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School of Mathematical and Statistical Sciences, Western University, London, ON N6A 5B7, Canada;
zitikis@stats.uwo.ca
* Correspondence: lchen522@uwo.ca; Tel.: +1-519-702-8812

Received: 13 August 2017; Accepted: 25 September 2017; Published: 28 September 2017

Abstract: Measuring and comparing student performance have been topics of much interest for
educators and psychologists. Particular attention has traditionally been paid to the design of
experimental studies and careful analyses of observational data. Classical statistical techniques,
such as fitting regression lines, have traditionally been utilized and far-reaching policy guidelines
offered. In the present paper, we argue in favour of a novel technique, which is mathematical in
nature, and whose main idea relies on measuring distance of the actual bivariate data from the class
of all monotonic (increasing in the context of this paper) patterns. The technique sharply contrasts
the classical approach of fitting least-squares regression lines to actual data, which usually follow
non-linear and even non-monotonic patterns, and then assessing and comparing their slopes based
on the Pearson correlation coefficient, whose use is justifiable only when patterns are (approximately)
linear. We describe the herein suggested distance-based technique in detail, show its benefits,
and provide a step-by-step implementation guide. Detailed graphical and numerical illustrations
elucidate our theoretical considerations throughout the paper. The index of increase, upon which the
technique is based, can also be used as a summary index for the LOESS and other fitted regression
curves.
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1. Introduction

Measuring and comparing student performance have been topics of much interest for educators
and psychologists. Are higher marks in Mathematics indicative of higher marks in other subjects such
as Reading and Spelling? Alternatively, are higher marks in Reading or Spelling indicative of higher
marks in Mathematics? Do boys and girls exhibit similar associations between different study subjects?
These are among the many questions that have interested researchers. The literature on these topics is
vast, and we shall therefore note only a few contributions; their lists of references lead to earlier results
and illuminating discussions.

Given school curricula, researchers have particularly looked at student performance in Mathematics,
Science, Reading, and Writing (e.g., Ma [1]; Masci [2]; Newman and Stevenson [3]), and explored
whether or not there are significant differences with respect to gender (e.g., Jovanovic and King [4];
McCornack and McLeod [5]; Mokros and Koff [6]). Differences between other attributes have also
been looked at, including teacher performance (e.g., Alexander et al. [7]), oral and written assessments
(e.g., Huxham et al. [8]), spatial and verbal domains (e.g., Bresgi et al. [9]). We shall later give a few
more references related to certain statistical aspects.

Naturally, particular attention has been paid to the design of experimental studies and careful
analyses of observational data. As a rule, the Pearson correlation coefficient, linear and non-linear
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regression, multilevel and other classical statistical techniques for describing and analyzing associations
in bivariate and multivariate data have been utilized, and far-reaching policy guidelines offered.
We also note that, in response to some deficiencies exhibited by the Pearson coefficient, the intraclass
correlation coefficient (ICC) and the Spearman correlation coefficient have been extensively used in
educational and psychometric literature. For enlightening discussions and references on the ICC,
we refer to, e.g., Looney [10], Hedges and Hedberg [11], Zhou et al. [12], and on the Spearman
coefficient, to Gauthier [13], Puth et al. [14], and references therein. It should be noted that the two
coefficients are closely related to the Pearson correlation coefficient. Namely, the ICC is the Pearson
correlation coefficient but with the pooled mean as the centering constant and the pooled variance as
the normalizing constant. The Spearman correlation coefficient is the Pearson correlation coefficient of
the ranks of the underlying random variables. Consequently, both the Spearman correlation coefficient
and the ICC are symmetric with respect to the random variables, and we find this feature unnatural in
the context of the present research.

There are other issues with the use of these coefficients when assessing trends, as we clearly see
from Figure 1.
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Figure 1. Trends and indices of increase arising from the classical Anscombe’s [15] quartet.

Namely, all the four panels have very different trends but virtually identical Pearson correlation
coefficients. We have produced these trends by connecting the classical Anscombe’s [15] bivariate data
using straight lines.

Each panel of Figure 1 is also supplemented with the corresponding value of the index of increase,
denoted by I, which we shall introduce later in this paper, once the necessary preliminary work has
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been done. At the moment, we only note some of the properties of the index that convey its idea and
main features.

Namely, the index is

• normalized, that is, its range is the unit interval [0, 1];
• take the value 1 when the trend is increasing;
• take a value in the interval [1/2, 1] when, loosely speaking, the trend is more increasing than

decreasing;
• take a value in the interval [0, 1/2] when, loosely speaking, the trend is more decreasing

than increasing;
• take the value 0 when the trend is decreasing;
• is symmetric only when the explanatory and response variables are interchangeable;
• has a clear geometric interpretation.

Keeping these features in mind, we can now familiarize ourselves with the numerical values of
the index of increase reported in the four panels of Figure 1.

To address the issues noted above, in what follows we put forward arguments in favour of a novel
technique, based on the aforementioned index, that has been designed specifically for illuminating
directional associations between variables when, in particular, they follow non-linear and especially
non-monotonic relationships. It should be noted at the outset that such relationships, and especially
the need for assessing the extent of their non-monotonicity, arise naturally in a great variety of research
areas, including life and social sciences, engineering, insurance and finance, in addition to, of course,
education and psychology. An illustrative list of references on the topic, which is also associated with
the notion of co-monotonicity, can be found in Qoyyimi and Zitikis [16].

We have organized the rest of the paper as follows. In Section 2 we describe a data set that we use
to explore the new technique. In Section 3 we introduce an index for assessing directional associations
in raw data, and illustrate the performance of the index. For those wishing to employ the index in
conjunction with classical techniques of curve fitting, such as LOESS or other regression methods,
in Section 4 we provide a recipe for accomplishing the task and so, for example, the proposed index can
also be used as a summary index for the LOESS and other fitted curves. In Section 5 we demonstrate
how the index of increase facilitates insights into student performance and enables comparisons
between different student groups. In Section 6 we give a step-by-step illustration of how the index
works on data. Section 7 concludes the paper with a brief overview of our main contributions, and it
also contains several suggestions to facilitate further research in the area. Three appendices contain
illustrative computer codes, some mathematical technicalities, and additional data-exploratory graphs.

