given by the decision makers and a set of options.

Keywords: logarithmic averaging operators; distance measures; immediate weights; Bonferroni
means; OWA operators

MSC: 03B52; 90B50; 47S40

1. Introduction

The rapid advancement of fuzzy methods for analyzing and solving different analysis
problems highlights applications in decision making processes in highly changing and
complex environments [1–3]. Among the methods, it can highlight the characteristic objects
method (COMET), which allows one to determine the preferences of each alternative
considering the distance between the objects to be evaluated [4–6]. In addition, the TOPSIS
method provides solutions to linear cases, since it allows one to rank the alternatives
by considering two reference points of the positive ideal solution and the negative ideal
solution, simultaneously [7,8]. Following the same idea, an extension called the DARIA-
TOPSIS method has been proposed, which provides aggregated efficiency results of the
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performance of the evaluated alternatives, taking into account the dynamics of the changes
over the time interval under investigation [9]. Likewise, the Stable Preference Ordering
Towards Ideal Solution (SPOTIS) method allows preference ordering, established from the
scoring matrix of the MCDM problem, considering the comparisons with respect to the
chosen ideal solution by transforming the original incomplete problem into a well-defined
one by specifying the minimum and maximum bounds of each criterion involved in the
problem [10]. Finally, within these methods for decision making, aggregation operators
are considered, which offer us the obtention of a single representative value of a set
of elements [11,12]. Thus, these new approaches are of great help to parameterize the
criteria of the decision maker and give greater relevance to the meaning of the information
than in its own measurement [13]. Among the existing aggregation operators in the
literature [14], the ordered weighted average (OWA) operator [15] stands out. It has been
widely accepted by the scientific community and multiple extensions and applications
have been developed [16].

The newly introduced operator aggregates information combining a weighting vector
and mechanism that reorders the arguments depending on diverse criteria and the attitudi-
nal nature of the decision maker. Several extensions of aggregation operators have been
proposed since the original presentation of the ordered weighted average OWA operator,
many extensions have also been proposed, including induced operators [17–19], heavy
and prioritized [20–22] distances [23], linguistic operators [24], moving averages [25,26],
Bonferroni means [27] and logarithmic averaging operators [28,29].

Given that there is a wide range of operators and extensions, this study focuses on
the proposals for extensions and applications with Bonferroni means [30,31] and the OWA
operator [15] related to decision making in business management [32]. The characteristic
design of the Bonferroni mean allows compensation for potential errors when dealing
with multiple comparisons. The compensation is constructed with the included r and
q elements, these correct possible errors when addressing multiple comparisons, thus
adjusting the analyzed data set [33]. Within these proposals, distance measures applied
by personnel selection and entrepreneurship are highlighted, which allow one to have
a threshold in the comparison process, the distance and the weighted order reflect the
importance of the argument and its ordered position; they consider the degree of importance
of the information in the ordering [34]. In addition, induced variables are applied on sale
forecasting and enterprise risk management, which allow one to reorder the information
by using order-inducing variables to obtain the maximum and minimum operators and
deal with heterogeneity and uncertainty by information asymmetry [35]. Furthermore,
central tendency measures such as variance and covariance are applied on the enterprise
risk management strategy and the R&D investment problem [33], which allow, on the
one hand, to adjust the variance and the standard deviation depending on the behavior,
attitude and intuition of the decision makers, offering the alternative of a soft variance. On
the other hand, one can generate a wider representation of the possible scenarios when
it is under- or over-estimating the covariance and value of the set of joint variations for
which the best result is close to 1 or −1. Additionally, probability is applied to agricultural
commodities price [36], which can be used to create scenarios in uncertainty using a Vi

vector that intercorrelates the arguments, and a weighted and probability vector that
represents the attitude and expectancy of the decision maker towards a problem.

