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Abstract: Protein biomarkers are of great benefit for clinical research and applications, as they are
powerful means for diagnosing, monitoring and treatment prediction of different diseases. Even
though numerous biomarkers have been reported, the translation to clinical practice is still limited.
This mainly due to: (i) incorrect biomarker selection, (ii) insufficient validation of potential biomarkers,
and (iii) insufficient clinical use. In this review, we focus on the biomarker selection process and
critically discuss the chemometrical and statistical decisions made in proteomics biomarker discovery
to increase to selection of high value biomarkers. The characteristics of the data, the computational
resources, the type of biomarker that is searched for and the validation strategy influence the decision
making of the chemometrical and statistical methods and a decision made for one component
directly influences the choice for another. Incorrect decisions could increase the false positive
and negative rate of biomarkers which requires independent confirmation of outcome by other
techniques and for comparison between different related studies. There are few guidelines for authors
regarding data analysis documentation in peer reviewed journals, making it hard to reproduce
successful data analysis strategies. Here we review multiple chemometrical and statistical methods
for their value in proteomics-based biomarker discovery and propose to include key components in
scientific documentation.

Keywords: biomarker; clinical proteomics; chemometrics; statistics; preprocessing; classification
models; feature reduction; review

1. Introduction

In clinical research and clinical practice the biological state or condition of an individual can
be determined by so-called molecular biomarkers, which are defined as detectible molecules in
body fluids or tissues. Biomarkers have multiple applications depending on their intended use [1]:
(i) diagnostic biomarkers detect diseases, (ii) prognostic biomarkers predict disease progression
or recurrence, and (iii) predictive biomarkers predict treatment (medicinal or dietary) responses.
Application of biomarkers is key to push personalized healthcare as they are individual, predictive,
and preventive parameters [2]. Much biomarker research has been performed in the field of genomics,
which resulted in biomarkers based on DNA and RNA levels. Nowadays, a shift towards proteomics
biomarkers beyond protein expression is needed to properly assess protein function as reflected by
post-translational modifications, alternative splicing, protein-protein interactions and protein turn-over
rate [3]. Initially, proteomics research was performed to find one specific protein biomarker that by
itself is able to characterize a disease. Multiple studies however show that for many diseases, such as
cancer, this is not achievable due to interactions of complex cellular networks and the heterogeneous
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nature of these diseases [4–7]. Biomarker research therefore shifted towards discovery of biomarker
panels that consist of multiple proteins.

The research field of clinical proteomics aims to find such biomarkers by measuring thousands
of peptide and protein levels in biological samples using tandem mass spectrometry (MS/MS). Data
analysis techniques developed in the field of machine learning, chemometrics, data mining, and
statistics are able to analyse and reduce large amount of data to identify biomarkers that are predictive
for a biological state of an individual. Biomarker discovery has gained great interest within the field of
clinical proteomics in the last decade for which a typical biomarker discovery workflow is depicted in
Figure 1.
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Figure 1. Biomarker discovery workflow. The encircled components highlight the focus of this review.

Even though developments have been made in hardware and data analysis techniques the
translation of biomarkers to clinical practice is still limited. Too small sample sizes, poorly defined
research questions, incorrectly justified statistical analysis, statistical overfitting, lack of instrumental
standardization, and validation costs are several causes for this phenomenon [8–10]. Multiple
reviews are available on how to address these individual challenges but do not discuss how choices
made in one component of the biomarker discovery process influence the decisions for another
component [1,4,11–16]. This review aims to discuss chemometrical and statistical aspects of the
complete biomarker discovery process for clinical proteomics. Chemometrical and statistical choices
need to be made across the complete biomarker discovery process and influence one another. Statistical
calculations and chemometrical reasoning can be used to determine the optimal sample size in the
experimental design stage of the project to ensure appropriate statistical power in the experiment.
Pre-processing of acquired mass spectrometry data is performed using bioinformatics, statistical, and
chemometrical methods to quantify and identify (poly)peptides and subsequently remove systematic
biases, handle missing values, and reduce sample variability to yield ‘clean’ data ready for biomarker
selection methods. Finally, machine learning and chemometrical approaches are used to select an
optimal set of biomarkers that meet the defined prerequisites of the study. These key components in
the proteomic biomarker discovery workflow, encircled in Figure 1, will be discussed and evaluated.
Also, the interrelationship between choices made for every individual component will be examined
and guidelines will be presented on how to select the most appropriate techniques for specific studies.

2. Sample Selection

2.1. Sample Size

Optimal sample size selection is a critical parameter in the experimental design of biomarker
discovery studies. Ideally, a minimal number of samples should be used that suffice statistical
requirements for biomarker identification in high dimensional proteomics data. The number of
patients or healthy control donors should not be too large as this poses ethical, efficiency, and cost
problems. Above all, the number of samples needs to be large enough to guarantee reliable statistical
results with minimal false positives or false negatives rates. Ideally, one would like to select a priori
the optimal sample size using calculations based on prior knowledge or statistical theory [17].