We note at the outset that throughout this paper we deliberately restrain ourselves from engaging
in interpretation and validation of the obtained numerical results, as these are subtle tasks and should
be left to experts in psychology and education sciences to properly handle. We refer to Kane [17,18]
and references therein for an argument-based approach to validation of interpretations. Throughout
this paper, we concentrate on methodological aspects of educational data analysis.

2. Data

We begin our considerations from the already available solid classical foundations of statistics
and data analysis. To make the considerations maximally transparent, we use the easily accessible data
reported in the classical text of Thorndike and Thorndike-Christ [19] (pp. 24–25). A brief description
of the data with relevant for our research details follow next.

The data set contains scores of 52 sixth-grade students in two classes, which we code by C1 and
C2. The sizes of the two classes are the same: the enrollment in each of them is 26 students. Based on
the student names, we conclude that there are 15 boys and 11 girls in class C1, and 11 boys and 15 girls
in class C2; we code boys by B and girls by G. All students are examined in three subjects: Reading
(R), Spelling (S), and Mathematics (M). The maximal scores for different subjects are different: 65 for
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Mathematics, 45 for Reading, and 80 for Spelling. The frequency plots of the three subjects are in
Figure 2.
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Figure 2. Frequency plots of the scores of all students.

Our interest centers around the trends that arise when associating the scores of two study subjects.
One of the classical and very common techniques employed in such studies is fitting linear regression
lines which, for the sake of argument, we also do in Figure 3.

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Reading

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

r = 0.64

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

r = 0.62

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

r = 0.64

Spelling

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

r = 0.15

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

r = 0.62

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

r = 0.15

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●Mathematics

20 25 30 35 40 45 40 50 60 70 20 30 40 50 60

20

25

30

35

40

45

40

50

60

70

20

30

40

50

60

Figure 3. Scatterplot matrix of the scores of all students.

We see from Figure 3 that all the fitted lines exhibit increasing trends, with the slopes of Spelling
vs. Reading, Reading vs. Spelling, Mathematics vs. Reading, and Reading vs. Mathematics being
similar, with the value of the Pearson correlation coefficient r between 0.62 and 0.64. These slopes
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are considerably larger than those for Mathematics vs. Spelling and Spelling vs. Mathematics,
whose correlation coefficient is r = 0.15. Of course, the coefficient is symmetric with respect to the
two variables, and thus its values for, e.g., Spelling vs. Mathematics and Mathematics vs. Spelling are
the same, even though the scatterplots (unless rotated) are different. More generally, we report the
values of all the aforementioned correlation coefficients—Pearson, ICC, and Spearman—as well as of
the index of increase to be introduced in the next section, in Table 1.

Table 1. The index of increase and three classical correlation coefficients.

I Pearson ICC Spearman

R vs. M 0.70 0.62 0.10 0.56
M vs. R 0.57 0.62 0.10 0.56

S vs. M 0.48 0.15 −0.11 0.15
M vs. S 0.53 0.15 −0.11 0.15

R vs. S 0.59 0.64 0.58 0.67
S vs. R 0.53 0.64 0.58 0.67

In addition, we have visualized—in two complementing ways—the data of Thorndike and
Thorndike-Christ [19] (pp. 24–25) in Figures 4 and 5.
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Figure 5. The fitted LOESS curves (span = 0.75) to the scores of all students.

A close inspection of the figures suggests non-linear and especially non-monotonic relationships.
In Figure 5, we have used one of the most popular regression methods, called LOESS. Specifically,
we have employed the loess function of the R Stats Package [20] with the default parameter
value span = 0.75. There are of course numerous other regression methods that we can use
(e.g., Koenker et al. [21]; Young [22]; and references therein). For example, the quantile regression
method has recently been particularly popular in education literature (e.g., Haile and Nguyen [23];
Castellano and Ho [24]; Dehbi et al. [25]). These methods, however, are inherently smoothing methods
and thus provide only general features of the trends, whereas it is the minute details that facilitate
unhindered answers to questions such as those posited at the very beginning of Section 1.

Furthermore, when dealing with small data sets, which are common in education and psychology,
we cannot reliably employ classical statistical inference techniques, such as goodness-of-fit, to assess
the performance of curve fitting techniques. In this paper, therefore, we advocate a technique that
facilitates unaltered inferences from data sets of any size, n ≥ 2. We shall discuss and illustrate the
technique using the classical Thorndike and Thorndike-Christ [19] (pp. 24–25) data sets, and we shall
also use artificial data designed specifically for illuminating the workings of the new technique in a
step-by-step manner.

3. Index of Increase

We see from Figures 4 and 5 that trends are mostly non-monotonic. In such cases, how can
we assess which of the trends are more increasing than others? We can fit linear regression lines as
in Figure 3 and rank them according to their slopes or, alternatively, on the values of the Pearson
correlation coefficient. However, the non-linear and especially non-monotonic trends make such
techniques inadequate (e.g., Wilcox [26]). In this section, therefore, we put forward the idea of an
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index of increase, whose development has been in the works for a number of years (Davydov and
Zitikis [27,28]; Qoyyimi and Zitikis [29,30]).

To illuminate the idea, we use a very simple yet informative example. Consider two very basic
trigonometric functions, sin(z) and cos(z) on the interval [−π/2, π], depicted in Figure 6.

I = 0.67
−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2 3
x

y

(a) y = sin(x).

I = 0.33
−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2 3
x

y

(b) y = cos(x).

Figure 6. Two functions and their indices of increase.

