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Abstract: The output response of any intact oscillatory system subjected to a Gaussian excitation is
also Gaussian in nature. On the contrary, when the system contains any type of underlying nonlinear-
ity, the output signal is definitely non-Gaussian. In beam structures, the presence of fatigue-breathing
cracks significantly influences the dynamic response characteristics under Gaussian excitation. The
presence of such cracks alters the response to be nonlinear, and the non-Gaussianity of the system will
arise. In order to examine the non-Gaussianity features and ability for the detection and localization
of fatigue cracks, several breathing crack identification scenarios in beam-like structures are presented
in this paper. The effects of single and multiple breathing cracks corresponding to different boundary
conditions on the responses of beams are studied. The results are analyzed based on the higher-order
time-domain transformations. Higher-order transformations, namely the skewness and kurtosis
coefficients in addition to the Shannon entropy, are exploited to provide dynamic details about the
response, which the conventional second-order statistics cannot show. The results exhibit that the
proposed methods are robust and immune to noise and can detect and localize breathing cracks with
different sensitivities.

Keywords: breathing cracks; multiple cracks; damage localization; non-Gaussianity; random vibration;
statistical methods; Shannon entropy

MSC: 74H45

1. Introduction

Fatigue-breathing cracks are the most common types of structural damages in sev-
eral engineering structures, such as mechanical, civil, aerospace, turbo-machines, etc. [1].
The existence of such cracks may impair structural performance, leading to severe effects
and causing catastrophic failure [2]. The open cracks can be easily detected and often lead
to the loss of physical stiffness, resulting in a primarily linear structure with decreased
vibration frequencies and load-bearing capacity [3,4]. On the other hand, fatigue cracks
are dangerous because they are usually negligible compared to the cracked structure,
as they cause insignificant structural changes in the dynamic features [5]. The fatigue-
breathing cracks’ opening and closing phenomenon depend on excitation frequencies, lead-
ing to higher harmonics sensitivity to specific excitation frequencies and less sensitivity to
others [6]. Therefore, identifying fatigue cracks is complex, and there is a need for nonlinear

Mathematics 2022, 10, 1853. https://doi.org/10.3390/math10111853 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111853
https://doi.org/10.3390/math10111853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5992-8055
https://orcid.org/0000-0002-6598-8713
https://doi.org/10.3390/math10111853
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111853?type=check_update&version=2


Mathematics 2022, 10, 1853 2 of 26

models other than open crack models because open crack models are useless and inaccurate
in identifying fatigue cracks.

There are many methods for detecting, locating, and quantifying breathing cracks in
the literature, such as time-domain methods, frequency-domain methods, time-frequency
methods, and others [7]. Within this section, attempts are conducted to survey the most
important techniques used in the time-domain to identify breathing cracks in beams.

Several models in the literature based on different techniques have been used to detect
fatigue cracks, differing in terms of assumptions and complexities [8–10]. It is well-known
that nonlinearity could be exploited for detecting damage, which can be realized from
several studies reported in the literature [11–13]. Jyrki et al. [14] introduced a time-domain
approach using the generalized likelihood ratio test to investigate the fatigue cracks of a sim-
ply supported beam. Their work aimed to detect the smallest crack size in the beam, which
was slightly more than 10% of the total beam height. Cheng et al. [15] proposed a new
method based on the Volterra kernel-function-based analysis to identify a fatigue-breathing
crack in a nonlinear structural system. Villani et al. [16] proposed an identification method
based on a stochastic version of the Volterra series to study the breathing crack of a beam
that vibrates nonlinearly. The results show the linear model’s failure in the case where the
damage has low severity, whereas the nonlinear model performed satisfactorily even in
the presence of uncertainties. Prawin and Rao [17] performed a numerical investigation to
examine the adaptive filter algorithm by solving a bilinear oscillator of a beam containing
a breathing crack. The opening and closing conditions of the structure can be extracted
through the application of this method. The results clearly show that the proposed model is
able to recognize the opening and closing conditions of cracked structures. Peng et al. [18]
proposed a new nonlinear identification method based on only the output responses by
quantifying the structure’s nonlinear contribution utilizing the Volterra series model. Based
on the Volterra series expansion for the separation of the linear and high-order nonlinear
components, a nonlinearity contribution index is presented to quantify the nonlinearity de-
gree corresponding to structural responses. The performance of the proposed method was
studied numerically on a simply supported beam containing a breathing crack subjected
to white noise excitations and confirmed experimentally on a precast segmental concrete
column using ground motion excitations.

Kullaa and Miettinen [19] numerically studied the damage detection of a cantilever
pipe containing a fatigue crack subjected to a random excitation utilizing 3D finite element
modeling. The study was conducted using accelerometers and strain gauges, and it
was found that the accelerometers were more sensitive to fatigue crack damage than
strain gauges. Smith et al. [20] presented a damage detection method using the Bayesian
approach and a nonlinear model. The proposed approach aimed to localize and quantify the
breathing crack and describe its condition using nonlinear structural responses. The results
demonstrated that this approach could detect and localize a single breathing crack even in
noisy conditions. Wang and Wu [21] designed a damage identification module to study
opened and closed cracks in welded joints. The proposed method is based on using a
new sensor and entropy measurements, and it has a high sensitivity to crack existence and
severity. Numerical and experimental investigations were performed on different beam
structures to verify the feasibility of the proposed damage detection technique. The results
show that the method is able to detect cracks that propagate during the operation of the
system. Lu et al. [22] proposed a novel identification approach based on the time-domain
sensitivity analysis of a breathing crack. The breathing crack identification process was
based on solving the inverse problem for different structures, such as beams, shear frames,
etc. Three numerical examples were introduced. The results show that the proposed
method is accurate and robust to noise with less computational effort.