Motivated by these studies above, this study presents a new extension to logarith-
mic averaging operators, which have been studied by [28] with the generalized ordered
weighted logarithm averaging (GOWLA) operator and by [29] with ordered weighted loga-
rithmic averaging distance (OWLAD). The aim of this paper is to introduce an extension
of the OWA operator that combines Bonferroni means and the logarithmic aggregation
operator called the Bonferroni ordered weighted logarithmic average (B-OWLA) opera-
tor. Likewise, some other extensions using distance measures, such as Bonferroni hybrid
weighted logarithmic distance (B-HWLD), Bonferroni ordered weighted logarithmic aver-
age distance (B-OWLAD) and Bonferroni immediate weights OWA logarithmic distance
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(B-IWOWLAD), are proposed. The novelty of the paper is the aggregation of multiple
criteria capturing the interrelation between arguments and comparisons between an ideal
and a real possibility using logarithmic distances. A mathematical example focused on the
investing decision making problem is proposed, and different rankings are generated de-
pending on the analyzed operator. The main observed benefits are the modelling of diverse
perspectives, attitudinal characteristics and different scenarios, including the interrelation
between the elements and the comparison to an ideal set of characteristics retrieved from
the decision makers’ requirements and the performance of the possible set of options.

The paper is structured as follows: Section 2 presents the preliminaries and foun-
dations of the OWA operator, and the ordered weighted logarithmic average (OWLA)
operator. Section 3 introduces the B-OWLA operator and its main characteristics and
properties. Section 4 presents a mathematical application of investment selection decision
making using the proposed operators. Finally, the conclusions of the paper are presented
in Section 5.

2. Preliminaries

This section presents the foundations of this study. We examine some basic defini-
tions of distance measures and OWA operators, Bonferroni operators, immediate weights,
logarithmic averaging operators and some of their extensions.

2.1. Distance Measures

The Hamming distance [37] calculates the differences between two elements, sets or
strings. For sets A and B, the weighted Hamming distance is defined as follows.

Definition 1. A weighted Hamming distance of dimension n results from a mapping
dWH : [0, 1]n × [0, 1]n → [0, 1] that has an associated weighing vector W of dimension n with
the sum of the weights being 1 and wj ∈ [0, 1], such that:

dWH(〈x1, y1〉, . . . , 〈xn, yn〉) =
n

∑
j=1

wj|xi − yi|, (1)

where xi and yi are the ith arguments of the sets X and Y.

2.2. OWA Operators and Other Extensions

In [15], the authors proposed the ordered weighted average operator (OWA), which
allows one to aggregate information using a weighting vector and reordering mechanism
according to different criteria and the attitudinal character of the decision maker.

Definition 2. An OWA operator of n dimension results from a mapping OWA : Rn → R associ-
ated to a weighting vector W of n dimension, such that ∑n

j=1 wj = 1 and wj ∈ [0, 1] according to:

OWA(a1, a2, . . . , an) =
n

∑
j=1

wjbj, (2)

where bj is the jth major element of the ai collection.

In [38], the authors proposed the OWAD operator.

Definition 3. An OWAD operator of dimension n is a mapping OWAD : [0, 1]n × [0, 1]n → [0, 1]
with a characteristic weighting vector W, such that ∑n

j=1 wj = 1 and wj ∈ [0, 1], according to:

OWAD(〈x1, y1〉, . . . , 〈xn, yn〉) =
n

∑
j=1

wjDj, (3)
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where Dj represents the jth largest of the |xi − yi|.

Definition 4. An OWLAD operator of dimension n is a mapping OWLAD : Ωn ×Ωn → Ω
that has an associated weighting vector W, with ∑i wi = 1 and wi ∈ [0, 1], such as:

OWLAD(x1, y1, x2, y2, . . . , xn, yn,) = exp

{
n

∑
j=1

wi ln Dj

}
, (4)

where Dj represents the jth largest of |xi − yi| over all i and |xi − yi| is the argument variable,
which is represented in the form of individual distances.

The Bonferroni mean was proposed by [30] and it allows one to use multiple aggrega-
tion criteria that use the product of the means of two elements ai and aj, thus capturing the
interrelation among the arguments. This procedure is performed to implement satisfac-
tion criteria [39]. Rearranging the terms following [27], we can formulate the Bonferroni
mean as:

B(a1, a2, . . . , an) =

(
∑n

k=1 ar
k

(
1

1− n ∑n
j=1;j 6=k aq

j

)) 1
r+q

, (5)

where r and q are parameters such that r, q ≥ 0 and the arguments a ≥ 0.