Obviously, neither of the two functions is monotonic on the interval, but their visual inspection
suggests that sine must be closer to being increasing than cosine. Since one can argue that this
assessment is subjective, we therefore employ the aforementioned index whose rigorous definition
will be given in a moment. Using the computational algorithm presented in Section 4 below, the values
of the index are 2/3 ≈ 0.67 for sin(x) and 1/3 ≈ 0.33 for cos(x). Keeping in mind that 3 is the
normalizing constant, these values imply that sine is at the distance 2 from the set of all decreasing
functions on the noted interval, whereas cosine is at the distance 1 from the same set. In other words,
this implies that sine is at the distance 1 from the set of all increasing functions on the interval, whereas
cosine is at the distance 2 from the set of increasing function. Inspecting the graphs of the two functions
in Figure 6, we indeed see that sine is ‘twice more increasing’ than cosine on the interval [−π/2, π].
For those willing to experiment with their own functions on various intervals, we provide a computer
code in Appendix A.1.

The rest of the paper is devoted to a detailed description and analysis of the index.

3.1. Basic Idea

Suppose we possess n ≥ 2 pairs (x1, y1), . . . (xn, yn) of data (all the indices to be introduced below
can be calculated as long as we have at least two pairs), and let—for a moment—all the first coordinates
(i.e., x’s) be different, as well as all the second coordinates (i.e., y’s) be different. Consequently, we can
order all the first coordinates in the strictly increasing fashion, thus obtaining x1:n < · · · < xn:n,
called order statistics, with the corresponding second coordinates y[1:n], . . . , y[n:n], called concomitants
(e.g., David and Nagaraja [31]; and references therein). Hence, instead of the original pairs, we are
now dealing with the pairs (x1:n, y[1:n]), . . . (xn:n, y[n:n]) ordered according to their first coordinates.
We connect these pairs, viewed as two-dimensional points, using straight lines and, unlike in regression,
obtain an unaltered genuine description of the trend exhibited by the first coordinates plotted against
the second ones (see Figure 4). Having the plot, we can now think of a method for measuring its
monotonicity, and for this purpose we use the index of increase

I(x, y) =
∑n

i=2(y[i:n] − y[i−1:n])+

∑n
i=2 |y[i:n] − y[i−1:n]|

, (1)

where x = (x1, . . . , xn), y = (y1, . . . , yn), and z+ denotes the positive part of real number z, that is,
z+ = z when z > 0 and z+ = 0 otherwise.



Educ. Sci. 2017, 7, 77 8 of 27

Obviously, the index is not symmetric, that is, I(x, y) is not, in general, equal to I(y, x). This is
a natural and desirable feature in the context of the present paper because student performance
on different subjects is not interchangeable, and we indeed see this clearly in the figures above.
The symmetry of the Pearson, ICC and Spearman correlation coefficients is one of the features that
makes their uses inappropriate in a number of applications, especially when the directionality of
associations is of particular concern. In general, there is a vast literature on the subject, which goes back
to at least the seminal works of C. Gini a hundred years ago (e.g., Giorgi [32,33]) and, more generally,
to the scientific rivalry between the British and Italian schools of statistical thought. For very recent
and general discussions on the topic, we refer to Reimherr and Nicolae [34]; as well as to Furman and
Zitikis [35], and references therein, where a (non-symmetric) Gini-type correlation coefficient arises
naturally and plays a pivotal role in an insurance/financial context.

To work out initial understanding of the index I(x, y), we first note that the numerator on
the right-hand side of Equation (1) sums up all the upward movements, measured in terms of
concomitants, whereas the denominator sums up the absolute values of all the upward and downward
movements. Hence, the index I(x, y) is normalized, that is, always takes values in the interval [0, 1].
It measures the proportion of upward movements in the piece-wise linear plot originating from the
pairs (x1, y1), . . . (xn, yn). Later in this paper (Note 3), we give an alternative interpretation of, and thus
additional insight into, the index I(x, y), which stems from a more general and abstract consideration
of Davydov and Zitikis [28]. We note in passing that the index employed by Qoyyimi and Zitikis [30]
is not normalized, and is actually difficult to meaningfully normalize, thus providing yet another
argument in favour of the index that we employ in the present paper. A cautionary note is in order.

Namely, definition (1) shows that the index I(x, y) can be sensitive to outliers (i.e., very low
and/or very high marks). The sensitivity can, however, be diminished by removing a few largest
and/or smallest observations, which would mathematically mean replacing the sum ∑n

i=2 in both
the numerator and the denominator on the right-hand side of Equation (1) by the truncated sum
∑n−κ2

i=2+κ1
for some integers κ1, κ2 ≥ 1. This approach to dealing with outliers has successfully worked

in Statistics, Actuarial Science, and Econometrics, where sums of order statistics and concomitants arise
frequently (e.g., Brazauskas et al. [36,37]; and references therein). In our current educational context,
the approach of truncating the sum is also natural, because exceptionally well and/or exceptionally
badly performing students have to be, and usually are, dealt with on the individual basis, instead of
treating them as members of the statistically representative majority. This approach of dealing with
outliers is very common and, in particular, has given rise to the very prominent area called Extreme
Value Theory (e.g., de Haan and Ferreira [38]; Reiss and Thomas [39]; and references therein) that deals
with various statistial aspects associated with exceptionally large and/or small observations.

We next modify the index I(x, y) so that its practical implementation would become feasible for
all data sets, and not just for those whose all coordinates are different.

3.2. A Practical Modification

The earlier made assumption that the first and also the second coordinates of paired data are
different prevents the use of the above index on many real data sets, including that of Thorndike and
Thorndike-Christ [19] (pp. 24–25) as we see from the frequency histograms in Figure 2. See also panel
(d) in Figure 1 for another example. Hence, a natural question arises: how can piece-wise linear plots be
produced when there are several concomitants corresponding to the single value of a first coordinate?
To overcome the obstacle, we suggest using the median-based approach that we describe next.