Asnaashari and Sinha [23] proposed a new concept called residual operational deflec-
tion shape (R-ODS) for breathing crack detection and localization in beam-like structures.
The R-ODS was used at an excitation frequency and its higher harmonics to localize breath-
ing cracks. The proposed method was accurate and straightforward in locating cracks.
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Jiang et al. [24] proposed a bicoherence-based nonlinearity measurement technique to
localize breathing cracks in blades. A damage index called a total nonlinearity index was
utilized as a blade damage indicator, where the crack was determined by locating the maxi-
mum components. Prawin [25] proposed a new dynamic principal component analysis
(DPCA)-based baseline-free damage diagnostic approach for breathing crack detection,
characterization, and localization utilizing ambient vibration data in the time-domain. He
proposed three new indices of damage localization based on the analysis of the fractal
dimensions of the residual response, the directional angle, and the first residual principal
component vector. The validity of the DPCA method was confirmed numerically and
experimentally. Prawin et al. [26] introduced a new baseline-free method utilizing singu-
lar spectrum analysis to detect, localize, and characterize breathing cracks in beam-like
structures. They proposed a new damage indicator based on the singular spectrum anal-
ysis that takes advantage of the response’s nonlinear harmonics and intermodulations.
The proposed approach was confirmed numerically and experimentally.

Over the last few decades, many scholars have used entropy in different real-life
fields for monitoring the nonlinearity of the systems, such as medical sciences, electrical
machines, automobiles, etc. [27–29]. Entropy is a powerful measure of data randomness
encountered in a non-stationary and nonlinear time signal [30]. It can be a suitable mean
for damage identification and localization in various civil and mechanical engineering ap-
plications, where the recorded signals can vary according to the severity of the damage and
the location [31–34]. Sandoval et al. [35] proposed an entropy-based method to classify the
vibration signals of low-speed bearings. The findings confirm that entropy indicators can
contribute to a more reliable diagnosis. Hosseini et al. [36] investigated the crack initiation
in ductile cast iron using the acoustic emission information entropy. The results show that
the Shannon entropy curves slope steadily reduced as the crack grew. Alamdari et al. [37]
presented a new scheme of detecting and localizing damages in civil engineering structures
utilizing entropy-based time-series analysis. The results demonstrated that the proposed
method could successfully identify and localize damages in civil engineering structures.
Amezquita-Sanchez [38] presented a new methodology based on using six different en-
tropy types for assessing the health state of high-rise buildings under dynamic excitations.
The results confirm that entropy methods are promising and can be considered a suitable
choice for developing methodologies with the capability to monitor the health status of
civilian structures.

The nonlinear effects of responses for beams containing fatigue cracks are difficult to
be predicted compared to those with open cracks [39]. However, the presence of nonlinear
effects of the response illustrates the difference between the damaged and healthy condi-
tions [40]. Then, choosing the appropriate, sensitive indicator to the presence of nonlinear
effects makes it easy to identify fatigue cracks [41,42].

Some researchers have found that the response resulting from random excitation, such
as Gaussian excitation, can be sensitive to the effects of the nonlinear response of the beam
and thus be an indicator of the presence of fatigue cracks [43–45]. It is well-known that
when an intact beam is subjected to a random excitation, such as a Gaussian excitation,
the system’s response is also Gaussian [46]. Conversely, the response will not be Gaussian
anymore when the system contains a kind of nonlinearity, such as fatigue cracks [47,48].
Thus, the change in the Gaussian response can be employed to identify fatigue cracks by
estimating the higher-order statistics [49].

Several statistical approaches can be used to estimate the non-Gaussianity of the sys-
tem, such as kurtosis and skewness [50–52]. When the size of the crack is more than half the
width of the beam, it is easy to use one of the above two measures. However, when the size
of the crack is small, it is challenging to recognize the existence of the crack due to the slight
nonlinearity of the system, whose behavior is very similar to the linear one (intact structure).
Therefore, in this scenario, the measurement used to determine non-Gaussianity is crucial
in providing accurate information about the structural condition [53]. Benfratello et al. [54]
experimentally and numerically studied damage detection and localization of a fatigued
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one-dimensional beam subjected to Gaussian excitation. The beam was discretized into ten
finite elements in which a breathing crack model with a fully closed or fully open crack
is utilized to characterize the damaged element. The skewness and kurtosis coefficients
were used as damage indicators due to their sensitivity to nonlinearity produced by the
breathing crack based on the analysis of displacements and rotations. They found that the
skewness coefficients of the rotation are more suitable parameters than kurtosis coefficients
for breathing crack detection and localization.

This paper investigates efficient methods for the detection and localization of single
and multiple breathing cracks in beam structures under various boundary conditions. Time-
domain transformations such as skewness, kurtosis, and the Shannon entropy are used
for analyzing the displacement responses of different beam models subjected to Gaussian
excitation. The non-Gaussianity features of different analyzed signals are exploited to detect
and localize fatigue cracks. The breathing cracks are modeled using surface-to-surface
contact using ABAQUS FE software.

The rest of the paper is organized as follows. The theoretical background of the time-
domain transformations used for the detection and localization of breathing cracks are
described in Section 2. Section 3 numerically investigates the nonlinear behavior generated
by the breathing cracks utilizing ABAQUS FE software. In Section 4, numerical results and
discussions of different beam models containing single and multiple breathing cracks are
presented. Finally, the main conclusions of this work are drawn together and presented in
Section 5.

