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Abstract: Carbon nanomaterials are widely produced and used in industry, medicine and 

scientific research. To examine the impact of exposure to nanoparticles on human health, 

the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular 

proteome that could account for alterations in cellular function of airway epithelia after 24 

hexposure to 10 μg/mL and 100 ng/mLof two common carbon nanoparticles, single- and 

multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, 

label-free quantitative mass spectrometry (LFQMS) was used to study the differential 

protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a 

bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh 

concentration (10 g/mL; 0.4 g/cm
2
) of MWCNT or SWCNT, only 8 and 13 proteins, 

respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of 

proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm
2
) of either 

CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT 

or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the 

proteins in common to both nanotubes occurred within the cellular functions of cell death 

and survival, cell-to-cell signaling and interaction, cellular assembly and organization, 

cellular growth and proliferation, infectious disease, molecular transport and protein 

synthesis. The majority of the protein changes represent a decrease in amount suggesting a 

general stress response to protect cells. The STRING database was used to analyze the 
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various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), 

signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and 

apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several 

functional categories and tend to be in the center of the networks. This central positioning 

suggests they may play important roles in multiple cellular functions and activities that are 

altered in response to carbon nanotube exposure. 

Keywords: airway epithelia; barrier epithelia; label-free quantitative mass spectrometry; 

protein interaction networks  

 

1. Introduction  

Nanotechnology is the manipulation of matter at atomic and molecular scales from 1 to 100 

nanometers and the creation of new materials with wide ranging applications in medicine, electronics, 

biomaterials and energy production. The special properties of nanoparticles include unique surface 

area/volume ratios, refractive indices, and biological and chemical reactivity. These properties help to 

extend their applications, but raise concerns about their toxicity and environmental impact [1,2]. 

Potential effects on human health are an issue in the manufacturing workplace and after environmental 

exposure. Likewise, research into the rational delivery and targeting of nanomedicines has yielded 

promising results, but clearance and toxicity are poorly understood and adverse effects on human 

health remain a potential problem [3].  

One family of widely used nanomaterials is carbon nanotubes (CNTs). CNTs are hollow carbon 

tubes made of a single or several concentrically arranged cylindrical graphite layers capped by 

fullerenic hemispheres, which are referred to as single- and multi-wall carbon nanotubes (SWCNT, 

MWCNT). In addition to many industrial applications, they can be used as scaffolds for cell culture [2] 

or as transporting vehicles for intracellular delivery of bioactive molecules [4]. The diversity of lengths, 

aspect ratios, dispersion, surface coating and functionalization of CNTs further enhances their 

biocompatibility and biomedical application, but also raises concerns about their potential cytotoxicity [5].  

A primary route for nanoparticle uptake in humans is through the airways, and high concentrations 

of carbon nanoparticles are known to cause oxidative stress, inflammatory responses and granuloma 

formation in respiratory epithelia [6]. Calu-3 is one of the airway cell lines commonly used for 

bronchial epithelial cell studies.The serous cells, of which Calu-3 are a model, are a major source of 

airway surface liquid, mucins and immunologically active substances [7]. Mucus protects the 

epithelium from infection and chemical damage by binding to inhaled microorganisms and particles 

that are subsequently removed by the mucociliary escalator system. Bronchial secretion and 

mucociliary clearance (MCC) are critical components of the innate immune response to remove 

inhaled pathogens and particulates.  

The Calu-3 cells mimic the in vivo serous cells in that they form an epithelium that secretes a layer 

of mucous that covers the apical surface. An additional characteristic in common with the serous cells 

in vivo is that the Calu-3 cell line has cell junctions that serve a barrier function, protecting the internal 

milieu from the external milieu. Trans Epithelial Electric Resistance (TEER), which consists of 
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paracellular and transcellular resistances, is used as a measurement of the barrier function of epithelial 

cells [8]. The formation of an intact, confluent cellular monolayer can be verified by an increase in 

TEER. We have previously shown a decrease in TEER of confluent monolayers after exposure to 

CNTs for 24 or 48 h. The decrease in barrier function in response to CNT exposure was manifested 

after exposure to the same, low concentration (100 ng/mL) that we have used in the current studies. 

The magnitude of the decrease indicated a disruption of the barrier function but no loss of cellular 

viability [9]. In the case of cell death, the confluent monolayer would have ―holes‖ and it would be 

impossible to maintain a measureable transepithelial resistance. Thus, the TEER value is a more 

sensitive measure of cellular viability than most biochemical assays. 

The serous cells also play a role in maintaining airway hydration by selective absorption or 

secretion of electrolytes which is accompanied by compensatory water flux. Our previous studies 

showed that CNT exposure over a wide range of concentrations decreases a secretory Cl
−
 flux that is 

stimulated in response to epinephrine [9]. Since a compensatory water flux will accompany the Cl
−
 

secretion, these results indicate a potential for CNT-induced alterations in airway hydration. 

The current studies extend our previous observations to a bioinformatic analysis of changes that 

occur in the Calu-3 cell proteome in response to exposure to a physiologically relevant concentration 

of carbon nanotubes. The current results corroborate the earlier studies showing that there is an inverse 

dose response relationship between the concentration of CNT and the functional effects on barrier 

epithelial cells [9,10]. Furthermore, the results elucidate the protein molecular basis for a variety of 

major functional changes in the cells. The quantification and bioinformatic analysis of protein 

expression changes in response to CNT exposure provides a comprehensive understanding of CNTs 

effect on epithelial cells as well as a background for future toxicological studies.  