Namely, given n ≥ 2 arbitrary pairs (x1, y1), . . . (xn, yn), the order statistics of the first coordinates
are x1:n ≤ · · · ≤ xn:n with the corresponding concomitants y[1:n], . . . , y[n:n]. Let there be m (≤ n)
distinct values among the first coordinates, and denote them by x∗1 , . . . x∗m. For each x∗i , there is always
at least one concomitant, usually more, whose median we denote by y∗i . Hence, we have m pairs
(x∗1 , y∗1), . . . (x∗m, y∗m) whose first coordinates are strictly increasing (i.e., x∗1 < · · · < x∗m) and the second
coordinates are unique. We connect these m pairs, viewed as two-dimensional points, with straight
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lines and obtain a piece-wise linear plot (e.g., Figure 4). The values of the index I := I(x, y) reported in
the right-bottom corners of the panels of Figure 4 refer to the following modification

I(x, y) =
∑m

i=2(y
∗
i − y∗i−1)+

∑m
i=2 |y∗i − y∗i−1|

(2)

of the earlier defined index of increase. Note that index (2) collapses into index (1) when all the
coordinates of the original data are different, thus implying that definition (2) is a genuine extension of
definition (1), and it works on all data sets.

The index of increase is translation and scale invariant, which means that the equation

I(x, y) = I(α + βx, δ + γy) (3)

holds for all real ‘locations’ α and δ, and all positive ‘scales’ β > 0 and γ > 0. A formal proof of
this property is given in Appendix B. The property is handy because it allows us to unify the scales
of each subject’s scores, which are usually different. In our illustrative example, the Mathematics
scores are from 0 to 65, the Reading scores are from 0 to 45, and those of Spelling are from 0 to 80.
Due to property (3), we can apply—without changing the value of I(x, y)—the linear transformation
xi/xmax × 100% on the original scores xi, thus turning them into percentages, where xmax is the
maximal possible score for the subject under consideration, like 65 for Mathematics.

3.3. Discussion

To facilitate a discussion of the values of the index I(x, y) reported in the panels of Figure 4,
we organize the values in the tabular form as follows:

I(R, M) = 0.70 I(M, R) = 0.57
I(S, M) = 0.48 I(M, S) = 0.53
I(R, S) = 0.59 I(S, R) = 0.53

The value 0.70 for Reading vs. Mathematics is largest, thus implying the most increasing trend
among the panels. The value suggests that there is high confidence that those performing well in
Reading would also perform well in Mathematics. Note that the value 0.57 for Mathematics vs.
Reading is considerably lower than 0.70, thus implying lower confidence that students with better
scores in Mathematics would also perform better in Reading.

The index value of Spelling vs. Mathematics is the smallest (0.48), which suggests neither an
increasing nor a decreasing pattern, and we indeed see this in the middle-bottom panel of Figure 4:
the scores in Mathematics form a kind of noise when compared to the scores in Spelling. In other
words, the curve in the panel fluctuates considerably and the proportion of upward movements is
almost the same as the proportion of downward movements. On the other hand, higher scores in
Mathematics seem to be slightly better predictors of higher scores in Spelling, with the corresponding
index value equal to 0.53.

Finally, the values of Reading vs. Spelling and Spelling vs. Reading are fairly similar, 0.59 and
0.53 respectively, even though higher Reading scores might suggest higher Spelling scores in a slightly
more pronounced way than higher Spelling scores would suggest higher Reading scores.

Note 1. On a personal note, having calculated the indices of increase for the three subjects and then
having looked at the graphs of Figure 4, the authors of this article unanimously concluded that the
trends do follow the patterns suggested by the respective index values. Yet, interestingly, prior to
calculating the values and just having looked at the graphs, the authors were not always in agreement
as to how much and in what form a given study subject influences the other ones. In summary,
even though no synthetic index can truly capture every aspect of raw data, they can nevertheless be
useful in forming a consensus about the meaning of data.
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4. The Index of Increase for Fitted Curves

Raw data may not always be possible to present in the way we have done in Figure 4, because of
a variety of reasons such as ethical and confidentiality. Indeed, nothing is masked in the figure—the
raw data can be restored immediately. The fitted regression curves in Figure 5, however, mask the raw
data and can thus be more readily available to the researcher to explore. Therefore, we next explain
how the index of increase can be calculated when the starting point is not raw data but a smooth fitted
curve, say h defined on an interval [L, U], like those we see in the panels of Figure 5 (for a computer
code, see Appendix A.1). Hence, in particular, the index of increase can be used as a summary index
for the LOESS or other fitted curves. Namely, the index of increase I: = I(h) for the function h is defined
by the formula

I(h) =

∫ U
L (h

′
(x))+ dx∫ U

L |h
′(x)|dx

, (4)

where h′ is the derivative of h. Two notes follow before we resume our main consideration.

Note 2. Definition (4) is compatible with that given by Equation (1). Indeed, let the function h be
piece-wise linear with knots d1 < · · · < dn such that the function h is linear on each interval [di−1, di]

whose union is equal to [L, U] with L = d1 and U = dn. The derivative h′(x) in this case is replaced
by (h(di)− h(di−1))/(di − di−1) for all x ∈ [di−1, di]. Index (4) for this piece-wise linear function is
exactly the one on the right-hand side of Equation (1).

Note 3. It is shown by Davydov and Zitikis [28] that the integral
∫ U

L (h
′
(x))− dx is a distance of the

function h from the set of all non-decreasing functions, where z− denotes the negative part of real
number z, that is, z− = −z when z < 0 and z− = 0 otherwise. Hence, the larger the integral, the farther
the function h is from being non-decreasing. For this reason, the integral is called by Davydov and
Zitikis [28] the index of lack of increase (LOI), whose normalized version—always taking values
between 0 and 1 – is given by the formula

LOI(h) =

∫ U
L (h

′
(x))− dx∫ U

L |h
′(x)|dx

.

Since |z| = z+ + z− for every real number z, we have the relationship

I(h) = 1− LOI(h),

which implies that the index of increase I(h) takes the maximal value 1 when the function h is
non-decreasing everywhere; it also follows the other properties noted in the Introduction.