Definition 5. Let W be an OWA weighting vector of dimension n− 1 with components wi ∈ [0, 1]
when ∑i wi = 1. Following, we define this procedure as OWAW

(
Vi) = (∑n−1

j=1 wiaπk(j)

)
, where

aπk(j) is the largest element in the n − 1 tuple Vi = (a1, . . . , ai−1, ai+1, . . . , an). The Bonferroni
OWA [27] is a mean-type aggregation operator and is defined following:

B−OWA(a1, . . . , an) =

(
1
n

n

∑
i

ar
i OWAw

(
Vi
)) 1

r+q

, (6)

where
(
Vi) is the vector of all aj except ai.

Following the studies in Bonferroni means, several extensions are proposed as has
occurred with distance measures; in that sense, one of them is B-OWAD [40].

Definition 6. A B-OWAD distance for sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} is
defined by:

B-OWAD(〈x1, y1〉, . . . , 〈xn, yn〉) =
(

1
n

n

∑
i

Dr
i OWADwi

(
Vi
)) 1

r+q

, (7)

where OWADwi

(
Vi) = ( 1

n−1 ∑n
j=1
j 6=i

Dq
j

)
with

(
Vi) is the vector for all

∣∣xj − yj
∣∣ with exception

to |xi − yi| also, ωi is a n − 1 vector Wi associated to αi, which components wij are the OWA
weights. Likewise, Di is the kth smallest of the individual distance |xi − yi|.

3. Bonferroni Ordered Weighted Logarithmic Average (B-OWLA) Operator and
Distance Measurement

The objective of the present paper to propose an extension to the OWA operator defined
as the Bonferroni ordered weighted logarithmic average (B-OWLA) operator and distance
measure. Initially, the proposals are presented considering the immediate weighted OWA
logarithmic distance and then in combination with the Bonferroni mean.

Based on this definition and using OWLAD [29], a new extension is formulated, called
the IWOWLAD operator.
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Definition 7. An IWOWLAD operator of dimension n is a mapping IWOWLAD : Ωn ×Ωn → Ω
that has an associated weighted vector W of dimension n wj ∈ [0, 1] and ∑n

j=1 wj = 1, such that:

IWOWLAD(〈x1, y1〉, . . . , 〈xn, yn〉) = exp

{
n

∑
j=1

v̂j
(
lnbj

)}
, (8)

where bj is the jth largest of |xi − yi|, each |xi − yi| has an associated WA vi, vj is the associated WA of

bj, and v̂j =
(

wjvj/ ∑n
j=1 wjvj

)
. From ln|xi − yi| ≥ 0, it follows that exp (ln|xi − yi|) ≥ exp(0).

Thus, ln|xi − yi| ≥ 1.

Example 1. Let X = (9, 7, 11) and Y = (17, 18, 13) be two sets of arguments.
vj = (0.12, 0.09, 0.13) is the weighting vector associated with WA and wi is the weighting
vector of the argument ln|xi − yi| associated with αi whose component is vij. Here we shall let
α1 = 0.26, α2 = 0.31 and α3 = 0.43. In addition: V1 = |11–13| V2 = |9–17| and V3 = |7–18|.
In addition: ∑n

j=1 wivj = (0.26× 0.12) + (0.31× 0.09) + (0.43× 0.13) = 0.115. Using this
we get:

IWOWLAD = exp
(

0.12× 0.26
0.115

× ln|11–13|+ 0.09× 0.31
0.115

× ln|9–17|+ 0.13× 0.43
0.115

× ln|7–18|
)

IWOWLAD = 7.855

Definition 8. The HWLD operator of dimension n is a mapping HWLD : Ωn ×Ωn → Ω with
an associated weighting vector V, such that ∑n

j=1 vj = 1, vj ≥ 0 vj ∈ [0, 1] and a W characteristic
weighting vector of the argument |xi − yi|, with ∑n

j=1 wj = 0, wj ≥ 0 wj ∈ [0, 1] and m is a
balancing coefficient, defined as:

HWLD(x, y) = exp

{
n

∑
j=1

vj∆ ln
(

xσ(j), yσ(j)

)} 1
λ

, λ > 0, (9)

where ∆
(

xσ(j), yσ(j)

)
is the jth largest of weighted arguments ∆ ln

(
xj, yj

)
. Here ∆ ln

(
xj, yj

)
=

mwi ln|xi − yi|λ, i = 1, 2, . . . n. From ln|xi − yi|λ ≥ 0, it follows that exp (ln|xi − yi|λ) ≥ exp(0).
Thus, |xi − yi|λ ≥ 1.

Example 2. Let X = (9, 7, 11) and Y = (17, 18, 13) be two sets of arguments.
vi = (0.12, 0.09, 0.13) is the weighting vector associated with HWLD and wi is the weight-
ing vector of the argument |xi − yi| associated with αi, whose component is vij; this value is
specified by a value αi. Here we shall let α1 = 0.26, α2 = 0.31 and α3 = 0.43. We take λ = 1. In
addition: V1 = |11–13| V2 = |9–17| and V3 = |7–18|. Using this we get:

HWLDv1

(
V1) = exp((3× 0.09× 0.26× ln|11–13|) + (3× 0.12× 0.31× ln|9–17| )

+(3× 0.13× 0.43× ln|7–18|))1/1

HWLD = exp(0.0648 + 0.1740 + 0.4021) = 1.898

To this point, the proposed extensions combine the features of the immediate weighted
OWA, logarithmic and distance measures. For HWLD, it considers the simplification of
large values and the importance of the argument and the weight on the ordered position of
each value rather than the importance of each value itself. For IWOWLAD, the ordered
weighted mean considers the degree of importance of the simplified information. Both
consider the comparison between an ideal scenario and the actual conditions.
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Definition 9. The Bonferroni OWLA operator of dimension n is a mapping B-OWLA : Ωn×Ωn → Ω
with a weighting vector W associated, such that ∑i wi = 1 and wi ∈ [0, 1], following:

B-OWLA(a1, . . . , an) = exp

(
1
n

n

∑
j=1

ln(ar
i )
(

OWLAw

(
Vi
))) 1

r+q

, (10)

where
(
OWLAW

(
Vi)) = ( 1

n−1 ∑n
j=1
j 6=i

ln(aq
j )

)
with

(
Vi) being the vector of all aj with exception

to ai and w is a n− 1 vector Wi associated with αi which component wij is the OWA weight. Here
W is an OWA weighing vector of dimension n− 1 which components wi ∈ [0, 1] when ∑i wi = 1.
Here, we can define OWAW

(
Vi) = (

∑n−1
j=1 wi ln(aπk(j))

)
, where aπk(j) is the largest element in

the tuple wi =
1

n−1 for all i and Vi.

Example 3. Let X = (7, 9, 11) be the set of arguments. wi is the weighting vector of the argument
xi associated with αi with component vij. Here we shall let α1 = 0.26,
α2 = 0.31 and α3 = 0.43. We take r = q = 0.5. Using this we get:

OWLA1 = (0.26× (ln(9) + ln(11))) = 1.1947

OWLA2 = (0.31× (ln(7) + ln(11))) = 1.3465

OWLA3 = (0.43× (ln(7) + ln(9))) = 1.7815

B-OWLA = exp
(

1
3
× (ln(7)× 1.4244) + (ln(9)× 1.1293) + (ln(11)× 1.7815)

) 1
0.5+0.5

B-OWLA = 24.172

Following Bonferroni distance measures definitions [41], the Bonferroni ordered
weighted logarithmic average distance (B-OWLAD) operator are proposed:

Definition 10. A B-OWLAD distance for the sets X = {x1, . . . , xn} and Y = {y1, . . . , yn} is
given by a dimension n, which is a mapping B-OWLAD : Ωn ×Ωn → Ω with an associated
weighting vector W of dimension n wj ∈ [0, 1] and ∑n

j=1 wj = 1, such that:

B-OWLAD(〈x1, y1〉, . . . , 〈xn, yn〉) = exp

(
1
n ∑

i
ln(Dr

i )OWLADwi

(
Vi
)) 1

r+q

(11)

where OWLADwi

(
Vi) = ( 1

n−1 ∑n
j=1
j 6=i

ln
(

Dq
j

))
with

(
Vi) being the vector of all

∣∣xj − yj
∣∣ with

exception to |xi − yi| and wi an n− 1 vector Wi i αi which components wij i Di is the kth i |xi − yi|.
Furthermore, B-OWLAD has the following properties: (1) B-OWLADr,q(0, 0, . . . , 0) = 0; (2)
B-OWLADr,q(a, a, . . . , a) = d, i f dk = d, f or all k; (3) B-OWLADr,q(a1, a2, . . . , an) ≥
B-OWLADr,q(d, d, . . . , d), i.e., BON-OWLADr,q is monotic, i f ak ≥ dk, f or all k; (4)
maxk{ak} ≤ B-OWLADr,q(a1, a2, . . . , an) ≤ min{ak}. In addition, if q = 0

, then B-OWLADr,0(a1, a2, . . . , an) =
(

1
n ∑n

k=1 Dr
k

)1/r
. If r = 2 and q = 0, then B-OWLAD re-

duces to the square mean distance: B-OWLADr,0(a1, a2, . . . , an) =
(

1
n ∑n

k=1 D2
k

)1/2
.

If r = 1 and q = 0, then B-OWLAD is reduced to the average distance:
B-OWLADr,0(a1, a2, . . . , an) = 1

n ∑n
k=1 Dk. If r → +∞ and q = 0 , then B-OWLAD reduces

to the max operator: lim
r→+∞

B-OWLADr,0(a1, a2, . . . , an) = max{Dk}. If r → 0 and q = 0 ,

then B-OWLAD is reduced to the geometric mean distance: lim
r→0

B-OWLADr,0(a1, a2, . . . , an) =



Mathematics 2022, 10, 2100 7 of 13

(∏n
k=1 Dk)

1/n. If r = q = 1, then B-OWLAD reduces to the following expression:

B-OWLAD1,1(a1, a2, . . . , an) =
(

1
n(n−1)

)
∑n

k,j=1
k 6=j

DkDj.

Definition 11. A B-IWOWLAD operator distance for the sets X = {x1, . . . , xn} and
Y = {y1 . . . , yn} of dimension n, which is a mapping B-IWOWLAD : Ωn ×Ωn → Ω with
an associated weighted vector W of dimension n wj ∈ [0, 1] and ∑n

j=1 wj = 1, following:

B-IWOWLAD(〈x1, y1〉, . . . , 〈xn, yn〉) = exp
(

1
n ∑n

i=1 ln(Dr
i )IWOWLADwi

(
Vi
)) 1

r+q
, (12)

where IWOWLADwi

(
Vi) =

(
1

1−n ∑n
j=1
j 6=i

(vj/ ∑n
j=1 vj) ln(Dq

j )

)
with

(
Vi) as the vector of all∣∣xj − yj

∣∣ with exception to |xi − yi| and wi being an n − 1 vector Wi associated to αi which
components wij are a weighting vector vi associated with the WLA and the OWLA weights.
Likewise, Di is the kth smallest of the individual distance |xi − yi|. From ln|xi − yi| ≥ 0, it follows
that exp (ln|xi − yi|) ≥ exp(0). Please note that, ln|xi − yi| ≥ 1. Here, if wj = 1/n for all j,
we get the B-IWLD and if vj = 1/n for all j, we get the B-OWLAD operator. We compute the
Bonferroni immediate weight logarithmic (B-IWL) operator if one of the sets is empty.