2. Experimental  

2.1. Materials 

CNTs were purchased from SES Research (Houston, TX, USA). Based on the manufacturer’s data, 

SWCNT (#900-1301) (long) were purified single-walled nanotubes with an outer diameter <2 nm and 

lengths ranging from 5–15 μm. The purity was reported to be >90%CNT (>50% SWCNT) containing 

ash (<2% wt) and amorphous carbon (<5% wt). Purified MWCNT (# 900-1203) had a reported outer 

diameter of 40–60 nm with lengths ranging from 5–15 μm. The MWCNT were reported to be >95% 

nanotubes with low level amorphous carbon (<2%), and ash content (<0.2%).  

DMEM/F-12 tissue culture media, Glutamax, penicillin, streptomycin, sodium pyruvate, and  

non-essential amino-acids were purchased from Invitrogen (Carlsbad, CA, USA). Fetal bovine serum 

(FBS) was from Gemini Bioproducts, (West Sacramento, CA, USA). Cell culture flasks and Transwellcell 

culture plates (24 mm inserts, polycarbonate, 0.4 μm pore size) were obtained from Costar-Corning 

(Acton, MA, USA). DL-Dithiothreitol (DTT), urea, triethylphosphine, iodoethanol, and ammonium 

bicarbonate were purchased from Sigma-Aldrich (St. Louis, MO, USA). LC-MS grade 0.1% formic 

acid in acetonitrile and 0.1% formic acid in water were purchased from Burdick & Jackson 

(Muskegon, MI, USA). Modified sequencing grade porcine trypsin was obtained from Princeton 

Separations (Freehold, NJ, USA). 
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2.2. CNT Preparation 

Concentrated stock solutions of SWCNT and MWCNT were prepared by sonication in FBS at a 

concentration of 5 mg/mL using a Branson Sonicater 450 at a duty cycle of 30% and an output control 

of 3 for 20 s. After sonication, the samples were autoclaved and diluted to the final concentrations of 

nanoparticles in the cell culture media. For the control samples, FBS without nanoparticles was treated 

in an identical manner. Additional CNT-free FBS was added to obtain a final concentration of 15% 

FBS in culture media in all cases. Only 2% of the total FBS was autoclaved with CNTs. 

2.3. Cell Culture and Incubation 

The Calu-3 (ATCC No. HTB-55) cell line was purchased from American Type Culture Collection 

(Manassas, VA, USA) at passage 19. Cells were grown in humidified atmosphere of 5% CO2–95% air 

at 37 °C. Cell culture medium was comprised of DMEM/F-12 (1:1), 15% FBS, 2.40 mg/L NaHCO3, 

100 U/L penicillin, 100 mg/L streptomycin, 0.5 mM sodium pyruvate, 0.5 mM non-essential amino 

acids, and 1 mMGlutamax. All cultures had media replaced thrice weekly. 

Cells maintained and amplified in plastic tissue culture plates were trypsinized and seeded directly 

onto the permeable filters of the Transwell cell culture inserts with media on the apical and basolateral 

sides. Two days after inoculation, the medium was removed from both sides and replaced only on the 

basolateral side. This cell culture technique, called air interface culture (AIC), mimics the in vivo 

situation. The Calu-3 cells secrete a sufficient amount of fluid and mucus to remain hydrated. Cell 

monolayers were used on days 12–14 after being seeded on the Transwells, the time at which the cells 

form confluent, electrically tight monolayers with tight junctions and show a high resistance phenotype. 

The CNTs, at concentrations of 10 μg/mL and 100 ng/mL, were added to the apical media and cells 

were exposed for 24 h. Only 200 µL of CNT containing media were added to the apical side (5 cm
2
) to 

maintain the AIC for the cells. However, all volumes were maintained in constant proportions so that 

the surface exposure could be converted to concentration per unit volume of media using the following 

formula: N g/cm
2
 = 25N g/mL. Therefore, the concentrations used in the experiments could also be 

expressed as 0.4g/cm
2
 and 4 ng/cm

2
 respectively. 

2.4. Proteomics 

After exposure to CNT for 24 h, label-free quantitative mass spectrometry (LFQMS) was applied, 

as published previously [11–14], to examine differential protein expression in cell lysates. The 

Transwell
™

 membranes containing adherent Calu-3 cells were rinsed 3 times in ice-cold 250 mM 

sucrose, snap frozen in liquid nitrogen, and stored at −80 °C. Calu-3 lysates were prepared by adding 

500 μL of lysis buffer (8 M urea, 10 mM DTT, freshly prepared) to each sample. Cells were incubated 

at 35 C for 1 h with agitation and then centrifuged at 15,000 ×g for 20 min at 4 C to remove 

insoluble materials. The fully solubilized cell proteins in the supernatant were then stored at −80 °C 

until LFQMS analysis. 