In general, given any differentiable function h, calculating index (4) in closed form is time
consuming. Hence, an approximation at any pre-specified precision is desirable. This can be achieved
in a computationally convenient way as follows. Let di for i = 1, . . . , n be defined by

di = L +
i− 1
n− 1

(U − L),

where n is sufficiently large: the larger it is, the smaller the approximation error will be. (We note that
the underlying index of increase can be calculated whenever we have at least two pairs of data; the n
used throughout the current section is the ‘tuning’ parameter that governs the precision of numerical
integration.) The numerator on the right-hand side of Equation (4) can be approximated as follows:
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∫ U

L
(h
′
(x))+ dx =

n

∑
i=2

∫ di

di−1

(h
′
(x))+ dx

≈
n

∑
i=2

∫ di

di−1

(h
′
(di))+ dx

=
U − L
n− 1

n

∑
i=2

(h
′
(di))+

≈ U − L
n− 1

n

∑
i=2

(h(di)− h(di−1))+
di − di−1

=
n

∑
i=2

(h(di)− h(di−1))+.

Likewise, we obtain an approximation for the denominator on the right-hand side of Equation (4):

∫ U

L
|h′(x)|dx ≈

n

∑
i=2
|h(di)− h(di−1)|.

Consequently,

I(h) ≈ În(h) :=
∑n

i=2(h(di)− h(di−1))+

∑n
i=2 |h(di)− h(di−1)|

. (5)

This approximation turns out to be very efficient, with no time or memory related issues when
aided by computers, as we shall see from the next example.

Example 1. To illustrate the computation of the index I(h) via approximation (5), we use the functions h1(x) =
(x− 1)2 + 1 + sin(4x) and h2(x) = (x− 2)2 + 1 + sin(4x) defined on the interval [0, 5]. We visualize them
in Figure 7.

I = 0.87
0
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0 1 2 3 4 5
x

y

(a) y = h1(x).

I = 0.67
0

5

10

15

20

0 1 2 3 4 5
x

y

(b) y = h2(x).

Figure 7. The functions h1 and h2 and their indices of increase.

In the figure, the corresponding values of the index of increase are reported in the bottom-right corners of
the two panels. They have been calculated using approximation (5) with L = 0, U = 5, and n=10,000. In order
to check the approximation performance with respect to n, we have produced Table 2.
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Table 2. Performance of the approximation În.

n h1 h2

10 0.9014996 0.6829716
50 0.8719495 0.6670377
500 0.8712794 0.6664844

1000 0.8712688 0.6664817
10,000 0.8712662 0.6664808
20,000 0.8712662 0.6664808

actual 0.8712662 0.6664808

The ‘actual’ value in the bottom row of the table is based on Formula (4) and calculated using the integrate
function of the R Stats Package (R Core Team [20]). We emphasize that the index of increase can be calculated as
long as we have at least two pairs of data; the n used in the current example (and throughout Section 4) is the
‘tuning’ parameter that governs the precision of numerical integration. This concludes Example 1.

We now come back to Figure 5, whose all panels report respective values of the index of increase,
calculated using approximation (5) with n = 10,000. To check whether this choice of n is sufficiently
large, we have produced Table 3.

Table 3. Convergence performance of each case in Figure 5.

n M vs. R M vs. S R vs. M R vs. S S vs. M S vs. R

10 1.0000000 0.8182878 0.9776247 1.0000000 0.3866698 0.8259335
50 0.9947776 0.8038232 0.9750816 0.9906566 0.3954920 0.8252337

500 0.9940148 0.8035203 0.9722912 0.9905645 0.3957937 0.8252272
1000 0.9939938 0.8035174 0.9722785 0.9905559 0.3957953 0.8252266

10,000 0.9939889 0.8035172 0.9722651 0.9549793 0.3957954 0.8252262
20,000 0.9939889 0.8035172 0.9722651 0.9549793 0.3957954 0.8252262

Note that the index values when n = 10,000 and n = 20,000 are identical with respect to the
reported decimal digits, and since in the panels of Figure 5 we report only the first two decimal digits,
we can safely conclude that n = 10,000 is sufficiently large for the specified precision.

We see from the two bottom rows of Table 3 that the values for Spelling vs. Reading, Reading
vs. Mathematics, Reading vs. Spelling, and Mathematics vs. Reading are the largest ones, similarly
to what we have seen in Figure 4. However, the values for these four cases are larger when we use
LOESS. This is natural because the technique has smoothed out the minute details of the raw data and
thus shows only general trends. Of course, the LOESS parameters can be adjusted to make the fitted
curves exhibit more details, but getting closer to the raw data would, in practice, make confidentiality
issues more acute and thus perhaps unwelcome. At any rate, when it comes to minute details and raw
data, which can be of any size as long as there are at least two pairs, we have the above introduced
index of increase accompanied with an efficient method of calculation.

5. Group Comparisons

Suppose that we wish to compare two student groups, ω1 and ω2—which could for example be
the boys and girls in the data set of Thorndike and Thorndike-Christ [19] (pp. 24–25)—with respect to
their monotonicity trends in Mathematics vs. Reading, Mathematics vs. Spelling, and so on. We could
set out to calculate the indices of increase for ω1 and ω2, and then compare the index values and make
conclusions, but we have to be careful because of possibly different minimal and maximal scores for
the two groups. Indeed, comparing monotonicity patterns over ranges of different length should be
avoided because the wider the interval, the more fluctuations might occur. Hence, to make meaningful
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comparisons, we have to perform them over intervals of the same length, even though locations of the
intervals can be different, due to the earlier established translation-invariance property (3).

In the context of our illustrative example, we find it meaningful to compare monotonicities of
plots over the same range of scores. Hence, in general, given two groups ω1 and ω2 of sizes n(ω1) ≥ 2
and n(ω2) ≥ 2, respectively, let the two data sets consist of the pairs(

xi(ω1), yi(ω1)
)
, i = 1, . . . , n(ω1),

and (
xj(ω2), yj(ω2)

)
, j = 1, . . . , n(ω2).

These data sets give rise to two piece-wise linear plots: the first one ranges from x1:n(ω1)
(ω1)

to xn(ω1):n(ω1)
(ω1), and the second one from x1:n(ω2)

(ω2) to xn(ω2):n(ω2)
(ω2). The overlap of the two

ranges is the interval [L, U], where

L = max
{

x1:n(ω1)
, x1:n(ω2)

}
and

U = min
{

xn(ω1):n(ω1)
, xn(ω2):n(ω2)

}
.