The established method to determine the optimal sample size in proteomics is the power
calculation. A traditional power calculation is determined by the false positive rate (type I error,
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α), false negative rate (type II error, β) and the treatment effect size ∆. If Z is the percentile of a
standard normal distribution the number of sample in each group is:

n =
2
(

Z α
2
+ Zβ

)2

∆2 . (1)

The values for the false positive rate α and false negative rate β are typically selected as 0.05
and 0.20, respectively. These values are however fit for purpose and differ per biomarker discovery
study. If the validation method to screen biomarkers candidates is efficient and able to screen many
biomarker candidates simultaneously a higher false positive rate can be tolerated whereas the false
negative rate should be minimized. If the validation method is cost demanding or low-throughput,
only low false positive and false negative rates are accepted [12]. The treatment effect size ∆ is based on
the expected treatment difference divided by the standard deviation within groups, which is based on
prior information [18]. In most biomarker discovery studies these parameters are typically unknown
beforehand which poses a significant problem to justify parameter selection in power calculations
and hence, the selected sample size. The sample size calculation based on the power calculation
furthermore ignores the cost implication and ethical issues related to sample size selection [19].

Additional to these intrinsic issues two problems arise when power calculations are used for
proteomics data with biomarker discovery as the end goal [20]. First of all, proteomics data is
considered high-dimensional with a high level of correlation between data points which the power
calculation does not take into account. Secondly, the power calculation aims to maximize the power
of a test or model to separate between classes whereas classification algorithms used for biomarker
selection in data analysis aim to maximize the prediction accuracy [21]. Different methods have been
proposed that cope with high-dimensional data for sample size calculations but do not take the high
level of correlation into account or are based solely on simulations [22–25]. Even though efforts have
been made to translate the univariate power calculation to a multivariate classification purpose, there
is still no method that overcomes all of these limitations.

Even if the optimal sample size could be determined correctly, the number of available patient
samples might not be sufficient to avoid underpowered proteomics studies. Button et al. [26] stated
that a small sample size undermines the reliability of the results but at the same time proposed
multiple approaches on how to handle this problem. Most importantly, studies should always state
that the experiment was underpowered irrespective of any approaches that were made to circumvent
this problem. A potential solution to insufficient sample size is the option to form collaborative
consortia in which groups of researchers combine data to increase the total sample size. However, it
should be noted that even collaborative research does not solve the limited sample problem in case
of rare diseases where only a few patients with a specific genetic or clinical phenotype are known
worldwide. Furthermore, one should expect an increase of experimental variation that is introduced
by decentralized sample collection and data acquisition at different research facilities.

Insufficient sample size in rare diseases raises the discussion whether or not such underpowered
studies hold substantial value. Each independent study may inherently suffer from a significant
number of false positive or negative results that could lead to misinterpreted biology or selection
of putative biomarkers that fail clinical validation. On the other hand, underpowered studies may
present the only available option to formulate hypotheses for pathogenic mechanisms in rare diseases.
The data may also serve as independent additional evidence to help prioritize candidate biomarkers
in the selection process of other related studies and may be used retrospectively in future studies
to increase sample size as long as data is published according to FAIR data principles (Findable,
Accessible, Interoperable, Reusable) [27].
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2.2. Unbalanced Data

Limited sample size may also pose a specific problem for only one or some of the sample groups
in clinical proteomics studies: in rare diseases the number of patients might be extremely limited
but also healthy donor material might be scarce for a multitude of reasons. The sample cohort may
therefore consist of what is called unbalanced or imbalanced data, in which e.g., the patient group is
the minority case and the control group the majority case. Common classifier algorithms for biomarker
discovery expect balanced class distributions [28]. When this is not the case the algorithm fails to
represent the distributive character of the data which leads to samples of the minority class being
classified in the majority class, decreasing the real classification performance.

There are multiple strategies to deal with the unbalanced data problem. One of the most common
methods is to oversample the minority class or undersample the majority class [29]. These methods
however increase computation time as the classification model needs to be performed multiple times,
and with oversampling the same data is re-used multiple times which can create a bias. There are
classification algorithms who inherently solve the problem of imbalanced data by for example adding
a so called cost function [28]. One should therefore always study the mathematical background of an
algorithm to determine if unbalanced data poses a problem for the classification algorithm.