2. Time-Domain Methods
2.1. Skewness and Kurtosis Algorithms

It is well-known that any linear system subjected to random Gaussian excitation
also produces a random Gaussian response. However, once the system has some kind
of nonlinearity, the random response of the system is no longer Gaussian [55,56]. In this
paper, the higher-order measurements, such as skewness (third-order) and kurtosis (fourth-
order), are used to provide more information about the random response of the nonlinear
system [57]. Therefore, the appropriate choice of parameters helps to correctly characterize
the nonlinear behavior of the system. In this study, beams with breathing cracks that open
and close due to exposure to Gaussian excitation, resulting in non-Gaussian responses, are
studied. The amount of non-Gaussianity of the system is proportional to the amount of
damage. Therefore, it can be said that the non-Gaussianity amount of the system is an
indicator of the damage severity. The sensitivity of the skewness and kurtosis coefficients
varies in detecting damage. Therefore, the appropriate selection of these coefficients must
be considered to detect and localize damages.

Skewness is a measure of the asymmetry of the data around the sample mean. There
are three conditions of the skewness coefficients: (i) if skewness is positive, the data spread
out more to the right; (ii) if skewness is negative, the data spread out more to the left of the
mean than to the right; and (iii) if the data are normally distributed, the skewness is zero.
Conversely, kurtosis is a measure of how outlier-prone a distribution is. Distributions with
peaks higher than the peak of the normal distribution have kurtosis greater than 3, while
distributions with peaks smaller than the normal distributions have kurtosis less than 3,
and distributions with peaks the same as that of the normal distribution have kurtosis
equal to 3. The skewness and kurtosis of distribution are defined as [58,59]
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γ3 =
E(x − µ)3

σ3 , (1)

γ4 =
E(x − µ)4

σ4 , (2)

µ =

n
∑

i=1
xi

n
=

x1 + x2 + · · ·+ xn

n
, (3)

σ =

√√√√√ n
∑

i=1
(xi − µ)2

n − 1
, (4)

where γ3 and γ4 are the skewness and kurtosis coefficients, respectively. The time-
history of the displacement response in the y-axis is represented by x, µ is the mean of x,
σ is the standard deviation of x, and E(t) represents the expected value of the quantity
t. The skewness and kurtosis function computes a sample version of this population
value. When the structure is intact and subjected to Gaussian excitation, the skewness
and kurtosis coefficients vanish because the system is linear. On the contrary, these
coefficients appear when the system is damaged, i.e., the system is nonlinear, and the
response is non-Gaussian.

2.2. Shannon Entropy

Entropy is a statistical measure of randomness that can be used to describe the ran-
domness faced in the time signals. It can be used for characterizing nonlinear time signals
of many applications. Entropy can be a convenient indicator to characterize dynamic
properties and thus determine the damage state of a nonlinear system subjected to random
Gaussian excitation.

Over the past few years, different entropy approaches have been introduced to eval-
uate the randomness encountered in nonlinear systems [60,61]. This paper exploits the
Shannon entropy method to identify and localize breathing cracks in beam structures.
The Shannon entropy is defined as:

H(X) = −
N

∑
i=1

p(xi) log2[p(xi)], (5)

where x0, x1, x2, . . . , xN−1 represent the possible outcomes that can be taken by a signal X
with a probability p(xi) of the event i in the time record of all events.

Figure 1 shows the flowchart of the proposed methodology by illustrating the different
steps involved. The following sections include the numerical simulations and analysis of
the beams under the Gaussian excitation of different beam models with single and multiple
breathing cracks. The skewness and kurtosis coefficients and the Shannon entropy will be
evaluated to detect and localize breathing cracks.
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White Gaussian Noise

Beams modeling

• Different crack depths

• Different crack locations

• Different boundary conditions

• Different excitation locations

Longitudinal displacements 

from ten different points

Skewness Kurtosis Shannon entropy

Results analyzing

Crack detection and localization

Figure 1. Flowchart of the methodology used for breathing crack detection and localization.

3. Numerical Simulation

This section presents some of the most likely damage scenarios and models with differ-
ent depths and locations that may occur in beam structures. The nonlinear dynamic features
of beam structures, including single-crack and multiple-crack scenarios, are collected using
FEM and analyzed in MATLAB using time-domain methods.

Modeling of Breathing Cracks

In this paper, the beam provided by Benfratello et al. [54] was adopted, but a 3D model
is used here instead of a 1D model. Figure 2 shows a 3D FE model square section cantilever
beam modeled using the ABAQUS FEM software with linear hexahedral elements of
type C3D8R. The density of elements near the breathing cracks is increased to precisely
capture the dynamic responses of the cracks. The geometrical parameters of the models
are identical and chosen as a length L = 333.34 mm and square cross-section with the
edge dimension c = 35 mm. The material properties of the beam used in the numerical
simulation are selected as Young’s modulus E = 63.85 GPa, mass density ρ = 2860 kg/m3,
and Poisson’s ratio = 0.3. The cantilever beam is excited using a white Gaussian noise
excitation at the fixed end of the beam, while the measuring points are equally located at
ten different locations along the beam surface to record the longitudinal displacements
(i.e., the y-axis), as illustrated in Figure 2. The Rayleigh damping is used with a damping
ratio of 0.015. In addition to the study of a cantilever beam, there are three other beams
with different boundary conditions: the cantilever, simply supported beam, fixed-fixed
beam, and the simply supported beam, as illustrated in Figure 3. The location and depth of
breathing cracks are specified using the dimensionless parameters q = xc/L and p = a/c,
respectively. The distance between the bottom of the beam and the crack location is xc, and
a is the crack depth. Three different crack depths—3.5 mm (p1 = 0.1), 10.5 mm (p2 = 0.3),
and 17.5 mm (p3 = 0.5)—are considered.
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In this study, characterizing the opening and closing of the breathing cracks are
treated as local contact problems. The contact pairs and the surface-to-surface contact
are used [5,62]. The interactions between the breathing crack surfaces are modeled by
considering one of the crack surfaces as a master surface and the second as a slave surface,
as illustrated in Figure 4. During the vibration of beams, three contact states arise in the
breathing crack: (i) the crack is fully opened, which means there is no contact between
the slave and master surfaces; (ii) the crack is fully closed, and all nodes on the slave
and master crack surfaces are in contact; (iii) the slave and master crack surfaces are in
partial contact. In this paper, since the excitation is a random excitation represented by the
Gaussian excitation, the opening and closing process of the breathing cracks is also random,
and at any time instant, the state of the crack can be one of the three mentioned states of
the crack.