We identify and order the distinct first coordinates in each of the two samples and calculate the
medians of the corresponding concomitants. We arrive at the following two sets of paired data:(

x∗i (ω1), y∗i (ω1)
)
, i = 1, . . . , m(ω1), (6)

and (
x∗j (ω2), y∗j (ω2)

)
, j = 1, . . . , m(ω2), (7)

where m(ω1) and m(ω2) are the numbers of distinct x’s in the original data sets. We next modify data
set (6):

Step 1: If L = x∗1(ω1), then we do nothing with the data set. If L > x∗1(ω1), then let the pairs(
x∗l (ω1), y∗l (ω1)

)
and

(
x∗l+1(ω1), y∗l+1(ω1)

)
be such that x∗l (ω1) is the closest first coordinate

in data set (6) to the left of L, and thus x∗l+1(ω1) is the closest one to the right of L. We delete
all the pairs from set (6) whose first coordinates do not exceed x∗l (ω1), and then augment the
remaining pairs with (L, y∗L(ω1)), where

y∗L(ω1) = y∗l (ω1) +
y∗l+1(ω1)− y∗l (ω1)

x∗l+1(ω1)− x∗l (ω1)
(L− x∗l (ω1)). (8)

Formula (8) is useful for computing purposes. We have visualized the pair (L, y∗L(ω1)) as an
interpolation result in panel (a) of Figure 8.

Step 2: If U = x∗m(ω1)
(ω1), then we do nothing with the data set. If U < x∗m(ω1)

(ω1), then let the pairs(
x∗u−1(ω1), y∗u−1(ω1)

)
and

(
x∗u(ω1), y∗u(ω1)

)
be such that x∗u−1(ω1) is the closest first coordinate

in the data set to the left of U, and thus x∗u(ω1) is the closest one to the right of U. From the
set of pairs available to us after the completion of Step 1, we delete all the pairs whose first
coordinates are on or above x∗u(ω1), and then augment the remaining pairs with (U, y∗U(ω1)),
where

y∗U(ω1) = y∗u−1(ω1) +
y∗u(ω1)− y∗u−1(ω1)

x∗u(ω1)− x∗u−1(ω1)
(U − x∗u−1(ω1)). (9)

As an interpolation result, we have visualized the pair (U, y∗U(ω1)) in panel (b) of Figure 8.

In the case of data set (7), we proceed in an analogous fashion:
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Step 3: If L = x∗1(ω2), then we do nothing, but if L > x∗1(ω2), then we produce a new pair (L, y∗L(ω2))

that replaces all the deleted ones on the left-hand side of data set (7).
Step 4: If U = x∗m(ω1)

(ω2), then we do nothing with the pairs available to us after Step 3, but if
U < x∗m(ω1)

(ω2), then we produce a new pair (U, y∗U(ω2)) that replaces the deleted ones on the
right-hand side of the data set obtained after Step 3.

●
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*  (ωi)

y l+
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*
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i)
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(a) (L, y∗L(ω1)) via Formula (8)
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●
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(b) (U, y∗U(ω1)) via Formula (9)

Figure 8. The two augmenting-pairs via the interpolation technique.

In summary, we have turned data sets (6) and (7) into the following ones:

(
vi(ω1), wi(ω1)

)
, i = 1, . . . , k(ω1), (10)

and

(
vj(ω2), wj(ω2)

)
, j = 1, . . . , k(ω2), (11)

with some k(ω1) and k(ω2) that do not exceed m(ω1) and m(ω2), respectively. Note that the smallest
first coordinates v1(ω1) and v1(ω2) are equal to L, whereas the largest first coordinates vk(ω1)

(ω1) and
vk(ω2)

(ω2) are equal to U. Hence, both data sets (10) and (11) produce piece-wise linear functions
defined on the same interval [L, U]. The corresponding index I: = I(v(ω), w(ω)) for any ω ∈ {ω1, ω2}
is calculated using the formula

I(v(ω), w(ω)) =
∑

k(ω)
i=2 (wi(ω)− wi−1(ω))+

∑
k(ω)
i=2 |wi(ω)− wi−1(ω)|

. (12)

To illustrate, we report the index values and the comparison ranges for boys and girls in the three
subjects, and in all possible combinations in Table 4.

The values in the rows with span = N/A have been calculated based on the piece-wise linear
fits. The rows with span values 0.35 and 0.75 are based on the LOESS curve fitting. We note in
this regard that the parameter span controls the smoothness of the fitted curves: the larger the span,
the smoother the resulting curve, with the default value span = 0.75 that we already used in Figure 5.
The graphs corresponding to Table 4 are of interest, but since they are plentiful, we have relegated
them to Appendix C at the end of the paper.
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Table 4. Performance of boys and girls in the two classes combined on the three subjects as measured
by the index I.

Span M vs. R M vs. S R vs. M R vs. S S vs. M S vs. R

Boys
N/A 0.58 0.53 0.72 0.63 0.52 0.56
0.35 0.61 0.52 0.73 0.72 0.54 0.62
0.75 0.85 0.49 1.00 0.99 0.91 0.99

Girls
N/A 0.55 0.50 0.61 0.57 0.49 0.54
0.35 0.62 0.52 0.61 0.58 0.48 0.57
0.75 0.94 0.57 0.94 0.94 0.37 0.61

Range 33.85–81.54 33.85–81.54 48.89–93.33 48.89–93.33 50.00–92.50 50.00–92.50

6. A Step-by-Step Guide

To have a better understanding and appreciation of the suggested method, we next implement it
in a step-by-step manner using a small artificial data set. Namely, suppose that we wish to compare
the performance of two groups of students, say ω1 and ω2, in two subjects, which we call x and y.
Let the scores, given in percentages, be those in Table 5.