3. Data Preprocessing

Many bioinformatics tools are available for the analysis of mass spectrometry data [30–33] and can
roughly be divided into two categories. The first category of software exclusively quantifies peptides
and proteins that were identified via MS/MS database searches prior to any statistical analysis to
identify differential (poly)peptides. This is in contrast to the second category of software that quantifies
yet unannotated LC-MS signals first from which differential features are detected that are subsequently
annotated by MS/MS database search information [11]. The most common workflow is to first identify
the peptides and subsequently quantify the LC-MS signals of these peptides [34]. This ensures that
the identity of biomarkers is known after statistical analysis. It is, however, important to realize that
peptides not identified by MS/MS are not quantified which means that key biomarkers might be
overlooked [35]. The second workflow first quantifies LC-MS feature data, which is directly analysed to
identify differential features before MS/MS identification results are mapped to the quantified features.
With this method all possible differential features are taken into account with the potential outcome
that a biomarker is not identified. However, additional targeted MS/MS analyses can be performed to
confirm the identity of the biomarker with mass spectrometer settings that favour MS/MS quality over
quantity. Both workflows ultimately lead to a quantitative feature matrix, in which the rows and the
columns correspond to extracted features and samples. The features are characterized by m/z, charge,
and retention time and represent an identified peptide/protein.

The resulting quantitative feature matrix needs to be pre-processed before statistical analysis,
which can consist of normalization, missing value imputation, and pre-treatment methods such as
centering, scaling, or transformations.

3.1. Normalization and Missing Value Imputation

Due to small variations in the experimental conditions systematic biases of non-biological
(experimental) original can occur. The exact reason of the bias might be unknown and may not
be solved by adjusting experimental settings. To eliminate this bias normalization is applied on
the quantitative feature matrix to allow equitable comparisons between samples. Normalization
consists of two distinguishable components: the mathematical function for normalization, and
the feature selection approach used to select features that are used by the mathematical function.
Webb-Robertson et al. [36] discusses the feature selection approaches and Valikangas et al. [37] explains
the different mathematical functions for normalization. Most mathematical functions for normalization
originate from the field of DNA microarray technology and can be divided into two categories based



Proteomes 2018, 6, 20 5 of 17

on whether or not the bias is dependent on the signal intensity. Both papers not only explain but also
evaluate mentioned normalization techniques and conclude that there is not one specific normalization
method that works best on all datasets due to the different nature of systematic biases. They therefore
argue to apply multiple normalization techniques and systematically evaluate which normalization
method is best able to eliminate the bias of the dataset. One can for example measure a control sample
multiple times and select the normalization method that results in the least amount of variability
between the measurements.

Substantial missing feature intensities are typical for holistic LC-MS/MS datasets. This causes
a problem as most statistical algorithms require a complete data matrix with no missing values [38].
Missing values can be caused by technical or biological reasons: the peptide could be present but
the intensity was below the instrumental detection limit or the peptide could only be present in
some of the samples [39]. There are several ways to deal with missing values [38]: (i) remove the
feature if one of the samples contains a missing value for that feature, (ii) employ statistical methods
which can handle missing values, or (iii) use statistical models that impute missing values. For
clinical proteomics the first option is not preferred due to the fact that peptides or proteins might
be exclusively expressed in healthy or disease conditions. Removal of features with missing values
would lead to a dramatic loss of information and effectively excludes black or white biomarkers from
detection. Alternatively, one could apply a group count missing value approach. If for a feature,
values are missing for more than a predefined percentage of the samples in either sample group, that
feature could be removed. The missing values can also be imputed to obtain a complete data matrix.
Lazar et al. [40] and Webb-Robertson et al. [38] review and evaluated statistical methods for imputing
missing values and both argue that not one imputation strategy is generally advantageous in any
situation. Nevertheless, missing values should be addressed by group count filtering and/or missing
value imputation prior to subsequent statistical analysis. It is recommended to evaluate different
strategies on a subset of the data to select the optimal approach based on the performance of the
statistical analysis that will be applied.

There is no consensus for the order of which intensity normalization and missing value imputation
should be performed. The fact that many normalization methods require a matrix with no missing
values gives the indication that missing value imputation should be performed prior to normalization.
This could however obscure the bias that normalization techniques should remove. This effect would
be larger with an increasing number of missing values. Karpievitch et al. [39] therefore proposed to
first perform normalization prior to missing value imputation.

3.2. Pre-Treatment Methods

Samples each have a different degree of variability that could influence the biomarker discovery
process as statistical methods compare the variability between and not within samples. The
pre-treatment methods centering, scaling, and transformation minimize the sample variability so
that this variability does not influence the data statistics [41]. Centering removes the offset from the
data to adjust for the difference between low and high abundant peptides/proteins to shift the focus
of the analysis towards the variation between samples. This is achieved by converting the mean of a
sample to zero, so that the value of a feature from a sample becomes:

x̃ij = xij − xi, (2)

where xij is the original feature value and xi the mean of all features from that sample. The common
scaling method autoscaling performs centering and changes the feature value of a sample so that
the standard deviation of that sample becomes one, which adjusts for the differences in fold changes
between peptides/proteins:

x̃ij =
xij − xi

si
, (3)
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where si is the standard deviation of all features from that sample. Both methods are illustrated in
Figure 2.Proteomes 2018, 6, x  6 of 16 
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A well-known transformation method is log transformation which converts the feature values to
a more uniformly spread distribution, which allows for the application of parametric tests when the
distribution of the data is skewed to the right:

x̃ij = 10 log
(
xij
)