Point-10

Point-9

Point-8

Point-7

Point-6

Point-5

Point-4

Point-3

Point-2

Point-1

Fixed end

Gaussian excitation

in x-direction

Point-0

Figure 2. Schematic representation of a cantilever FE beam model with a horizontal breathing crack.

lo
ca
ti
o
n

xc

Figure 3. Illustration of different boundary conditions: (a) Cantilever beam; (b) cantilever, simply
supported beam; (c) fixed-fixed beam; (d) simply supported beam.
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Uniform node

Coincident nodes

Master surface

Slave surface

Figure 4. Crack modeling with a surface-to-surface contact method.

4. Numerical Results and Discussions

This paper considers that the beams are vibrating under a ground acceleration
modeled using white Gaussian noise. A time step ∆t = 0.0002 s and a sample size
of 15,000 samples are adopted. Several damage models of different depths, locations,
and boundary conditions are simulated using ABAQUS software. The time-history of the
displacement responses is recorded from ten equally distributed points along the beam.
Time-domain methods (i.e., skewness, kurtosis, and Shannon entropy) are applied to the
displacements in the time-domain to determine the skewness and kurtosis coefficients
and Shannon entropy to detect fatigue cracks. The first two natural frequencies of the
intact beams of different boundary conditions are listed in Table 1. The white Gaussian
noise excitation is illustrated in Figure 5. Figures 6–9 present the Sampling intervals vs.
displacement responses of beams with different boundary conditions. The corresponding
crack depths and locations are (p1 = 0.1, p2 = 0.3, and p3 = 0.5) and (q1 = 0.25,
q2 = 0.45, and q3 = 0.65), respectively.

Table 1. The first two natural frequencies of intact beams for different boundary conditions in Hz.

Mode Cantilever
Beam

Cantilever, Simply
Supported Beam

Fixed-Fixed
Beam

Simply Supported
Beam

1 238.55 996.53 1434.70 626.65
2 1424.80 2953.40 3659.90 1723.20

10,000 15,0005,000

Figure 5. White Gaussian noise excitation.
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Figure 6. Sampling intervals vs. displacement responses recorded from different sensors of a
cantilever beam before and after crack location.
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Figure 7. Sampling intervals vs. displacement responses recorded from different sensors of a
cantilever, simply supported beam before and after crack location.
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Figure 8. Sampling intervals vs. displacement responses recorded from different sensors of a
fixed-fixed beam before and after crack location.
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Figure 9. Sampling intervals vs. displacement responses recorded from different sensors of a simply
supported beam before and after crack location.

4.1. Single Breathing Crack

This section discusses the effectiveness and sensitivity of the three methods (i.e., skewness,
kurtosis, and Shannon entropy) to detect and localize a single breathing crack in beams at
three different depths. Here, four boundary conditions have been studied and analyzed.
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4.1.1. Case Study 1

This section presents the results of the numerical investigations of a cantilever beam
containing a single breathing crack with three different locations. The beams are excited
at the bottom (point-0) by white Gaussian noise excitation in the x-direction. The beam
contains a single breathing crack with three different cases, located at 83.35 mm (q1 = 0.25),
150.03 mm (q2 = 0.45), and 216.71 mm (q3 = 0.65) from the bottom to top, respectively. Three
different crack depths, which are 3.5 mm (p1 = 0.10), 10.5 mm (p2 = 0.30), and 17.5 mm
(p3 = 0.50) of the total beam heights, are modeled. The results of longitudinal displacements
recorded from ten points uniformly distributed along the cantilever beam are analyzed
using three methods, skewness, kurtosis, and the Shannon entropy. The three methods are
compared to determine their sensitivity to detect and locate breathing cracks.

Figures 10–12 present the results of the analyzed cantilever beam for the skew-
ness, kurtosis, and Shannon entropy as a function of the crack locations, respectively.
The shaded places on the horizontal axis of plots indicate the crack locations in beams.
The results show that the three methods are sensitive to the presence of breathing cracks
in all studied locations, where the most sensitive method is the Shannon entropy method,
which was almost sensitive to all depths. The sensitivity of the methods to the crack
locations is evident from the jump between the two sides of the crack, which indicates
the location of the crack. The jump is more apparent when the crack depth is significant
and gradually decreases as the crack depth decreases. The results demonstrated that
the three methods work well with a cantilever beam and provide valuable information
about the crack presence and location.

1 2 3 4 5 6 7 8 9 10

Location

−

(a)

1 2 3 4 5 6 7 8 9 10

Location

−−

(b)

1 2 3 4 5 6 7 8 9 10

Location

−−

(c)

Figure 10. Skewness coefficients of a cantilever beam for different crack depths and locations:
(a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.