Table 5. Illustrative scores.

i 1 2 3 4 5 6

xi(ω1) 100 75 75 50 75 87.5
yi(ω1) 90 40 40 50 50 70

xi(ω2) 100 87.5 75 37.5 75 87.5
yi(ω2) 100 60 50 50 50 70

As the first step, we order the data according to the x’s and also record their concomitants,
which are the y’s. The numerical outcomes are reported in Table 6.

Table 6. Ordered scores and their concomitants.

i 1 2 3 4 5 6

xi:6(ω1) 50 75 75 75 87.5 100
y[i:6](ω1) 50 40 40 50 70 90

xi:6(ω2) 37.5 75 75 87.5 87.5 100
y[i:6](ω2) 50 50 50 60 70 100

Using piece-wise linear plots, we have visualized them in Figure 9.
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Figure 9. Piece-wise linear fits to the illustrative scores.
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In both panels of the figure, we see only five points, whereas the sample sizes of the two groups
are six: n(ω1) = 6 and n(ω2) = 6. The reason is that each of the two groups has two identical points:
(75, 40) in the case of ω1, and (75, 50) in the case of ω2.

Next we apply the median-based aggregation: in the case of ω1, the median of 40, 40, and 50
(which correspond to 75) is 40, and in the case of ω2, the median of 50 and 50 (which correspond to 75)
is 50, and that of 60 and 70 (which correspond to 87.5) is 65. (There are several definitions of median,
but in this paper we use the one implement in the R Stats Package [20]: given two data points in the
middle of the ranked sample, the median is the average of the two points.) We have arrived at two
data sets with only m(ω1) = 4 and m(ω2) = 4 pairs, which are reported in Table 7.

Table 7. Condensed scores using the median approach.

i 1 2 3 4

x∗i (ω1) 50 75 87.5 100
y∗i (ω1) 50 40 70 90

x∗i (ω2) 37.5 75 87.5 100
y∗i (ω2) 50 50 65 100

The corresponding piece-wise linear plots are given in Figure 10.
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Figure 10. Piece-wise linear fits to median adjusted data.

Note that the x-ranges of the two data sets are different: [50, 100] and [37.5, 100]. We therefore unify
them. Since the range for ω1 is a subset of that for ω2, we keep all the ω1 pairs, and thus k(ω1) = 4.
In the case of ω2, the lower bound 50 is not among the x’s and thus we apply the interpolation method
to find the y-value corresponding to L = 50. Using Equation (8), we have

y∗L(ω2) = 50 +
50− 50

75− 37.5
(50− 37.5) = 50. (13)

For the upper bound U, since 100 is present in the data set, nothing needs to be done. We have
k(ω2) = 4 because one pair was removed and one added. The new data set is reported in Table 8.
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Table 8. Ordered scores with unified ranges.

i 1 2 3 4

vi(ω1) 50 75 87.5 100
wi(ω1) 50 40 70 90

vi(ω2) 50 75 87.5 100
wi(ω2) 50 50 65 100

The corresponding piece-wise linear plots are depicted in Figure 11.
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Figure 11. Piece-wise linear fits with unified ranges.

For the pairs in Table 8, we can now calculate the index of increase according to Equation (12).
Namely, for ω1 we have

I =
(40− 50)+ + (70− 40)+ + (90− 70)+
|40− 50|+ |70− 40|+ |90− 70|

=
30 + 20

10 + 30 + 20

=
5
6

,

(14)

and for ω2 we have

I =
(50− 50)+ + (65− 50)+ + (100− 65)+
|50− 50|+ |65− 50|+ |100− 65|

=
15 + 35
15 + 35

= 1.

(15)

Both values are greater than 0.5, and thus both trends are more increasing than not, but the trend
corresponding to ω1 is less increasing than that for ω2, which is of course obvious from Figure 11.
Finally, the index for ω2 is 1, which means that the corresponding trend is non-decreasing everywhere.
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7. Conclusions

In many real-life applications, trends tend to be non-monotonic and researchers wish to quantify
and compare their departures from monotonicity. In this paper, we have argued in favour of a
technique that, in a well-defined and rigorous manner, has been designed specifically for making such
monotonicity assessments.

We have illustrated the technique on a small artificial data set, and also on the larger
data set borrowed from the classical text by Thorndike and Thorndike-Christ [19] (pp. 24–25).
Extensive graphical and numerical illustrations have been provided to elucidate the workings of
the new technique, and we have compared the obtained results with those arising from classical
statistical techniques.

To facilitate free and easy implementation of the technique in various real-life contexts, we have
conducted all our explorations using the R software environment for statistical computing and
graphics [20]. We have implemented the new technique relying on our own R codes (see Appendix A
for details). For data visualization, whenever possible, we have used the R packages ggplot2 [40] and
GGally [41].

A large number of notes that we have incorporated in the paper have been inspired—directly
or indirectly—by the many queries, comments, and suggestions by anonymous reviewers. A few
additional comments follow next. First, there can, naturally, be situations where measuring and
comparing the extent of decrease of various (non-monotonic) patterns would be of interest. In such
cases, instead of, for example, the index of increase I(x, y) defined by Equation (1), we could use the
index of decrease D(x, y) defined by

D(x, y) =
∑n

i=2(y[i:n] − y[i−1:n])−

∑n
i=2 |y[i:n] − y[i−1:n]|

,

where z− is the negative part of z, that is, z− = −z when z < 0 and z− = 0 otherwise. The above
developed computational algorithms do not need to be redone for the index D(x, y) because of
the identity

D(x, y) = 1− I(x, y),

which follows immediately from the equation z+ + z− = |z| that holds for all real numbers z. As a
consequence of the identity, for example, the ratio

O(x, y) =
∑n

i=2(y[i:n] − y[i−1:n])−

∑n
i=2(y[i:n] − y[i−1:n])+

,

which can be used for measuring the extent of downward movements relative to the upward
movements, can be rewritten as the “odds ratio”

O(x, y) =
D(x, y)
I(x, y)

=
D(x, y)

1−D(x, y)

with D(x, y) viewed as a probability, which can indeed be viewed this way because D(x, y) is the
proportion of downward movements with respect to all—downward and upward—movements.