(4)

Selection of the appropriate pre-treatment method depends on the properties of the dataset
since the amount and type of variability differs between samples. A generally accepted method for
evaluation of pre-treatment methods is to perform Principal Component Analysis (PCA) [42]. A PCA
scores plot of the samples is able to show the variance within and between the samples of each group.
The best performing pre-treatment method should show a PCA scores plot with the smallest within
group spread and largest between group distance. A detailed explanation of the PCA algorithm will
be discussed in Section 4.1 of this work, and Van den Berg et al. [41] gives a detailed explanation on
how to use PCA to evaluate different pre-treatment methods.

The specific order to execute the pre-treatment method depends on the type of statistical analysis.
If biomarker discovery is based on univariate statistics, such as a t-statistic, the pre-treatment method
needs to be carried out globally on the complete data matrix before statistical analysis. If a multivariate
or machine learning technique is chosen for which the data is separated into a training and validation
set, such as Partial Least-Squares Discriminant Analysis, centering and scaling needs to be performed
individually on the training and validation sets to ensure independency [43]. There are furthermore
types of statistical analysis that are not influenced by scaling methods. Tree-based algorithms, such as
Random Forest, are not affected by transformations of the features [44]. In these algorithms a tree is
built on the basis of decision rules. At each node of the tree values of a feature are compared and a
threshold value is determined which is able to separate the groups.

4. Biomarker Selection

The primary goal of data analysis in biomarker discovery studies is to identify features that are
able to correctly classify the samples in two or more groups, e.g., healthy vs diseased or different
disease states. Feature selection methods are not only applied to retrieve biologically meaningful
biomarkers but are also used to reduce the number of features required to discriminate between
sample groups [45]. This dimensionality reduction is an important step in the data analysis process
due to the fact that proteomics datasets typically suffer from the small-n-large-p problem; the number
of features is far greater than the number of samples. Reducing the number of features avoids the
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risk of overfitting, thereby improving classification accuracy, lowering the computational costs and
maximizing the chance of subsequent biomarker validation.

Feature reduction is typically performed in the data analysis step, but dimensionality reduction
can already be accomplished during sample preparation/data acquisition or in the data pre-processing
procedure. Alternatively, prior knowledge or pilot experiments can be used to define a list of putative
biomarker candidates that can be studied in a targeted fashion. This removes the need to perform
a holistic study that would only increase the number of non-relevant features and thereby increase
dimensionality, which influences the prediction accuracy. As discussed in the pre-processing section,
removal of features with missing values or applying a group count missing value approach during data
pre-processing already lowers the number of features and reduces dimensionality prior to data analysis.

Feature selection methods reduce the number of features by eliminating features that present
redundant information or selecting relevant features. The feature reduction methods can be divided
by how they are coupled to the classification or learning algorithms, depicted in Figure 3 [46]. A filter
method reduces the number of features independently of the classification model. Wrapper methods
wrap the feature selection around the classification model and use the prediction accuracy of the model
to iteratively select or eliminate a set of features. In embedded methods the feature selection process is
an integral part of the classification model. Before detailed discussion of the different feature selection
methods, a selection of the most common classification and learning algorithms will be reviewed.

Proteomes 2018, 6, x  7 of 16 

 

a list of putative biomarker candidates that can be studied in a targeted fashion. This removes the 
need to perform a holistic study that would only increase the number of non-relevant features and 
thereby increase dimensionality, which influences the prediction accuracy. As discussed in the 
pre-processing section, removal of features with missing values or applying a group count missing 
value approach during data pre-processing already lowers the number of features and reduces 
dimensionality prior to data analysis. 

Feature selection methods reduce the number of features by eliminating features that present 
redundant information or selecting relevant features. The feature reduction methods can be divided 
by how they are coupled to the classification or learning algorithms, depicted in Figure 3 [46]. A 
filter method reduces the number of features independently of the classification model. Wrapper 
methods wrap the feature selection around the classification model and use the prediction accuracy 
of the model to iteratively select or eliminate a set of features. In embedded methods the feature 
selection process is an integral part of the classification model. Before detailed discussion of the 
different feature selection methods, a selection of the most common classification and learning 
algorithms will be reviewed. 

 
 

 

(a) (b) (c) 

Figure 3. (a) Filter, (b) wrapper, and (c) embedded feature selection methods. Filter methods perform 
the feature selection independently of construction of the classification model. Wrapper methods 
iteratively select or eliminate a set of features using the prediction accuracy of the classification 
model. In embedded methods the feature selection is an integral part of the classification model. 