1 2 3 4 5 6 7 8 9 10

Location

(a)

1 2 3 4 5 6 7 8 9 10

Location

(b)

1 2 3 4 5 6 7 8 9 10

Location

(c)
Figure 11. Kurtosis coefficients of a cantilever beam for different crack depths and locations:
(a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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1 2 3 4 5 6 7 8 9 10

Location

×10−5

(a)

1 2 3 4 5 6 7 8 9 10

Location

×10−5

(b)

1 2 3 4 5 6 7 8 9 10

Location

×10−5

−

(c)
Figure 12. Entropy of a cantilever beam for different crack depths and locations: (a) q1 = 0.25;
(b) q2 = 0.45; (c) q3 = 0.65.

4.1.2. Case Study 2

This section displays the results of the numerical investigations of a cantilever, sim-
ply supported beam containing a single breathing crack with three different locations.
The cracks’ depths, locations, and excitations are similar to those used in case study 1.
The three methods are compared to assess their sensitivity to boundary conditions and
their capability to detect and localize breathing cracks.

Figures 13–15 show the analyzed results of the cantilever, simply supported beam for
the skewness, kurtosis, and Shannon entropy methods as a function of the crack locations,
respectively. The results show that all methods are sensitive when p2 = 0.3 and p3 = 0.5
and less sensitive for p1 = 0.1, where the jump between the crack sides indicates the
location of the crack.

The results demonstrated that the Shannon entropy method is the best, followed
by the skewness coefficient method. The jump is more noticeable when the crack
depth is significant and gradually decreases as the crack depth decreases, as observed
from the curves of the second and third depths. It can be concluded that the three
methods are capable of detecting single breathing cracks with different sensitivities,
providing helpful information about the crack presence. However, the Shannon entropy
method is accurate and can detect and localize single breathing cracks at different
depths and locations.
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Figure 13. Skewness coefficients of a cantilever, simply supported beam for different crack depths
and locations: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 14. Kurtosis coefficients of a cantilever, simply supported beam for different crack depths and
locations: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 15. Entropy of a cantilever, simply supported beam for different crack depths and locations:
(a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.

4.1.3. Case Study 3

This section is concerned with analyzing the results of numerical investigations of a
fixed-fixed beam containing a single breathing crack at three different depths and locations.
The crack depths, locations, and excitations are similar to those used in cases 1 and 2.
Additionally, here, the sensitivity of the three methods is tested to determine their ability to
detect and localize single breathing cracks. Figures 16–18 present the numerical results of
the fixed-fixed beam applying the skewness, kurtosis, and Shannon entropy methods as a
function of the crack locations, respectively. The results confirm that all methods are eligible
to detect the presence of fatigue cracks. However, the Shannon entropy method is superior
in detecting and localizing breathing cracks in all studied depths and locations, where the
jump between the crack sides indicates the location of the crack. It can be concluded that the
Shannon entropy method is the most reliable for detecting and localizing breathing cracks
in a fixed-fixed beam. However, the three methods can produce valuable information
concerning the crack presence.
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Figure 16. Skewness coefficients of a fixed-fixed beam for different crack depths and locations:
(a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 17. Kurtosis coefficients of a fixed-fixed beam for different crack depths and locations:
(a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 18. Entropy of a fixed-fixed beam for different crack depths and locations: (a) q1 = 0.25;
(b) q2 = 0.45; (c) q3 = 0.65.

4.1.4. Case Study 4

This section aims to analyze the results of numerical investigations of a simply sup-
ported beam with a single breathing crack at three different depths and locations. The crack
depths, locations, and excitations are similar to those used in cases 1, 2, and 3. Similar to
the previous cases, the three time-domain methods are also examined for their ability to
detect and localize single breathing cracks in a simply supported beam.

Figures 19–21 show the numerical outcomes of a simply supported beam employing
the skewness, kurtosis, and Shannon entropy methods as a function of the crack locations,
respectively. The results prove that the three methods are suitable for detecting fatigue
cracks. However, the skewness and Shannon entropy methods provide excellent results
for detecting and localizing breathing cracks for each location. The jump between the two
sides of the crack is noticeable, indicating the location of the crack. However, the kurtosis
method can also provide important information about the presence and location of the
crack but are less sensitive than the skewness and Shannon entropy methods.

1 2 3 4 5 6 7 8 9 10
Location

−

−

−

−

−

−

(a)

1 2 3 4 5 6 7 8 9 10

Location

−

−

−

(b)

1 2 3 4 5 6 7 8 9 10

Location

−

−

−

−

−

(c)
Figure 19. Skewness coefficients of a simply supported beam for different crack depths and locations:
(a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.



Mathematics 2022, 10, 1853 15 of 26

1 2 3 4 5 6 7 8 9 10

Location

(a)

1 2 3 4 5 6 7 8 9 10

Location

(b)

1 2 3 4 5 6 7 8 9 10

Location

(c)
Figure 20. Kurtosis coefficients of a simply supported beam for different crack depths and locations:
(a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 21. Entropy of a simply supported beam for different crack depths and locations: (a) q1 = 0.25;
(b) q2 = 0.45; (c) q3 = 0.65.