Protein concentration was determined by the Bradford Protein Assay using Bio-Rad (Hercules, CA, 

USA) protein assay dye reagent concentrate. An aliquot containing 100 µg of each cell lysate sample 

was adjusted to 200 µL with 4 M urea and then reduced and alkylated by triethylphosphine and 
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iodoethanol, as described previously [15]. A 150 µL aliquot of a 20 µg/mL trypsin solution was added 

to the sample and incubated at 35 °C for 3 h, after which another 150 µL of trypsin was added, and the 

solution incubated at 35 °C for 3 h. Exactly 20 µg of each tryptic digest sample was injected randomly 

as two technical replicates onto a C18 reversed phase column (TSK gel ODS-100V, 3 µm,  

1.0 mm × 150 mm) at a flow rate of 50 µL/min as part of the Surveyor autosampler and MS HPLC 

system (Thermo-Electron, Waltham, MA, USA) coupled to a Thermo-Finnigan linear ion-trap (LTQ) 

mass spectrometer. The mobile phases A and B were 0.1% formic acid in water and 50% ACN with 

0.1% formic acid in water, respectively. The gradient elution profile was as follows: 10% B (90% A) 

for 7 min and 10%–67.1% B (90%–32.9% A) for 163 min, 67.1%–100% B (32.9%–0% A) for 10 min. 

The spectral data were collected in the ―data dependent MS/MS‖ mode with the ESI interface using a 

normalized collision energy of 35%. Dynamic exclusion settings were repeat count 1, repeat duration 

30 s, exclusion duration 120 s, and exclusion mass width 0.6 m/z (low) and 1.6 m/z (high). A blank was 

injected between each sample to clean and balance the column and to eliminate carryover. The 

acquired data were searched against the International Protein Index (IPI) database (ipi.HUMAN.v3.83) 

using SEQUEST (v. 28 rev. 12) algorithms in Bioworks (v. 3.3). General parameters were set to: 

peptide tolerance 2.0 amu, fragment ion tolerance 1.0 amu, enzyme limits set as ―fully enzymatic-cleaves 

at both ends‖, and missed cleavage sites set at 2. Peptide and protein identifications were validated by 

PeptideProphet [16] and ProteinProphet [17] in the Trans-Proteomic Pipeline (TPP, v. 3.3.0) [18]. Only 

proteins with probability ≥0.9000 and peptides with probability ≥0.8000 were reported. Protein abundance 

was determined using IdentiQuantXL
™

 [19]. Briefly, after chromatogram alignment and peptide retention 

time determination, a weighted mean m/z of each peptide was calculated and a tab delimited file was 

created to extract peptide intensity using MASIC [20]. Peptides were then filtered according to intensity 

CV across all samples and intensity correlation, for those identifying a particular protein. Protein 

abundance was calculated from all qualified corresponding peptides matched to that protein. 

Comparison of the abundance of individual protein dose-group means generated by LFQMS was 

performed within the IdentiQuantXL
™

 platform using one-way ANOVA and Pairwise Multiple 

Comparisons (Holm-Sidak method). Critical F-ratio significance for ANOVA was set at p < 0.01 and 

pairwise comparison at p < 0.05. False Discovery Rate (FDR) [21] was estimated using Q-value software. 

2.5. Bioinformatic Analysis  

Protein lists and their corresponding expression values (fold change) were imported into the 

Ingenuity Pathway Analysis (IPA) web based software [22] to interpret the biological relevance of the 

differential protein expression data. IPA Core Analysis was used to get a rapid assessment of the 

signaling and metabolic pathways, upstream regulators, molecular networks, and biological processes. 

IPA Functional Analysis was identified based on Ingenuity Pathway Knowledge Base (IPKB) that was 

most significantly related to the dataset. p-value calculated by Right-tailed Fisher’s exact test was used 

to determine the probability that each biological function assigned to that data set was due to chance 

alone. The Canonical Pathways Analysis identified the pathways from IPA’s library of canonical 

pathways based on the proteins involved in each pathway. The Upstream Regulator Analytic identified 

the cascade of upstream transcriptional regulators that can explain the observed gene expression changes in 

a dataset and illuminate the biological activities occurring in the tissues or cells being studied.  
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R language was used to compare the biological effects across different CNTs and exposure levels. 

Proteins involved top biological functions of exposure to high concentrations of SWCNT and 

MWCNT were compared in Venn diagrams.  

Search Tool for the Retrieval of Interacting Genes (STRING) database was used to analyze the 

proteins involved in each function and predict protein interaction networks. STRING [23] is a database 

and web resource dedicated to protein-protein interactions, including both direct (physical) and indirect 

(functional) associations [24]. It weights and integrates information from numerous sources, including 

high-throughput experimental data, the mining of databases and literature, and predictions based on 

genomic context analysis. STRING integrates and ranks these associations by benchmarking them 

against a common reference set, and presents evidence in a consistent and intuitive web interface as a 

network. Interactions in STRING are provided with a confidence score, and accessory information 

such as protein domains and 3D structures is made available, all within a stable and consistent 

identifier space. 