The next comment that we make is that, as noted by a reviewer, researchers may wish to assess
the degree of non-exchangeability between x and y. In the case of, for example, the index of increase
I(x, y), such an assessment can be done either in absolute terms with the help of

A(x, y) =
∣∣I(x, y)− I(y, x)

∣∣
or, in relative terms, using
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R(x, y) =
∣∣∣∣ I(x, y)
I(y, x)

− 1
∣∣∣∣.

It might be desirable to remove the absolute values from the right-hand sides of the above two
definitions, thus making the newly formed two indices either positive or negative, and both of them
being equal to 0 when I(x, y) = I(y, x).
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Appendix A. Computer Codes

The following three computer codes calculate the index of increase under various scenarios.
The codes are written using the very accessible and free R software environment for statistical
computing and graphics [20].

Appendix A.1. Function-Based Index of Increase

Suppose that we wish to calculate the index of increase of a function h on the interval [L, U] for
some L < U. For this, we employ the computational algorithm described in Section 4. The desired
precision is achieved by setting a large value of the discretization parameter n. Specifically, in the
R Console, we run code:

indexh <- function(h,n=10000,L,U){
temp1 <- seq(L,U,length=n)
y <- h(temp1)
x <- data.frame(temp1,y)
denominator <- sum(abs(diff(x[,2])))
temp <- c()
for(i in 1:(length(x[,2])-1)){

temp[i] <- ifelse(diff(x[,2])[i] > 0, diff(x[,2])[i],0)
}
numerator <- sum(temp)
index <- numerator/denominator
return(index)

}

As an illustration, we next run the following code in order to calculate the index of increase for
the function h(x) = sin(x) on the interval [−π/2, π]:

h <- function(x){sin(x)}
indexh(h,n=10000,L=-pi/2,U=pi)

The result is 0.6666667, which suggests (because 0.6666667 > 0.5) that the trend is more increasing
than decreasing.
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Appendix A.2. Index of Increase for Discrete Data When the Are No Ties

In this appendix, we provide the code pertaining to the ‘basic idea’ described in Section 3.1. In this
case, all of the first coordinates (i.e., x’s) are different, and all of the second coordinates (i.e., y’s) are
also different. (When there are ties among the x’s or y’s, the next appendix provides a more general
and complex code, which of course also works when there are no ties.) To begin with, in the R Console,
we run the following code:

index <- function(data){
##order the dataset according to x’s
data <- data[order(data[,1]),]
##calculate the denominator of index I
denominator <- sum(abs(diff(data[,2])))
##calculate the numerator of index I
temp <- c()
for(i in 1:(length(data[,2])-1)){

temp[i] <- ifelse(diff(data[,2])[i] > 0, diff(data[,2])[i],0)
}
numerator <- sum(temp)
index <- numerator/denominator
return(index)

}

As an illustration, we calculate the index of increase for the three pairs (3, 1), (1, 3), and (2, 0) by
running the following code:

x <- c(3,1,2)
y <- c(1,3,0)
data <- data.frame(x,y)
index(data)

The result is 0.25, which suggests (because 0.25 < 0.5) that the trend is more decreasing
than increasing.

Appendix A.3. Index of Increase for Arbitrary Discrete Data

The following code is an augmentation of the previous one in order to allow for ties among the
x’s as well as for ties among the y’s. The code follows the median-adjusted methodology described in
Section 3.2. We start by running the following code in the R Console:

indexmed <- function(data){
#order the dataset according to x’s
data <- data[order(data[,1]),]
#find all the distinct value of x
tempx <- unique(data[,1])
#for each distinct x, find the median of y’s
medy <- c()
for(i in 1:length(tempx)){

medy <- c(medy,median(data[data[,1]==tempx[i],2]))
}
newdata <- data.frame(tempx,medy)
#calculate the index value
denominator <- sum(abs(diff(newdata[,2])))
temp <- c()
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for(i in 1:(length(newdata[,2])-1)){
temp[i] <- ifelse(diff(newdata[,2])[i] > 0,diff(newdata[,2])[i],0)

}
numerator <- sum(temp)
index <- numerator/denominator
return(index)

}

As an illustration, we calculate the index of increase for the data set that consists of the five pairs
(1, 1), (2, 3), (2, 2), (3, 1), and (3, 2). For this, we run the following code:

x <- c(1,2,2,3,3)
y <- c(1,3,2,1,2)
data <- data.frame(x,y)
indexmed(data)

The result is 0.6, which suggests (because 0.6 > 0.5) that the trend is more increasing
than decreasing.

Appendix B. Proof of Property (3)

Since β is positive, the order of the coordinates of the vector α + βx is the same as the order of the
coordinates of the vector x, and the relationship between the order statistics is (α + βx)i:n = α + βxi:n.
Consequently, and also recalling that γ is positive, all the median-adjusted concomitants satisfy the
relationship (δ + γy)∗i = δ + γy∗i and so

I(α + βx, δ + γy) =
∑m

i=2(δ + γy∗i − δ− γy∗i−1)+

∑m
i=2 |δ + γy∗i − δ− γy∗i−1|

=
γ ∑m

i=2(y
∗
i − y∗i−1)+

γ ∑m
i=2 |y∗i − y∗i−1|

=
∑m

i=2(y
∗
i − y∗i−1)+

∑m
i=2 |y∗i − y∗i−1|

= I(x, y).

This concludes the proof of property (3).
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Appendix C. Graphs Pertaining to Section 5
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Figure A1. Piece-wise linear fits and their indices of increase for both classes combined.
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Figure A2. Continuation of piece-wise linear fits and their indices of increase for both classes combined.
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Figure A3. LOESS fits when span = 0.75 (thicker line) and 0.35 (thinner line; the index I in parentheses)
for both classes combined.
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Figure A4. Continuation of LOESS fits when span = 0.75 (thicker line) and 0.35 (thinner line; the
index I in parentheses) for both classes combined.
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