It can be concluded from the previous results that the proposed techniques differ in
their ability to detect the smallest crack depth in this research depending on the location of
the crack and the type of boundary conditions. The results show that the Shannon entropy
method is superior to the skewness coefficient method, followed by the kurtosis coefficient
method for a single breathing crack localization, as shown in Table 2. Table 2 shows a
clear superiority of the Shannon entropy method, indicating its effectiveness in locating
the smallest depth in this research at a crack depth of (p = 0.1) in almost all scenarios,
followed by the skewness coefficient method and then the kurtosis coefficient method.
Moreover, in order to know the ability of the three methods to identify smaller depths, they
are tested in identifying a very small depth of about p = 5% at q = 0.25 of a cantilever beam.
The results support the previous conclusion in the superiority of the Shannon entropy
method for locating the crack, followed by the skewness coefficient method, while the
kurtosis method can in almost cases detect the presence of a crack. Based on the previous
results, it can be said that the Shannon entropy method is a promising method for detecting
and locating breathing cracks, even at a very small depth of the crack, as illustrated
in Figure 22.
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Figure 22. A breathing crack identification of a cantilever beam at two small crack depths and at
crack location of q1 = 0.25: (a) Skewness; (b) Kurtosis; (c) Shannon entropy.
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Table 2. The effectiveness of proposed methods for locating a single breathing crack for a variety of
damage scenarios with different depths, locations, and boundary conditions.

Method Depth

CB CSSB FFB SSB

Location

q1 q2 q3 q1 q2 q3 q1 q2 q3 q1 q2 q3

Skewness

p1 3 3 7 7 3 3 7 3 3 3 3 3

p2 3 3 3 7 3 3 7 3 3 3 3 3

p3 3 3 3 7 3 3 7 3 3 3 3 3

Kurtosis

p1 7 7 7 7 7 7 7 7 7 7 7 7

p2 3 7 3 7 7 7 7 7 7 3 3 3

p3 3 3 3 7 7 7 7 7 7 7 7 7

Entropy

p1 3 3 3 3 3 3 3 3 3 3 3 3

p2 3 3 3 3 3 3 3 3 3 3 3 3

p3 3 3 3 3 3 3 3 3 3 3 3 3

CB: cantilever beam; CSSB: cantilever, simply supported beam; FFB: fixed-fixed beam; SSB simply supported
beam; 3: can locate damage; 7: can not locate damage.

4.2. Effect of the Number of Measuring Points in Locating Breathing Cracks

There is no doubt that reducing the number of measurement points is desirable in
identifying structural damage in terms of ease and economy in practical applications.
However, in some cases, the appropriate number of measuring points should be used in
order to identify the exact location of the damage.

Figures 23–25 show the effect of reducing the number of measurement points (sensors)
on locating the crack in a cantilever beam using skewness, kurtosis, and Shannon entropy
methods, respectively. In this analysis, the odd points (i.e., 1, 3, 5, 7, and 9) are selected as
measurement points (see Figure 2). When reducing the number of measurement points,
the distance between them increases, so the jumps on the plots that indicate the location
of the crack will have a larger horizontal length, so the area within which the damage is
located becomes larger, which may require further detection within this field in order to
determine the exact location of the crack. It is also noted that the Shannon entropy method
is powerful and can detect and localize a single breathing crack even at a depth of p = 5%.
However, the possibility of increasing the number of measurement points in practice is
expensive and complex, so the optimum selection of the number of measuring points is
vital in order to determine the crack and gather between simplicity and accuracy.
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Figure 23. The effect of reducing the number of measurement points (5 points) on damage localiza-
tion using skewness coefficients at various crack depths and locations: (a) q1 = 0.25; (b) q2 = 0.45;
(c) q3 = 0.65.
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Figure 24. The effect of reducing the number of measurement points (5 points) on damage local-
ization using kurtosis coefficients at various crack depths and locations: (a) q1 = 0.25; (b) q2 = 0.45;
(c) q3 = 0.65.
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Figure 25. The effect of reducing the number of measurement points (5 points) on damage localization
using Shannon entropy at various crack depths and locations: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.

4.3. Effect of Spatial Location of Load on Breathing Crack Identification

The study of the spatial sensitivity of the applied load is important to know the
potential of the proposed methods in practical applications. A large amount of data is
required to better estimate the current results when using statistical methods.

Changing the spatial location of the load on the structure affects the sensitivity of the
methods in identifying the breathing crack [39]. The application of the excitation load in
the vicinity of the breathing crack in the structure increases the degree of non-linearity
present in the vibration response, which is much higher than the response due to the same
excitation force applied at the farthest point. In this paper, in order to study the sensitivity
of the spatial location of the applied load to identify the breathing crack, the three methods
are investigated at three different crack locations, and the response is measured in locations
adjacent to and distant from the crack under different spatial locations of the exciting load.

Figures 26–28 show some examples of the effect of changing the spatial location of the
excitation load applied to a cantilever beam with a single breathing crack at different crack
locations and p3 = 0.5 using skewness, kurtosis, and entropy, respectively. The skewness
coefficients and Shannon entropy methods exhibit excellent performance in almost all cases
in detecting and locating breathing cracks (see Figures 26 and 28), respectively. However,
the quality of the results using the kurtosis coefficient method is not very good but can still
provide helpful information about the crack’s presence and location (see Figure 27).
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Figure 26. The effect of changing excitation locations on the skewness coefficients of a cantilever
beam with a single breathing crack: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 27. The effect of changing excitation locations on the kurtosis coefficients of a cantilever beam
with a single breathing crack: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 28. The effect of changing excitation locations on the Shannon entropy of a cantilever beam
with a single breathing crack: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.