3. Results and Discussion  

3.1. Proteomics 

LFQMS identified and quantified 2,852 unique protein database entries in the Calu-3 cell line 

(Table S1 and S2). Statistical analysis by ANOVA (p < 0.01) and Pairwise Multiple Comparisons  

(p < 0.05) determined that incubation with CNT at concentrations of 10 μg/mL and 100ng/mL resulted 

in significant changes protein expression profiles (Figure 1). Volcano plots in Figure 2 show the log2 

fold change and p-value of all proteins in treated compared with untreated, control cultures. At the 

high concentration, the volcano plot tends to be symmetrical, which indicates the exposure to high 

concentration of CNTs caused comparable increases and decreases in protein expression. Additionally, 

the expression of few proteins was significantly different (p < 0.05). Conversely, at the low 

concentration, the abundance of many proteins was significantly changed and the volcano plot is 

skewed to the left, indicating that the relative amount of a majority of the proteins was decreased after 

CNT exposure. Among all the exposures, only 3, 2, 1, 1 proteins had increased expression at 

concentration of 10 μg/mL MWCNT, 10 μg/mL SWCNT, 100 ng/mL MWCNT, 100 ng/mL SWCNT, 

respectively. After exposure to high concentration of MWCNT and SWCNT, only 8 and 13 proteins 

significantly changed, while after exposure to low concentration of MWCNT and SWCNT, the 

abundance of 283 and 282 proteins was significantly altered (Table S3).  

These findings are consistent with our previous studies showing that 24 h exposure to the high 

concentration (10 g/mL) has little effect on cell function measured as TEER. Conversely the lower 

concentration of CNTs (100 ng/mL) caused an approximately 40% decrease in TEER [9]. These 

results are also consistent with studies performed on high resistance renal epithelial cells where both 

TEER and hormone-stimulated ion transport showed an inverse relationship between CNT 

concentration and functional effect [10]. We hypothesize that the difference in effect between the high 

and low dose CNT exposure could be due to the propensity of carbon nanotubes to agglomerate at high 

concentration. This postulate is supported by analysis of particle size and zeta potential of 

nanoparticles in previous research in our laboratory [9,10]. At the high concentrations, the nanoparticle 
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agglomerates are very large and are unlikely to cross the cell membrane to alter cellular function [10]. 

However at lower concentrations these large aggregates are not present. A previous in vivo study 

showed that small agglomerated groups of nanoparticles can be readily phagocytized by alveolar 

macrophages while single nanoparticles can have a higher probability of translocating to the circulatory 

system and organs where they can produce damage [25]. In addition, at the low concentrations, the 

CNTs are better dispersed, and can competitively bind to serum proteins. Nanoparticle/serum protein 

complex formation alters their adsorption capacity and packing modes [26].  

Figure 1. Changes in protein abundance in response to carbon nanotube exposure. The 

bars depict the number of proteins whose expression was increased (above 0) or decreased 

(below 0) over controls in response to 24 h exposure to carbon nanotubes at the 

concentrations listed on the figure. Actual numbers of proteins whose abundance are 

altered are also shown on the graph. Protein expression data filtered by ANOVA p < 0.01 

and Pairwise Multiple Comparison p < 0.05 of different CNTs (SWCNT, MWCNT) and 

concentrations (10 μg/mL, 100 ng/mL). 

 

Transmission electron microscopy (TEM) analysis of CNTs in cell culture medium support protein 

coating of nanoparticles (data not shown). Liquid chromatography-tandem mass spectrometry found 

the CNTs associate with proteins forming a protein corona after incubation with PBS-DMEM cell 

culture media [27]. It is the nanoparticle-corona complex, rather than the bare nanoparticle, that can 

interact with biological machinery [28]. The protein-coated CNTs may activate the cell’s uptake 

machinery in a process known as endocytosis, which may enable the CNTs to enter the cell and even 

the nucleus [29]. 
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Figure 2. Volcano plots of all proteins identified and quantified, illustrating their 

magnitude, significance, and direction of differential expression observed after 24 h 

exposure to CNTs (SWCNT, MWCNT) at two different concentrations, 10 μg/mL,  

100 ng/mL. The horizontal red line in each graph signifies Pairwise Multiple Comparisons  

p-value < 0.05 compared to proteins in control cultures grown in parallel.  

 

 

The Venn Diagram shown in Figure 3 compares the individual protein changes and their overlap 

among all of the nanoparticle exposures. There was no overlap in four categories, which means there 

were no proteins that changed in all exposures. Clearly, the low concentration (100 ng/mL) showed the 

highest number of changes and a remarkable overlap between MWCNT and SWCNT. Between the 

281 and 282 proteins that had significant fold changes in MWCNT and SWCNT, 231 proteins were the 

same. At the high concentration, few proteins were differentially expressed, and these showed a lesser 

degree of overlap. There was also no overlap between the high and low concentrations of the same 

CNT, so it is the concentration, not the CNT itself that had the most effect on cells.  
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Figure 3. Venn diagram illustrating common identities of the proteins altered in response 

to 24 h CNT exposure. Overlaps of identical significantly altered protein expressions after 

exposure to two different concentrations (10 μg/mL, 100 ng/mL) of either SWCNT or 

MWCNT are indicated by the numbers inside each of the different compartments. 

 

The magnitude of the CNT-induced changes in protein expression was low. Of all the increased 

proteins, the highest fold change was 1.3. However, decreased expression reached as high as 2.1 fold. 