4.1. Classification Methods 

4.1.1. Principal Component Analysis 

Principal Component Analysis (PCA) seeks an orthogonal transformation of the features that 
best explain the variance in the data [42]. The resulting transformation is described by uncorrelated 
variables called principal components, which are ordered according to the amount of variance they 
explain. The first principal component describes the largest variability in the data as possible 
followed by succeeding principal components which account for the highest variance possible 
orthogonal to the variability of the previous components. The results of PCA are described as scores 
and loadings, the scores contain the transformed data per principal component and the loadings 
contain the weights for each original feature per principal component. PCA is not a classification 
technique but due to its ability to describe the variability in the data by a handful of principal 
components it is widely used for feature reduction. PCA is also a commonly used method for 
exploratory analysis where a scores plot shows the underlying structure of the data by plotting the 
first principal component versus the second principal component. 

4.1.2. Partial Least Squares Discriminant Analysis 

A classification variation of PCA is Partial Least Squares Discriminant Analysis (PLS-DA) [47]. 
This method constructs a linear multivariate model by transformation of the data which maximizes 
the covariance between the dataset and the group labels that need to be predicted. The transformed 
features are called latent variables that are described as scores in a similar fashion to PCA. A 
measure for the individual feature importance is provided by the loadings weights, regression 
coefficients, or variable importance in projection (VIP) [48]. Classification of test samples are 
determined by applying the regression coefficients to the sample features. It is common to show the 

Feature selection

Classification

Feature selection

Feature subset

Classification

Feature selection

Classification
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In embedded methods the feature selection is an integral part of the classification model.

4.1. Classification Methods

4.1.1. Principal Component Analysis

Principal Component Analysis (PCA) seeks an orthogonal transformation of the features that
best explain the variance in the data [42]. The resulting transformation is described by uncorrelated
variables called principal components, which are ordered according to the amount of variance they
explain. The first principal component describes the largest variability in the data as possible followed
by succeeding principal components which account for the highest variance possible orthogonal to the
variability of the previous components. The results of PCA are described as scores and loadings, the
scores contain the transformed data per principal component and the loadings contain the weights
for each original feature per principal component. PCA is not a classification technique but due to its
ability to describe the variability in the data by a handful of principal components it is widely used for
feature reduction. PCA is also a commonly used method for exploratory analysis where a scores plot
shows the underlying structure of the data by plotting the first principal component versus the second
principal component.

4.1.2. Partial Least Squares Discriminant Analysis

A classification variation of PCA is Partial Least Squares Discriminant Analysis (PLS-DA) [47].
This method constructs a linear multivariate model by transformation of the data which maximizes
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the covariance between the dataset and the group labels that need to be predicted. The transformed
features are called latent variables that are described as scores in a similar fashion to PCA. A measure
for the individual feature importance is provided by the loadings weights, regression coefficients, or
variable importance in projection (VIP) [48]. Classification of test samples are determined by applying
the regression coefficients to the sample features. It is common to show the result of the PLS-DA
classification by a scores plot by plotting the scores of the first latent variable versus the second latent
variable. This does however give an overrepresentation of the classification as correlations can be
present by chance and a PLS-DA scores plot will this enlarge correlation [49].

4.1.3. Support Vector Machines

Support Vector Machines (SVM) is a classification algorithm which searches for the hyperplane
that separates two groups with the greatest distance [50]. This hyperplane is achieved by a small
subset of the samples called support vectors. Test samples are classified according to which side of the
hyperplane they end up. For linear cases SVM produces a weight vector corresponding to the feature
importance. For nonlinear cases the so-called ‘kernel trick’ is applied where the data is transformed
using for example a polynomial, radial basis function or sigmoid function to facilitate the search for a
hyperplane. When using a kernel function the SVM algorithm does not produce a measure for feature
importance. SVM for non-linear cases can therefore only be used in combination with a wrapper
feature selection method [44].

4.1.4. Random Forest

The Random Forest (RF) algorithm is a classification algorithm belonging to the family of decision
trees [51]. The RF model is constructed by building an ensemble of many decision trees. Every tree is
generated using a different set of bootstrap selected samples called in-bag samples. At every split in
the decision tree a random subset of features is used. The importance of each feature is determined by
the decrease in classification margin if the values of that feature are permuted across the out-of-bag
samples. Test samples are classified by determining the number of votes per group label over all trees
in the model.

4.1.5. Artificial Neural Networks

Artificial Neural Networks (ANN) is a deep learning algorithm inspired by biological neural
networks [52]. An ANN consists of an input layer, multiple hidden layers, and an output layer inspired
by biological nervous systems that are interconnected via nodes. ANN requires training data and
a desired output, e.g., correct classification of the group labels. The algorithm is self-learning and
therefore requires no mathematical function as input. Each layer in the network transforms the training
data and passes it on to the next layer, increasing the complexity and detail of the learning process
until the desired output is reached. Test samples are presented to the learned network which classifies
the samples. A measure of feature importance is given by a weight vector.