Example 4. Let X = (9, 7, 11) and Y = (17, 18, 13) be sets of arguments.
vj = (0.12, 0.09, 0.13) is the characteristic weighting vector with WA and wi is the vector
of the argument ln|xi − yi| with αi which components are vij. Here we define α1 = 0.26,
α2 = 0.31 and α3 = 0.43. We take r = q = 0.5. In addition: V1 = |9–17| and |7–18|,
V2 = |11–13| and |7–18| and V3 = |11–13| and |9–17|. In addition, ∑n

j=1 wivj = (0.26× 0.12)+
(0.31× 0.09) + (0.43× 0.13) = 0.115. Using this we get:

IWOWLADv1

(
V1
)
=

0.09× 0.26
0.115

× ln|7–17|+ 0.13× 0.26
0.115

× ln|7–18| = 1.1278

IWOWLADv2

(
V2
)
=

0.12× 0.31
0.115

× ln|11–13|+ 0.13× 0.31
0.115

× ln|7–18| = 1.0645

IWOWLADv3

(
V3
)
=

0.12× 0.43
0.115

× ln|11–13|+ 0.09× 0.43
0.115

× ln|9–17| = 1.0107

B-IWOWLAD = exp

((
1
3
× ((ln|11–13| × 1.1278) + (ln|7–18| × 1.0645) + (ln|9–17| × 1.0107))

)1
)

= 6.088

Definition 12. A Bonferroni hybrid weighted logarithmic distance for the sets X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn} is given by dimension n, which is a mapping B-HWLD : Ωn ×Ωn → Ω
that has an associated weighting vector V, with ∑n

j=1 vj = 1, vj ≥ 0 vj ∈ [0, 1] letting a weighting
vector W of |xi − yi|, with ∑n

j=1 wj = 0, wj ≥ 0 wj ∈ [0, 1] and m as a balancing coefficient,
such as:

B-HWLD(〈x1, y1〉, . . . , 〈xn, yn〉) =

( 1
n

n

∑
i

ln(Dr
i )HWLDvi

(
Vi
)) 1

λ


1

r+q

, (13)

where HWLDwi

(
Vi) =

(
1

1−n ∑n
j=1
j 6=i

vin ln
(

Dq
j

)λ
)

with
(
Vi) as the vector of all

∣∣xj − yj
∣∣ i

|xi − yi|, wi as an n− 1 vector Vi associated with αi which components of the argument |xi − yi| are
weights, a weighting vector vi associated with the HWD and n is a balancing coefficient. Also,
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Di is the kth smallest of the individual distance |xi − yi|. From ln|xi − yi|λ ≥ 0, it follows that
exp (ln|xi − yi|λ) ≥ exp(0). Thus, |xi − yi|λ ≥ 1.

In addition, the characteristics given for HWLD and IWOWLAD, when combined
with the B-OWA operator, allow one (a) to make an ordination according to the degree of
or-ness and and-ness that reflect the decision maker’s attitude and (b) to make multiple
comparisons by compensating for the possible error in making the comparisons.

To understand each of the proposals, Table 1 and Figure 1 are presented.

Table 1. Extension comparison.

Operators Extensions Values

HWD EXT
HWLD 1.898

B-HWLD 1.865

B-OWA EXT
B-OWLA 24.172

B-OWLAD 6.594

IWOWA EXT

IWOWLA 17.438
IWOWLAD 7.855
B-IWOWLA 22.477

B-IWOWLAD 6.088
Source: Own elaboration.
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Looking at Figure 1, it is worth noting that one of the main advantages of these
operators is the possibility of modeling complex problems in decision making, considering
(a) the aggregation of multiple criteria capturing the interrelation between arguments and
(b) the possibility of making comparisons between an ideal and a real possibility using
logarithmic distances. Thus, this allows one to have an ordering mechanism that allows
one to make complex calculations in decision processes with high degrees of uncertainty.