The relatively low level of change is not surprising in light of the physiological functional changes 

demonstrated in previous studies [9,10]. Within the concentration range used in the current studies, 

CNTs decreased the barrier function of both renal and airway high resistance epithelial cell lines but 

did so without altering cellular viability. In the Calu-3 cells, exposure decreased, but did not fully 

inhibit, epinephrine stimulated Cl
−
 secretion. Therefore some cellular functions are altered but the 

CNTs are not overtly toxic so one would anticipate compensatory changed in cell metabolism 

manifested as modest changes in protein content. 

3.2. Bioinformatics 

After analysis by IPA, we identified proteins within several categories including top biological 

functions, canonical pathways and upstream regulators associated with differentially expressed 

proteins. Because of their small number, this analysis could not be performed for proteins altered by 

the high concentration exposure.  

Due to the remarkable overlap of protein expression changes between MWCNT and SWCNT 

afterthe 100 ng/mL exposure, the predicted canonical pathways, upstream regulators, and biological 

functions were nearly identical. Within identical or similar functions, Venn Diagrams were used to 

demonstrate the overlap between MWCNT and SWCNT exposure (Figure 4). Some functions had 

different annotations assigned by the software, but they were in similar categories, so they were also 

compared. For example, in the only category with increased function, cell death, 40 of the 44 proteins 

mapped to ―cell death of tumor cell lines‖ after exposure to MWCNT. These proteins were also part of 

the 87 proteins mapped to ―cell death‖ after exposure to SWCNT. Regarding decreased function, all 

the five proteins in the category ―quantity of intercellular junctions‖ were significantly decreased after 

exposure to either of the CNTs. Because there was so much overlap between biological activities 
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resulting from Calu-3 cell exposure to MWCNT and SWCNT, we focused on those proteins that were 

differentially expressed in both exposures. IPA analysis of these 231 proteins was used to assign 

canonical pathways and upstream regulators significantly associated with them.  

Figure 4. Overlap of the changes in protein abundance in common Biological Functions 

after 24 h exposure to a low concentration (100 ng/mL) of MWCNT or SWCNT. The 

numbers of proteins that are altered in response to low dose carbon nanotube exposure 

within defined biological functions are listed. The Venn diagrams show the number of 

proteins with shared identity altered in response to both MWCNT and SWCNT. 

 

3.2.1. Upstream Regulators 

Upstream regulator analysis can predict upstream molecules, including microRNA and transcription 

factors, which may be causing the observed protein expression changes. Table S4 lists the upstream 

regulators that were predicted to be activated or inhibited based on the activation z-score. Given the fold 

change of corresponding proteins, the state of the upstream regulators that control these proteins can be 

predicted. Only two upstream regulators, Fragile X mental retardation 1 (FMR1) and mitogen-activated 

protein kinase 1 (MAPK1), were shown to be activated with a z-score > 2, and the others were 

inhibited with z-score < −2. Many of these upstream regulators are cytokines or transcription regulators. In 

general, the depression in upstream regulators indicates a stress response as well as an effect on the 

cellular defense mechanism which may make the airways more susceptible to attack by microorganisms. 

However, two of the upstream regulator pathways delineate control of intracellular processes that have 

direct applicability to the functional effects previously documented in the Calu-3 cells—namely a 

decrease in TEER or barrier function and a decrease in hormone-stimulated Cl
−
 secretion.  



Proteomes 2013, 1 229 

 

 

Adenosine receptor A2a (ADORA2A) is a receptor for adenosine. The activity of this receptor is 

mediated by a G protein that activates adenylyl cyclase. It has been shown that the inhibition of ADO-R 

in vivo prevented activation of CFTR and also resulted in airway surface liquid (ASL) height collapse 

and a failure to effect ASL height homeostasis [30]. This is in agreementwith our observation of a decrease 

in epinephrine-stimulated Cl
−
 secretion via CFTR in Calu-3 cells after exposure to CNTs [9]. While a 

decrease in cellular transport phenomena may be a cellular response to stress, a decline in this specific 

pathway would enhance airway dehydration and have a deleterious effect on mucocillary clearance. 

Coagulation factor II (F2) is also called prothrombin. It is proteolyticallycleaved to form thrombin 

in thecoagulation cascade, which ultimately results in the reduction of blood loss. In alveolar epithelial 

(A549) cells, thrombin induces activation of Rho and Rac that leads to MLC phosphorylation and 

formation of the peripheral actomyosin ring with peripheral accumulation of ZO-1/occludin complexes, 

thus enhanced barrier protection after acute lung injury [31]. A decrease in the pathway is consistent 

with the CNT-induced decrease in TEER that we have previously documented [9].  

3.2.2. Canonical Pathways 

Table 1 lists the pathways that had significant protein changes (p < 0.01) with a minimum of  

2 proteins that represent at least 20% of the pathway. All of the 6 pathways were down-regulated. Four 

of the six identified canonical pathways are primarily involved in cell metabolism and energy production. 

Table 1. Top canonical pathways mapped to common protein changes after exposure to 

low concentration (100 ng/mL) of SWCNT and MWCNT. 