4.2. Feature Selection Methods

4.2.1. Filter Methods

Filter methods select features on the basis of a calculated score by looking only at the intrinsic
properties of the data. The calculated scores are used to remove low-scoring features and retain
high-scoring features. Classical filter techniques are the t-statistic and its multiclass variant ANOVA,
which allows for a comparison of more than two groups. The p-values calculated for every feature
are the scores by which features are removed or retained. The selected features are subsequently
used to build the classification model to find discriminating biomarkers of the remaining features [53].
A common disadvantage of these techniques is their univariate nature. The feature scores are calculated
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for every feature individually and interactions between features are ignored, which can lead to a
decrease in classification performance as disease effects can result from a combination of features.

A multivariate feature selection method is PCA which transforms the features to principal
components that are subsequently used to build the classification model. Selection of the number
of principal components is a critical step, selecting too many components can introduce noise while
selecting too few may lead to discarding valuable information. Cangelosi and Goriely review the most
common methods for selecting the optimal number of principal components [54]. They recommend
looking for a ‘consensus dimension’ given by multiple stopping techniques. The advantage of
using all initial features to construct principal components comes at the cost of comprehensibility,
the components are often not straightforward to interpret as they will be the orthogonal transformations
of the original features.

Because the filter method needs to be performed only once prior to building the classification
model, the techniques are fast and scalable. The filter methods do however require a parameter which
specifies the cut-off value of the scores calculated for the features. Section 4.3 discusses this point in
more detail.

4.2.2. Wrapper Methods

In the wrapper approach the prediction accuracy of a classification model is used to determine
the optimal feature subset. Different possible feature subsets are defined and their performance is
evaluated by a classification algorithm. The classification model is first constructed using a subset of
samples called the training set after which the model is evaluated by the remainder of the samples
called the test set. The performance is measured in terms of prediction or classification accuracy. With
the increasing number of features in proteomics data the number of subsets that needs to be evaluated
increases dramatically. As a consequence, algorithms typically do not evaluate all possible feature
subsets but use heuristic search methods and ‘wrap’ around the classification model to search for the
optimal feature subset. Due to the nature of the search algorithm the wrapper methods are multivariate
and take interactions between features into account. The dependency of the feature selection method on
the classifier model performance can be an advantage or disadvantage. The selected features that result
from the wrapper methods are features with good classification power but if the prediction accuracy
of the model is low one cannot be certain about the selected features. Apart from the dependency
on the classifier, wrapper methods can be computationally intensive when the classifier has a high
computation cost and can be prone to overfitting.

Two common wrapper methods are Recursive Feature Elimination (RFE) [55] and Genetic
Algorithm (GA) [56]. RFE can be combined with all classification models but is commonly coupled
with SVM. In the RFE approach all features are first used to train the SVM classifier from which the
calculated weight vector is used to remove features with the lowest weight vector value. The SVM
classifier is then trained on the remainder of the features and the process is repeated until an optimal
subset is established.

The Genetic Algorithm (GA) is a wrapper method that is based on a natural selection process
that mimics biological evolution. A population is defined by individuals in which every individual
contains a different feature subset. In each iteration of the algorithm, called generation, a fitness value
is evaluated for every individual in the population. The fitness value is a parameter of choice, which is
the prediction or classification accuracy of the classifier when GA is used for feature selection. The next
generation is subsequently formed by modifying the population using mutation, crossover, and
selection operations based on the fitness value ranking of the individuals. Over successive generations,
the population evolves towards the optimal solution that shows the lowest fitness value. When the
optimal solution is reached, the individual with the lowest fitness value is selected as optimal feature
subset. In principal all classification models can be used to determine the fitness value of genetic
algorithms. In practice Support Vector Machines (SVM) [57], k-Nearest Neighbours (k-NN) [58], and
Random Forests (RF) [59] have been used in proteomics studies. All three classification algorithms are
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powerful classification methods and have low computation costs, which is a requirement for classifier
used in wrapper methods.

4.2.3. Embedded Methods

In embedded methods the feature selection is based on a score calculated by the classification
model. A classification model is constructed using a training set and the prediction accuracy evaluated
with a test set. The classification model that was build gives the performance value for every
feature. Low scoring features will be removed and high scoring features retained, but different
than filter methods the performance measure of the features is calculated by the classification model.
Because the model is built only once to determine the feature scores, embedded methods have far less
computational costs compared to wrapper methods, which require the construction of multiple models
due to their iterative process. The embedded methods do however require a parameter which specifies
the cut-off value of the scores calculated for the features. Section 4.3 discusses this point in more detail.
Common methods are the VIP value for PLS-DA [60] and the weights of ANN input features [61].