4. B-OWLAD Operator in Investing Decision Making

The introduced operators, moreover, the B-OWLAD operator, allows the modelling
of highly complex problems in a wide-ranging set of areas such as engineering, medicine,
energy and environmental sciences; nonetheless, some of the most direct applications can
be foreseen in business, management and accounting, especially in investment decision
making processes. Here the direct requirements from the decision makers and stakehold-
ers make it necessary to include perceptions, beliefs and risk aversion, thus attitudinal
characteristics to the modelling. Moreover, the set of ideal proposals retrieved from the
performance of selected options make the OWA operators and, more specifically, the
Bonferroni-based OWA logarithmic distance operators, a suitable option for the develop-
ment of an illustrative example. In this section we propose a set of initial conditions that
must be met by a series of options, and the final ranking yields the most viable option
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in this highly complex scenario. The next five steps describe the general approach to
B-OWLAD modelling.

Step 1. The requirements that the company where you want to invest must be deter-
mined (Table 2). This information was obtained from a Mexican investor from the state of
Sinaloa with more than 15 years of experience, so the requirements will drastically change
depending on the investor, state or country and composition of the market that is being
analyzed. In addition, it is important to note that this is conducted for medium to large
companies, so if the process is to be applied to small enterprises, the variables will change
accordingly to the realities of the companies.

Table 2. Company requirements.

Variables Goal

Minimum income 1,000,000.00 USD
Minimum years in the market 10.00 years

Minimum number of employees 50.00
Minimum net profit 100,000.00 USD
Maximum debt level 65.00

Source: own elaboration.

Step 2. With the requirements established, the investor must consider only enterprises
that meet all requirements, because with the formulation, one considers absolute numbers
for the use of logarithmic numbers and if some variables have a negative distance value the
results can be misunderstood because minus three is the same as plus three (considering
absolute numbers). Considering this, there are three different companies to invest in
(Table 3). The information of the companies was obtained from a database of 20 companies
that were available to invest in based on the information provided by the investors.

Table 3. Companies to invest.

Variables Company A Company B Company C

Income 1,878,327.00 1,633,852.00 1,796,604.00
Years in the market 16.00 19.00 17.00

Number of employees 84.00 87.00 75.00
Net profit 222,187.00 236,471.00 195,871.00
Debt level 44.00 54.00 49.00

Source: own elaboration.

Step 3. The first step when all the information is available is to obtain the distance
between the companies’ values and the requirements. For example, the income distance
is calculated by the company value less the requirement, and likewise for years in the
market, number of employees and net profit. In the case of debt level, the formulation is
maximum debt level less company value (Table 4). In addition, the logarithmic distances
are calculated with the natural logarithmic of the distance (Table 5).

Table 4. Distances between the company and the requirements.

Variables Company A Company B Company C

Income distance 878,327.00 633,852.00 796,604.00
Years in the market distance 6.00 9.00 7.00

Number of employees distance 34.00 37.00 25.00
Net profit distance 122,187.00 136,471.00 95,871.00
Debt level distance 21.00 11.00 16.00

Source: own elaboration.
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Table 5. Logarithmic distances.

Variables Company A Company B Company C

Income distance 13.69 13.36 13.59
Years in the market distance 1.79 2.20 1.95

Number of employees distance 3.53 3.61 3.22
Net profit distance 11.71 11.82 11.47
Debt level distance 3.04 2.40 2.77

Source: own elaboration.

Step 4. With the information provided in Table 5, the logarithmic average distance
(LAD), B-OWLAD and B-IWOWLAD operator are used (See Table 6).

Table 6. Results using different aggregation operators.

Operator Company A Company B Company C

LAD 4.598 × 1014 3.169 × 1014 2.138 × 1014

B-OWLAD 1.593 × 1013 1.615 × 1013 4.832 × 1012

B-IWOWLAD 8.666 × 1010 1.395 × 1011 3.896 × 1010

Source: own elaboration.

Step 5. In this step, an analysis of the results is conducted. In this case, it is possible
to visualize three different rankings based on the aggregation operator that was used. It
will be company A, B and C for the LAD operator, B, A and C for the B-OWLAD operator
and B, A and C for the B-IWOWLAD. For selection of the ranking, it is best to consider the
operator that aggregates more information; this will be the B-IWOWLAD, which also gives
the same ranking as the B-OWLAD, but a difference is generated with the LAD operator.
The difference is obtained because the relative importance of the different variables is not
the same in the decision making process, but it is in the case of LAD. In addition, the use
of Bonferroni means, which can capture the interrelationship of the variables, instead of
just regular means such as the case of the LAD operator, provide the decision maker with a
better analysis of the information. Finally, the difference between the results of company
A and B are minimal, but considering that we can invest in just one company, this small
difference is important and, because of that, analyzing the information in a more complex
way is required.