Ingenuity Canonical Pathways −log(p-value) Ratio Molecules Categories Top Functions and Diseases 

Glycogen Degradation III 5.07 44.40% 
GAA, PYGB, 

TYMP, MTAP 

Glycogen 

Degradation 

Developmental Disorder; Hereditary 

Disorder; Metabolic Disease 

Glycogen Degradation II 3.63 37.50% 
PYGB, TYMP, 

MTAP 

Glycogen 

Degradation 

Developmental Disorder; Hereditary 

Disorder; Metabolic Disease 

RAN Signaling 4.07 26.70% 
KPNB1, KPNA2, 

XPO1, IPO5 

Cellular Growth, 

Proliferation and 

Development 

Cell Signaling; DNA Replication, 

Recombination, and Repair; Nucleic 

Acid Metabolism 

Bile Acid Biosynthesis, Neutral 

Pathway 
2.15 25.00% 

AKR1C1/AKR1C2, 

SCP2 
Sterol Biosynthesis 

Endocrine System Development and 

Function; Energy Production; Lipid 

Metabolism 

Methylglyoxal Degradation III 2.04 22.20% 
AKR7A2, 

AKR1C1/AKR1C2 

Aldehyde 

Degradation 

Endocrine System Development and 

Function; Energy Production; Lipid 

Metabolism 

Telomere Extension by 

Telomerase 
2.76 20.00% 

XRCC6, 

HNRNPA2B1, 

XRCC5 

Apoptosis; Cancer 

Cellular Assembly and 

Organization; Cellular Function and 

Maintenance; DNA Replication, 

Recombination, and Repair 

Glycogen degradation II and III represent glycogenolytic pathways that provide cellular energy. A 

decline in these pathways may reduce energy production and reflect an overall decrease in cell metabolism.  
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Bile acid biosynthesis neutral pathway is the major pathway of cholesterol catabolism in mammals. 

Methylglyoxal degradation III is a detoxification pathway of cell metabolism. The decrease in these 

processes may affect the metabolism of both lipid and carbohydrate. However, chronic exposure could 

ultimately compromise normal cellular metabolism and maintenance. 

RAN is a member of the Ras family of small GTPases, and it plays a critical role in nucleo-cytoplasmic 

transport of macromolecules through the nuclear pore complex by promoting assembly and 

disassembly reactions of transport receptors and cargo. Several proteins that were decreased in the 

RAN signaling pathway, IPO5, KPNB1, KPNA2, are importins and receptors that can bind with 

nuclear localization signal (NLS) and are involved in the import of proteins into the nucleus, while 

XPO1 mediates leucine-rich nuclear export signal (NES)-dependent protein transport [32]. The 

inhibition of this pathway may indicate a decrease of the nucleo-cytoplasmic transport and may affect 

cellular growth, proliferation and development. 

Telomeres are dynamic DNA-protein complexes that cap the ends of linear chromosomes, 

preventing detrimental chromosome rearrangements and defending against genomic instability and the 

associated risk of cancer. Telomerase, also called telomere terminal transferase, prevents telomere 

shortening and has high activity in lung cancer cell lines [33]. Two DNA repair proteins, XCRR5 and 

XCRR6, were decreased in the pathway of telomere extension by telomerase. This pathway is involved 

in the prevention of telomere degradation, chromosome clustering and apoptosis and inhibition may 

lead to the instability of chromosome and cell apoptosis. SWCNTs have been previously reported to 

inhibit telomerase activity through stabilization of i-motif structure eventually leading to telomere 

uncapping and displacement of telomere-binding proteins from the telomere, which triggers DNA 

damage [34]. 

3.2.3. Biological Functions  

The top functions that were predicted with a significant activation z-score (Table S5), fell into 

categories of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and 

organization, cellular growth and proliferation, cellular movement, infectious disease, molecular 

transport and protein synthesis. Among the functional changes, only cell death increased while the 

others decreased. The functional changes may indicate a protective response in which the cell 

decreases energy requiring activities and functions to protect itself [35].  

In the function of cell death and cell survival, there were 78 and 34 proteins involved, respectively, 

and 31 of them were common to both SWCNT and MWCNT exposures. Overall there was an increase 

of proteins associated with cell death and a decrease in proteins associated with cell survival. 

Interestingly, however, while the pathways were activated, our previous studies have indicated there 

was little actual cell death [9,10]. This conclusion is based on the observation that while the TEER had 

a significant decline indicating a decrease in barrier function, the monolayer maintained a measureable 

TEER which would not be possible if the cells died and the junctional interactions were lost. So the 

decrease of these proteins may turn down the pathways that are essential for cell survival and basic 

metabolism and increase proteins associated with cell death. In future experiments, it will be 

interesting to determine if chronic (>24 h) exposure will actually cause a decrease in cellular viability. 
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Proliferation of cells was another similar function found to be decreased. As a human lung cancer 

cell line, Calu-3 cells have infinite division and proliferation potential. Despite the origin of this cell 

line, it does exhibit contact inhibition after a confluent monolayer is established. The maintenance of 

an electrically tight (high resistance) monolayer of cells indicates that within the 24 h time frame the 

proliferation of cells was not compromised. However, it should be noted that the proliferation is very 

low after the formation of an intact epithelium. The results indicate a decrease in proliferative capacity 

since the expression of proteins in this pathway was decreased by CNT exposure relative to controls. 

This may ultimately have deleterious effects on the ability of the cells to respond to noxious stimuli 

that cause cell death. Other factors involved in cell division are microtubule and actin filaments. 

Research shows cell proliferation is greatly reduced in SWCNT-treated cells with an increase in  

actin-related division defects, due to actin bundling [36].Thus these results are only predictive of what 

may happen under injury conditions. 