4.3. Parameter Selection

Both the classifier and feature selection methods require parameter values to be selected which
have a significant impact on the final outcome of the analysis. These include the number of principal
components, latent variables, the kernel method, and the number of trees for PCA, PLS-DA, SVM,
and RF respectively. For every classification model this parameter can be optimized using a double
cross-validation (2CV) procedure depicted in Figure 4. As described for wrapper methods, the samples
are first split in a training set and a test set to construct and evaluated the model based on prediction
accuracy. This cross-validation is called the outer loop. In the double cross-validation scheme the
samples in the training set are again split into a training and validation set to select the optimal value
of the parameter, which is called the inner loop. This double cross-validation ensures that there is no
dependency between the samples used for parameter optimization and prediction error calculation.
Westerhuis et al. [43] provides detailed information and an example using PLS-DA on how to construct
a double cross-validation procedure.

Additional to parameter optimization for the classification algorithm, the wrapper methods
require the selection of the number of features for the feature subsets. For the wrapper methods there
is no rule of thumb for the selection of the number of features but the computational resources are the
biggest determining factor for this. If the number of features in a subset is small more combinations of
feature subsets are possible which increases the number of classification models that need to be build.
Every classification model that is built requires computation time, so the smaller the feature subset the
larger the computation cost.

The filter and embedded methods require a parameter which specifies the cut-off value of the
scores calculated for the features. The selection of the cut-off value depends on the algorithm for which
the scores are calculated. There are methods that have a common cut-off value, such as the 0.05 cut-off
point for the univariate t-statistic and ANOVA methods. For some techniques the cut-off value is
dependent on the constructed classification model and ranges around a preferred cut-off value, the
value of 1 for the PLS-DA VIP score for example [62]. Not only the cut-off value but also the number
and type of features that are selected are important and depend on the type of research and result that
is required. When the final set of selected features is to be validated by high-throughput follow-up
experiments there is no need to be conservative. In such cases, it might be more important to avoid
false negatives rather than false positives. On the other hand, when only a limited number biomarker
candidates can be validated in follow-up experiments, it is important to avoid false positives at the
expense of false negative results.
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4.4. Evaluation and Validation

The performance of a feature selection method is evaluated and validated based on the prediction
accuracy of the classifier, and the statistical significance and stability of the selected features. Because
univariate methods are not based on classification algorithms the performance is determined differently
from multivariate methods.

A univariate test is deemed significant if the calculated p-value is lower than the α-level, the
significance level which is often set to 0.05. However, using univariate methods for feature selection in
proteomics data inherently leads to the so called multiple testing problem [63]. For feature selection
numerous univariate tests are performed in a single experiment which increases the chance of finding
false positives. The solution to the multiple testing problem is to adjust the α-level to maintain an
acceptable false-discovery rate (FDR); the probability that a test produces a false positive result. Two
common methods for controlling the number of false positives when performing multiple tests are
the Bonferroni correction and the Benjamini-Hochberg correction [64]. The Bonferroni correction [65]
changes the α-level at which a test, and therefore features are declared significant. If m tests are
performed the level at which a test/feature is presumed to be significant becomes α = 0.05/m. This
correction however is known to be conservative, especially in proteomics studies where the number of
features are high. The α-level becomes so small that only a handful of features are deemed significant
and the number of false negatives increases. A less conservative method is the Benjamini-Hochberg
correction [66]. The p-values are ranked from low to high and are recalculated using α * (i/m), with i
representing the rank position. The tests/features with a recalculated value lower than the α-level are
declared significant. The choice of the preferred method depends on the FDR that is accepted in the
biomarker validation process, as discussed in Section 4.3. The statistical significance of a p-value can
additionally be determined by resampling techniques which is discussed at the end of this section.

Multivariate classification methods are evaluated with a performance measure and a
corresponding significance value that are determined independently. The performance measures
are based on how well the classification model is able to correctly classify a sample from the test set to
its respective class. The sample can then be categorized as a true positive, true negative, false positive
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or false negative and stored in a confusion matrix. For binary classification the confusion matrix is
illustrated in Table 1, for multiclass classification a confusion matrix is derived for every combination
of classes.

Table 1. Confusion matrix for binary classification. The positive and negative class could be disease
and control or two different types of diseases, etc.

Actual Class

Positive Negative

Classified as
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

With the confusion matrix the most common performance measures can be derived that are
listed in Table 2. For multiclass cases the performance measures can be macro-averaged where the
overall performance measure is the average of the performance measure for every class combination or
micro-averaged where the overall performance measure is calculated by an overall confusion matrix
which is the sum of all confusion matrices for every class combination [67].

Table 2. Performance measures for binary classification based on the notation in Table 1.