Figures 29–31 show some examples of the influence of changing the spatial location of
the excitation load applied to a simply supported beam with a single breathing crack at
different crack locations and p3 = 0.5 using skewness, kurtosis, and entropy, respectively.
The Shannon entropy method demonstrates outstanding performance in detecting and
locating breathing cracks in all cases (see Figure 31), followed by the skewness coefficient
method (see Figure 29). However, when using the kurtosis method, the results are ambigu-
ous and produce visibly poor results in locating breathing cracks in a simply supported
beam, as illustrated in Figure 30. Interestingly, these approaches work well in detecting
and locating breathing cracks when applying the excitation load at point-0.
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Figure 29. The effect of changing excitation locations on the skewness coefficients of a simply
supported beam with a single breathing crack: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 30. The effect of changing excitation locations on the kurtosis coefficients of a simply supported
beam with a single breathing crack: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.
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Figure 31. The effect of changing excitation locations on the Shannon entropy of a simply supported
with a single breathing crack: (a) q1 = 0.25; (b) q2 = 0.45; (c) q3 = 0.65.

The outcome of various investigations concluded that the Shannon entropy method
demonstrated better performance in detecting and locating breathing cracks under two
different boundary conditions and diverse spatial locations of the applied load. The results
show that the sensitivity of the spatial location of loading in breathing crack identification
varies according to the crack location and the type of boundary conditions. Therefore,
the spatial location of the exciting load should be chosen appropriately, especially with
skewness coefficients and kurtosis coefficients methods, in order to obtain accurate results
(noticeable jump) for locating the breathing crack, as some points give good results and
some do not. Regardless of the ability of the methods to locate the crack, all methods are
capable of detecting the presence of the crack in the structure. However, the results show
that choosing point-0 in our analysis is appropriate for detecting and locating the breathing
crack in most studied cases.

4.4. Multiple Breathing Cracks

In SHM, detecting and localizing multiple breathing cracks is a topic of greater interest
but a more significant challenge than single breathing crack detection and localization [63].
In this section, to detect multiple breathing cracks, the skewness, kurtosis, and Shannon
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entropy methods are applied to cantilever beams containing multiple breathing cracks.
The beams are excited at the bottom (point-0) by white Gaussian noise excitation in the
x-direction. Here, three different cases are introduced. The first and second cases have two
breathing cracks but in different locations (q1 = 0.25 and q2 = 0.45) and (q1 = 0.15 and
q2 = 0.65), respectively. The third case contains three breathing cracks located at (q1 = 0.25,
q2 = 0.45, and q3 = 0.65) distant from the bottom to the top. The crack depth for the three
cases is 10.5 mm (p2 = 0.30) of the total beam heights.

Figures 32–34 present the results of the analyzed cantilever beams with multiple
breathing cracks using the skewness, kurtosis, and Shannon entropy methods as a function
of the crack locations, respectively. The results show that the three methods have good
sensitivity and can detect and locate multiple breathing cracks, showing two jumps in
the case of two cracks and three in the case of three cracks. By comparing the results of
the three methods, the superiority of the Shannon entropy method is evident, as this is
apparent through its ability to locate cracks accurately.
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Figure 32. Skewness coefficients of a cantilever beam with multiple cracks for different crack depths
and locations: (a) q = 0.25 and 0.45; (b) q = 0.15 and 0.65; (c) q = 0.25, 0.45, and 0.65.
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Figure 33. Kurtosis coefficients of a cantilever beam with multiple cracks for different crack depths
and locations: (a) q = 0.25 and 0.45; (b) q = 0.15 and 0.65; (c) q = 0.25, 0.45, and 0.65.
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Figure 34. Entropy of a cantilever beam with multiple cracks for different crack depths and locations:
(a) q = 0.25 and 0.45; (b) q = 0.15 and 0.65; (c) q = 0.25, 0.45, and 0.65.

As a result of the continuous opening and closing of the breathing crack and the contact
between the crack surfaces, the nonlinearity of the structure containing the breathing crack
will be generated. In the case of multiple breathing cracks, for example, a beam with two
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breathing cracks, it is possible that at a particular time instant, one crack may be in an open
state (damaged) while the other may be in a closed state (healthy). Thus, the nonlinearity
generated due to the presence of the two breathing cracks may imply that there is only a
single breathing crack because there is no apparent difference between the responses of
the single crack and the two cracks. Such behavior can be considered one of the challenges
facing any method used to identify multiple breathing cracks.

It can be concluded that the Shannon entropy method is superior to the skewness
coefficients method, followed by the kurtosis coefficient method in multiple breathing
cracks localization.

The results show that the Shannon entropy method gives powerful and accurate results
for the all studied cases. It can be noticed that beams containing one crack have a single
jump located at the crack location, beams with two cracks have two jumps, and beams
with three cracks have three jumps. The results demonstrated that the Shannon entropy
and skewness methods could provide valuable information about the crack presence and
location. The kurtosis coefficient method could provide acceptable results for the case of a
cantilever beam for both single and multiple breathing cracks. The kurtosis coefficients of
the other beam models with different boundary conditions do not provide good results,
except for at a crack depth of 17.5 mm (p3 = 0.50). This means that the kurtosis method
provides reliable information about crack locations only in the case of large crack depths
and is reliable regarding the presence of a breathing crack for many cases. It can be said
that at a crack depth of 17.5 mm (p3 = 0.50), the jumps are more apparent for all cases. It
can be concluded that the Shannon entropy method has the highest sensitivity and shows
more information about the presence and location of cracks, followed by the skewness
coefficients method then the kurtosis coefficients method.