In addition to cell proliferation, cell migration also plays an important role during in vitro wound 

repair of the respiratory epithelium [37]. Decreased expression of proteins known to be important for 

cell movement may lead to inhibition of epithelial wound repair. Actin filaments, usually in 

association with myosin, are responsible for many types of cellular movements and the breakdown of 

these processes may impair the motility of cells. 

Synthesis of proteins, transport of proteins, and internalization of proteins were all decreased after 

exposure to CNTs, which means an inhibition of the protein metabolism. The decrease of eukaryotic 

translation initiation factor (EIF) and eukaryotic translation elongation factor (EEF) indicates the 

inhibition of protein translation. Transmembrane emp24 domain-containing protein 10 (TMED10) and 

clathrin (CLTC) are involved in vesicular protein trafficking and the documented decrease of these 

proteins may slow down the intracellular trafficking of proteins and exocytosis and endocytosis of a 

variety of molecules.  

In the function of cell-to-cell signaling and interactions, intercellular junction impairment is 

suggested by the decreased expression of five proteins, agrin(AGRN), capping protein muscle Z-line 

beta (CAPZB), E-cadherin (CDH1), desmoplakin (DSP), and junction plakoglobin (JUP). These 

proteins are components of tight junctions or adhesion junctions and barrier function. The change in 

junctional integrity is consistent with our previous results that exposure to 100 ng/mL of either CNT 

decreased the barrier function of the epithelial monolayer [9].  

Recruitment of leukocytes including phagocytes, neutrophils, and granulocytes is important for an 

innate immune response, and this was also decreased. Research has shown that recruitment of 

leukocytes into the lungs in response to inhaled pathogens is initiated by epithelial signaling, the 

activation of toll-like receptors (TLRs), and the production of the chemokine interleukin-8 [38]. 

Airway recruitment of leukocytes in mice is dependent on alpha4-integrins and vascular cell adhesion 

molecule-1 [39]. In the CNT-treated cells, signaling proteins like interleukin 18 (IL18) and adhesion 

proteins like integrin alpha E (ITGAE) were decreased, which, in vivo, could compromise recruitment 

and trafficking of leukocytes into the bronchoalveolar lavage fluid.  

The decrease in proteins associated with the response to viral infection also indicates an inhibition 

of anti-infection activity making the cells vulnerable to toxicants inhaled by respiration. This is also 

coincides with the decline of recruitment of leukocytes, and will further reduce the immune function of 

the cells.  
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The cellular components are present in a highly organized structure and there is an organized 

network that might act as a scaffold for cell [40]. A diminution of proteins involved in the functional 

organization of cytoplasm will result in changes in the assembly, arrangement of constituent parts, or 

disassembly of the cytoplasm. The interference of the organization of cytoplasm may lead to a disorder 

of the cellular contents and affect cell metabolism and function. 

3.3. Protein Interaction Networks 

The STRING database was used to predict protein interaction networks of functionally related 

proteins and to provide an enhanced definition of the functions described in the section above by 

revealingthe individual interactions of the proteins that are altered in response to CNT exposure. This 

analysis provides uniquely comprehensive coverage of both experimental and predicted interaction 

information and the software gives a relative confidence score [24]. We focused on protein interactions 

with a medium confidence score >0.4. The interactions are represented by knots connected with edges 

(lines). In Figure 5 and Figure S1, thicker edges represent stronger associations. For each protein-protein 

interaction network, the majority of the knots were linked with each other, while some of the altered 

proteins were isolated without partners. Although most proteins interact with only one or two others, a 

few are ―hub‖ proteins capable of physically interacting with many partners. In this sense, the 

networks do not appear to be random, meaning that each protein would have a similar number of 

binding partners but are, rather, considered scale-free [41]. Scale-free networks have certain important 

characteristics, such as unequal binding interactions and hubs that have an unusual number of binding 

partners. This type of network is common in biological systems and leads to a certain redundancy 

within the network but, at the same time, also creates system vulnerability if a hub protein 

expression/activity is altered. Within the various networks, Cadherin 1 (CDH1), signal transducer and 

activator of transcription 1 (STAT1), junction plakoglobin (JUP), ezrin (EZR) apoptosis-associated 

speck-like protein containing a CARD (PYCARD), are connected with many partners, which suggest 

they are important hub proteins and may be more important biologically than less connected nodes [42]. 

The modulation of their expression will, therefore, have more effect on the cell function. For instance, 

EZR, an intermediate between the plasma membrane and the actin cytoskeleton proteins, is essential 

for epithelial cell integrity and can also regulate the structure and the function of specific domains of 

the plasma membrane. It plays a key role in cell surface structure adhesion, migration, and 

organization [43]. PYCARD is composed of two protein-protein interaction domains, PYD and 

CARD, that mediate assembly of large signaling complexes in the inflammatory and apoptotic 

signaling pathways via the activation of caspase-1 [44]. 