Performance Measure Formula

Number of misclassifications (NMC) FP + FN
Accuracy TP+TN

TP+FN+FP+TN
Sensitivity TP

TP+FN
Specificity TN

FP+TN
Area under the receiver operator curve (AUC) 1

2

(
TP

TP+FN + TN
FP+TN

)

Every performance measure has a different focus: NMC focuses on misclassifications, accuracy on
the overall effectiveness of the classifier, sensitivity and specificity on correctly classifying positives and
negatives respectively, and the AUC on the ability to avoid false classification. These differences make
it difficult to compare performance measures between different classification methods as different
performance measures could advocate distinct methods. It is, therefore, advised to not only report
the final performance measure but also document the confusion matrices to improve transparency
of results.

To determine significance of the performance measures and therefore stability of the classification
model resampling techniques can be used. Common resampling techniques are bootstrapping,
jackknifing, or permutation tests, of which the latter is typically used. Permutation tests evaluate if the
performance measure is significantly better compared to any other random classification [68]. First the
class/group labels are randomly permuted over the samples. The feature selection model that has been
performed on the original data is performed again on the permuted data with random class/group
labels. This procedure is repeated multiple times forming a distribution for performance measures of
the random data which is not expected to be significant, a H0 distribution. The performance measure is
said to be significant if the original (not permuted) data is outside the 95% or 99% confidence intervals
of the H0 distribution.

4.5. Which Method to Choose?

Although most commonly used, the feature selection and classifier methods mentioned in the
previous sections are only few of the many algorithms available. Even though multiple studies
evaluated these feature selection methods there is not one method that outperforms all other methods
in these studies [44,69,70]. The selection of the most suitable method is determined by the properties
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of the dataset, computational resources, the type of biomarker that is searched for and the validation
process available after feature selection.

The number of sample groups in the dataset already gives a preference to certain classifiers. When
one disease group is compared to healthy controls the classification problem is called binary for which
all univariate and multivariate methods can be used. The number of applicable classifier algorithms
however decreases when three or more groups are compared, typically referred to as multiclass
classification. The basic PLS-DA and SVM algorithms do not support multiclass classification.
Extensions have been proposed for these methods but require additional parameters that increase
model complexity [49,71]. RF and ANN on the other hand are intrinsically capable of classifying both
binary and multiclass problems.

The computation time needed to perform a feature selection procedure is an important decision
factor that depends on the method of choice. Filter methods are fast and scalable, whereas wrapper
methods have high computational costs. Additionally, the type of classifier and how the classifier
is used has an influence on the computation time. RF is a fast algorithm when applied exclusively
for classification purposes but demands high computation power if used for feature importance
calculations. In addition, the number of parameters that need to be optimized significantly increases
computation time. This means that an increasing number of pilot calculations on subsets of the data
need to be performed to determine optimal parameters settings.

The choice of univariate or multivariate methods depends on the type of biomarker that is
searched for. If the biomarkers of interest are single markers that by themselves can be used to
classify samples from each group, univariate methods are the method of choice. Multivariate methods
are preferred if the sample classification is expected to be defined by a set of biomarkers that are
interrelated. If this is not known a priori it is advised to apply both univariate and multivariate
methods as they are able to extract complementary information [72].

The experimental validation stage for biomarker candidates that will be performed after feature
selection needs to be taken into account on how to execute the preferred methods with respect to false
positive and negative rates that can be tolerated as discussed throughout this review.

5. Conclusions

Here, we provide a comprehensive overview of the individual chemometrical and statistical
steps in the context of the full biomarker discovery workflow. Key decisions have to be made prior
to starting proteomics data analysis that depend on the characteristics of the data, the computational
resources, the type of biomarker that is desired and the subsequent biomarker validation strategy.
All steps are interrelated and decisions made for one component directly influence the decisions for
another. This review aims to provide the theoretical concepts behind the individual steps but also to
guide researchers in how to apply these methods for the discovery of pivotal biomarkers.

All the decisions made in the biomarker discovery process ultimately determine which biomarkers
are selected from high dimensional data with a specific biomarker application in mind. It is, therefore,
crucial to thoroughly document all steps and related parameters of the full workflow to maximize the
applicability of results for subsequent validation studies. Moreover, it is also required to enable peer
scientists to evaluate and replicate study results. We therefore make the following recommendations
when publishing proteomics biomarker discovery research: (i) all chemometrical and statistical
decisions made in the complete biomarker discovery procedure should be thoroughly documented and
substantiated, (ii) raw, not only (pre)processed data, should be made available, (iii) confusion matrices
used for calculation of the performance measures for the feature selection methods should be supplied,
and (iv) scripts used for the data analysis should be made available. The Minimum Information about
a Proteomics Experiment (MIAPE) [73] and the proteomics community in ELIXIR [74] made a start
on standardized documentation for proteomics experiments but is sparse on the documentation of
chemometrical and statistical decisions [75]. We therefore propose to include guidelines based on our
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recommendations in future revisions by these communities to advance the transition from biomarker
discovery into clinical application.
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