4.5. Noise Immunity

In experimental tests, measurement noise affects the quality and sensitivity of the
damage identification process. Therefore, noise immunity is essential to exhibit the ro-
bustness and applicability of the proposed methods in detecting and localizing breathing
cracks. For the sake of simulating real cases, the white Gaussian noise is added to the
recorded time-history of the displacement responses for the different methods so that
the noise-contaminated signals can be obtained. In this section, cantilever beams with
three different crack depths are selected. The three methods are adopted to compare and
evaluate noise immunity at various conditions of measurement noise. In order to show
diverse environmental conditions, five noise levels, i.e., SNR = 85, 65, 45, 25, and 10, are
considered. The noise intensity is characterized by the signal-to-noise ratio (SNR), defined
as [5,64]:

SNR = 10 lg
Ps

Pn
, (6)

where Ps represents the effective power of the signal, and Pn represents the effective power
of the noise.

Figures 35–37 display the influence of noise levels on the performance of the three
methods. The findings demonstrated that the three methods have robust noise immunity,
particularly the Shannon entropy method. Numerical simulation results demonstrated that
the three methods perform well under diverse noisy environmental conditions. The ca-
pability of the proposed methods to detect and localize breathing cracks under various
noisy conditions is one of the significant benefits of these methods. Therefore, the pro-
posed methods are competent to detect single and multiple breathing cracks in different
noisy conditions.
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Figure 35. The effect of noise levels on skewness coefficients of a cantilever beam: (a) Noise-free;
(b) SNR = 85 dB; (c) SNR = 65 dB; (d) SNR = 45 dB; (e) SNR = 25 dB; (f) SNR = 10 dB.
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Figure 36. The effect of noise levels on kurtosis coefficients of a cantilever beam: (a) Noise-free;
(b) SNR = 85 dB; (c) SNR = 65 dB; (d) SNR = 45 dB; (e) SNR = 25 dB; (f) SNR = 10 dB.
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Figure 37. The effect of noise levels on Shannon entropy of a cantilever beam: (a) Noise-free;
(b) SNR = 85 dB; (c) SNR = 65 dB; (d) SNR = 45 dB; (e) SNR = 25 dB; (f) SNR = 10 dB.

5. Conclusions

This paper aims to detect and localize single and multiple fatigue cracks in beams sub-
jected to Gaussian excitation using time-domain methods. The detection process exploits
the non-Gaussianity generated by the system due to the nonlinearity resulting from the
opening and closing of the breathing cracks. Several beam models containing single and
multiple breathing cracks with different boundary conditions have been numerically inves-
tigated. Skewness, kurtosis, and Shannon entropy methods were applied to the longitudinal
displacement, and the variance in the results indicates the presence and location of the
breathing cracks. Identifying multiple breathing cracks is a more significant but challenging
issue than single breathing cracks. As an exploration to identify multiple breathing cracks
in beam structures, different beam models containing two and three breathing cracks were
investigated. Furthermore, the effect of the number of measurements points and the effect
of the spatial location of load in breathing crack identification were investigated. The results
show that the proposed methods can detect and localize breathing cracks with different
sensitivity levels. The Shannon entropy method provided more accurate and reliable results
in detecting and localizing single and multiple breathing cracks. It is worth noting that
the kurtosis coefficient is inherently less accurate than the skewness coefficient for a given
sample size, with the former requiring higher-order statistics. Moreover, the three methods
have strong immunity to noise, particularly the Shannon entropy method. When using
statistical methods and to obtain more accurate results, a large amount of data is required.
The Shannon entropy method is simple and can be recommended for damage detection and
localization of single and multiple breathing cracks in beams in practical applications, even
in noisy conditions. Furthermore, it is worth noting that the Shannon entropy method can
be used at any spatial location of excitation, as it gives excellent results about the location
and severity of the crack.

This work suggests a number of avenues for further research in relation to the use
of the rotational degree of freedom response of 3D structures for effective detection and
localization of breathing cracks for different boundary conditions.
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63. Cao, M.; Radzieński, M.; Xu, W.; Ostachowicz, W. Identification of multiple damage in beams based on robust curvature mode

shapes. Mech. Syst. Signal Process. 2014, 46, 468–480. [CrossRef]
64. Liu, T.; Xu, H.; Ragulskis, M.; Cao, M.; Ostachowicz, W. A data-driven damage identification framework based on transmissibility

function datasets and one-dimensional convolutional neural networks: Verification on a structural health monitoring benchmark
structure. Sensors 2020, 20, 1059. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.prostr.2017.12.039
http://dx.doi.org/10.12989/sem.2015.54.2.221
http://dx.doi.org/10.1016/j.proeng.2017.09.280
http://dx.doi.org/10.1016/S0045-7949(03)00201-3
http://dx.doi.org/10.1016/j.engfracmech.2006.06.023
http://dx.doi.org/10.1007/s12046-018-0912-0
http://dx.doi.org/10.1016/j.ymssp.2016.11.028
http://dx.doi.org/10.1016/j.medengphy.2010.04.009
http://dx.doi.org/10.1080/00031305.2014.917055
http://dx.doi.org/10.3390/app11135773
http://dx.doi.org/10.1016/j.engstruct.2019.109619
http://dx.doi.org/10.1007/s00419-017-1312-3
http://dx.doi.org/10.1016/j.ymssp.2014.01.004
http://dx.doi.org/10.3390/s20041059
http://www.ncbi.nlm.nih.gov/pubmed/32075311

	Introduction
	Time-Domain Methods
	Skewness and Kurtosis Algorithms
	Shannon Entropy

	Numerical Simulation
	Numerical Results and Discussions
	Single Breathing Crack
	Case Study 1
	Case Study 2
	Case Study 3
	Case Study 4

	Effect of the Number of Measuring Points in Locating Breathing Cracks
	Effect of Spatial Location of Load on Breathing Crack Identification
	Multiple Breathing Cracks
	Noise Immunity

	Conclusions
	References