Furthermore, it was found that some hub proteins appeared in several networks. A frequency 

distribution of all the proteins in all the functions is shown in Table S6. JUP appeared in 8 of the total 

11 functions, while IL18 and integrin beta-1 (ITGB1) were involved in 7 functions. Exportin-1 

(XPO1), thioredoxin (TXN), spectrin beta chain non-erythrocytic 1 (SPTBN1), PYCARD, gelsolin 

(GSN), and cadherin 1 (CDH1) took part in half of the main cellular functions that were altered in 

response to CNT exposure. 
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Despite the interactions, CNT-altered proteins linked to each individual function are located in 

different parts of the cell and involved in different cell activities. For example, proteins involved in cell 

skeleton and membrane, nuclear transportation, transcription, cell junction, were all connected with 

each other. In Figure 5 of interaction of proteins within functional network of ―Cell Death‖, proteins 

that are component of adherens junctions can interact with proteins that are component of 

ribonucleoprotein complex. Therefore, each function is integrated throughout the cell forming a whole 

cell adaptive response.  

Figure 5. Identity and interaction of proteins within functional network that are altered by 

24 h carbon nanotube exposure. STRING database was used to illustrate the interactions of 

the proteins that were altered by exposure to a low dose of both SWCNT and MWCNT. 

The strength of the interactions is indicated by the thickness of the connecting lines. 

Proteins that have no connecting lines have been identified as altered by both SWCNT and 

MWCNT exposure but are not part of a network that connects them to any of the other 

altered proteins. (A) Proteins within functional network of ―Cell Death‖. Proteins in the left 

circle are component of adherens junctions, and proteins in the right circle are component 

of ribonucleoprotein complex. Hub proteins in the network: RPLP0, ribosomal protein 

large P0; RPS3A, ribosomal protein S3A; EEF1A1, eukaryotic translation elongation 

factor 1 alpha-like 7; TPT1, tumor protein translationally-controlled 1; HSP90AA1, heat 

shock protein 90 kDa alpha (cytosolic) class A member 1; STAT1, signal transducer and 

activator of transcription 1, 91 kDa; STIP1, stress-induced-phosphoprotein 1; CDH1, 

cadherin 1 type 1 E-cadherin (epithelial); JUP, junction plakoglobin; (B) Proteins within 

functional network of ―Cell Survival‖. Proteins in the upper circle are involved in the 

regulation of cell death, and proteins in the lower circle are located on the nucleoplasm. 

Hub proteins in the network: CDH1; STAT1; (C) Proteins within functional network of 

―Organization of Cytoplasm‖. Proteins in the upper circle are component of actin 

cytoskeleton, and proteins in the lower circle are located on plasma membrane. Hub 

proteins in the network: CDH1; (D) Proteins within functional network of ―Proliferation of 

Cells‖. Proteins in the left circle are component of anchoring junctions, and proteins in the 

right circle are involved in the ATP catabolic process. Hub proteins in the network: JUP; 

EZR, ezrin; CDH1; LMNA, lamin A/C; HNRNPR, heterogeneous nuclear ribonucleoprotein 

R; GNB2L1, guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1; 

TPT1; STAT1; (E) Proteins within functional network of ―Cell Movement‖. Proteins in the 

upper circle are component of actin cytoskeleton, and proteins in the lower circle are 

involved in the regulation of cell death. Hub proteins in the network: HSP90AA1; CDH1; 

GNB2L1; (F) Proteins within functional network of ―Viral Infection‖. Proteins in the circle 

are located on the nucleoplasm. Hub proteins in the network: STAT1; HNRNPU, 

heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A); TPT1.  
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4. Discussion of Method 

The proteomic method used in this study provides quantitative data that form a basis for subsequent 

biological verification in in vivo studies. Direct analysis of changes in protein abundance avoids some 

of the pitfalls associated with more traditional methods of quantitative RT-PCR and western blotting. 

Measurements of gene transcripts as indicative of subsequent protein expression at any given time 

(either by microarray or RT-PCR) are fraught with inaccuracies leading to a poor or lack of correlation 

between mRNA and protein [45,46]. Proteins are produced in bursts that are stochastic in time and in 

amounts, consistent with having low numbers of mRNA copies. Poor correlation also can be explained 

by the different lifetimes of the two biomolecules within a cell. Proteins are accumulated products, 

while mRNAs are instantaneous messengers that are degraded within minutes. Tilton et al. [47] 

compared gene and protein expression and found a substantial disconnect between mRNA analysis and 

proteome profiling in identical cell samples. We have unpublished data consistent with this observation.  

Despite its common application, accurate protein quantification by Western blotting remains a 

challenge. Recently, numerous studies have indicated that protein quantification by MS can be robust, 

accurate and reproducible, and achieve low limits of detection [48]. We have published several recent 

papers where our label-free quantitative mass spectrometry platform has been applied, with and 

without validation [11–13,19,24,47,49–53]. 

We are thus confident that the relative protein profiles and group comparisons presented in this 

paper are accurate within the constraints of the statistical analyses, and that the hypotheses generated 

by the bioinformatic analysis will serve as targets for future studies. 

5. Conclusions 

Bioinformatic analysis of proteomic changes that occur in Calu-3 in response to exposure to carbon 

nanotubes shows there are many proteins and cellular functions that change in response to low, but not 

high, levels of exposure to CNTs. The overlap in the nature of the proteins that are altered in response 

to low levels exposure of both types of carbon nanotubes is surprising and underscores the validity of 

the analyses as to which proteins play important roles in the cell response to carbon nanotubes. These 

studies help to highlight the potential toxic effects of nanomaterials to human health. 
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