Finally, these new aggregation operators can be used for different problems where
two sets of information must be analyzed (because they are designed to be applied using
distances), where the information that needs to be analyzed has an important difference in
values (which is why the logarithmic is used) and the interrelationship of the arguments is
important (the main attribute of Bonferroni means). Some additional examples that can
be provided are decision making problems in topics related to human resource selection,
products development, analysis of routes of distribution, supplier or client selection and
any other related areas where the decision meets the above requirements.

5. Conclusions

The objective of this paper was to present extended distance measures and logarithmic
OWA-based decision making tools applied to financial investment processes. Distance
measures in OWA operators have proven to be effective in cases where a goal, optimal
situation or an ideal scenario is compared to a series of options. This is especially interesting
in financial decision making processes, where a set of ideal conditions must be met, e.g., to
fulfill the expectations of the stakeholders.

Aiming to provide a wide-ranging set of decision making tools, this paper introduces
Bonferroni means [30], immediate weights [42] and logarithmic OWA [43]-based operators.
Specifically, the paper introduces the immediate weights logarithmic distance (IWLD), the
immediate weights ordered weighted logarithmic averaging distance (IWOWLAD), the
hybrid weighted logarithmic distance (HWLD), the Bonferroni ordered weighted logarith-
mic averaging distance (B-OWLAD) operator, the Bonferroni immediate weights ordered
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weighted logarithmic averaging distance (B-IWOWLAD) operator and the Bonferroni
hybrid weighted logarithmic distance (HWLD). Some particular cases, families and gen-
eralizations, such as the immediate weighted logarithmic (IWL) operator, the Bonferroni
immediate weights logarithmic (B-IWL) operator, the Bonferroni Minkowski logarithmic
distance (B-WLD) operator, the Bonferroni weighted logarithmic distance (BWHLD) op-
erator, the Bonferroni geometric logarithmic distance (B-BGLD) operator, the Bonferroni
weighted Euclidean logarithmic distance (BWELD) operator and the Bonferroni hybrid
logarithmic distance (B-HLD), were also studied.

Some of the benefits of introducing immediate weights is the fusion of information
into a single formulation, including the weighted average, hence a degree of importance,
and the OWA operator; thus, a degree of or-ness or optimism [42]. On the other hand, Bon-
ferroni means allow a multi-comparison of input arguments and their interrelationship [30].
Additionally, the logarithmic averaging operators based on an optimal deviation model
allow the analysis of complex inputs and smooth the estimations [43]. These characteristics
allow the generation of robust models capable of handling highly complex inputs and
decision makers’ requirements.

To illustrate the characteristics of the introduced operators, a financial decision making
illustrative example is proposed. Here, a series of ideal investment characteristics are
introduced and diverse companies are compared. In general, diverse rankings are generated
depending on the selected operator. Nonetheless, the benefits of using these operators
are observed as the modelling allows the aggregation of multiple criteria, including the
interrelation between the arguments and the analysis of an ideal set of characteristics
from the stakeholders and its comparison to the performance of the selected companies.
However, the main limitation of the proposal is that only positive integers can be treated,
limiting applications with other types of numbers such as decimals or negative numbers.
This implies that possible applications can be given with data that seek the max-max of the
information in a positive way.

With the limitations outlined above, new approaches to guide future research can
focus on modeling other complex and uncertain phenomena that can be represented with
fuzzy numbers [44,45] (to be able to use crisp numbers), linguistic variables [46,47] (to be
able to use endecadary scales), Pythagorean membership [48,49] (Pythagorean principles)
and interval numbers [50,51], and induced [43,52] and heavy aggregations [53,54] (taking
into account the attitude of the decision maker), where these methods have the potential to
provide solutions for the treatment of highly complex scenarios.
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