Next Article in Journal
A Converse to a Theorem of Oka and Sakamoto for Complex Line Arrangements
Previous Article in Journal
On Matrices Arising in the Finite Field Analogue of Euler’s Integral Transform
Article Menu

Export Article

Open AccessArticle
Mathematics 2013, 1(1), 9-30; doi:10.3390/math1010009

ρ — Adic Analogues of Ramanujan Type Formulas for 1/π

1
Department of Mathematics and Statistics, University of Calgary, Calgary AB, T2N 1N4, Canada
2
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
3
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
4
Department of Mathematics, Iowa State University, Ames, IA 50011, USA
5
Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
6
Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
*
Author to whom correspondence should be addressed.
Received: 18 February 2013 / Revised: 26 February 2013 / Accepted: 1 March 2013 / Published: 13 March 2013
View Full-Text   |   Download PDF [301 KB, uploaded 13 March 2013]

Abstract

Following Ramanujan's work on modular equations and approximations of π, there are formulas for 1/π of the form Following Ramanujan's work on modular equations and approximations of π, there are formulas for 1/π of the form k = 0 ( 1 2 ) k ( 1 d ) k ( d - 1 d ) k k ! 3 ( a k + 1 ) ( λ d ) k = δ π for d=2,3,4,6, where łd are singular values that correspond to elliptic curves with complex multiplication, and a,δ are explicit algebraic numbers. In this paper we prove a p-adic version of this formula in terms of the so-called Ramanujan type congruence. In addition, we obtain a new supercongruence result for elliptic curves with complex multiplication. View Full-Text
Keywords: Ramanujan type supercongruences; Atkin and Swinnerton-Dyer congruences; hypergeometric series; elliptic curves; complex multiplication; periods; modular forms; Picard–Fuchs equation Ramanujan type supercongruences; Atkin and Swinnerton-Dyer congruences; hypergeometric series; elliptic curves; complex multiplication; periods; modular forms; Picard–Fuchs equation
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chisholm, S.; Deines, A.; Long, L.; Nebe, G.; Swisher, H. ρ — Adic Analogues of Ramanujan Type Formulas for 1/π. Mathematics 2013, 1, 9-30.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mathematics EISSN 2227-7390 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top