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Abstract: Statistical literacy is essential to an informed citizenry; and two emerging trends
highlight a growing need for training that achieves this literacy. The first trend is towards “big”
data: while automated analyses can exploit massive amounts of data, the interpretation—and
possibly more importantly, the replication—of results are challenging without adequate statistical
literacy. The second trend is that science and scientific publishing are struggling with insufficient/
inappropriate statistical reasoning in writing, reviewing, and editing. This paper describes a
model for statistical literacy (SL) and its development that can support modern scientific practice.
An established curriculum development and evaluation tool—the Mastery Rubric—is integrated
with a new, developmental, model of statistical literacy that reflects the complexity of reasoning and
habits of mind that scientists need to cultivate in order to recognize, choose, and interpret statistical
methods. This developmental model provides actionable evidence, and explicit opportunities for
consequential assessment that serves students, instructors, developers/reviewers/accreditors of
a curriculum, and institutions. By supporting the enrichment, rather than increasing the amount,
of statistical training in the basic and life sciences, this approach supports curriculum development,
evaluation, and delivery to promote statistical literacy for students and a collective quantitative
proficiency more broadly.

Keywords: statistical literacy; mastery rubric; collective quantitative proficiency; basic sciences; life
sciences; scientific practice; curriculum development; curriculum evaluation; actionable evidence

1. Introduction

Statistical literacy (SL) is widely described as important for full social participation (see [1];
elementary curricula, e.g., [2,3]; higher education and beyond, e.g., [4–6]). Although this is true for
all students, there is a special relationship between statistics and scientific research that amplifies the
importance of developing appropriate statistical literacy in undergraduate or graduate/post-graduate
students in the sciences.

Empirical research relies on statistical methods, and statistics is a wide, dynamic field perpetually
propelled by new and improved methods. This far outstrips the capacities of other fields to fully adapt
to these innovations, much less to incorporate all “relevant” methods in their own PhD curricula.
Recently, Weissgerber et al. (2016) [7] correctly articulate that—and the myriad empirical arguments
why—basic scientists need training in statistics (see also [8–16]; see also [17]). In fact, science PhD
programs face a nearly Sisyphusian task: to adapt to some or any new methods, or even to prepare
their students to adapt, so that their non-statistical discipline may exploit the power of new, or justify
selecting established, statistical methods. Learning all statistical methods is clearly not feasible; even
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a focus on “just” those that are currently relevant for the discipline may impede adoption of newer,
more efficient methods in the future. However, initiating the development of statistical literacy and
orienting science students to value quantitative methods, which empowers them to seek additional
training when needed, might be an achievable goal.

Exemplifying the special importance of statistical literacy for scientists as they are trained is the
Carnegie model of the doctorate wherein PhD programs prepare graduates to be/become “stewards” of
their scientific disciplines (see [18] (pp. 9–14)). The definition of a steward of a discipline is “someone
who will creatively generate new knowledge, critically conserve valuable and useful ideas, and
responsibly transform those understandings through writing, teaching, and application” [18] (p. 5).
Consistent with the disciplinary stewardship model, Henson et al. (2010) [12] propose a “collective
quantitative proficiency” (CQP) model explicitly linking the valuation of quantitative methods within
the culture of a scientific discipline to the training in these methods that is provided to the future
researchers in (stewards of) that discipline. The CQP was described originally for education researchers,
but the argument and model are appropriate to all sciences. In fact, Weissgerber et al. (2016) [7]
review only the most recent literature representing the damage that weak or incomplete (or incorrect)
knowledge of statistics and statistical methods is currently having on the rigor, interpretability and
reproducibility of scientific work across the basic and life sciences. Established scientific practitioners
must become more statistically literate to effectively model this competency for their mentees and
students, to teach effectively, and to promote competence in writing, reviewing, and editing across
the sciences. As Shulman noted, “(b)oth scholarship and teaching in any field reflect the character
of inquiry, the nature of community, and the ways in which research and teaching are conducted in
that particular discipline or disciplinary intersection” [19] (p. xii). Students at all levels need to know
(and observe) that their scientific mentors also value—and contribute to—the collective quantitative
proficiency (CQP) that disciplinary stewardship requires.

Despite the importance of statistical literacy and competency for the practicing scientist and the
steward, doctoral programs may struggle with recommendations to add statistical training (see [20–22]).
Many science PhD programs include no formal statistical training, or just a single course (see [23];
see also [7]). Two emerging trends in the basic and life sciences are highlighting a growing need for
the addition—and integration- of statistical training in these disciplines. The first trend is towards
“big” data across basic and life sciences; where the potential to automate—and thereby remove
from active consideration—statistical inferences across datasets could ultimately exclude formal
training and reasoning in statistics and experimental design. While some PhD programs contemplate
adding statistical training to their programs, there is also movement to integrate “big data” into
training future or current stewards of the biomedical sciences—without attention to reproducibility,
experimental design, inferential statistics, or statistical literacy (e.g., [24]). While automated analyses
can exploit massive amounts of data, without statistical literacy, the interpretation—and possibly more
importantly, the replication, of results is challenged. However, “statistical literacy” is not included as
a key competency in most fields (e.g., bioinformatics [25]; biology [26]) and where it is discussed, it
relates to undergraduate single-course educational requirements (compliance) or to something less
concretely defined (e.g., [27–29]). These arguments focus on undergraduate and PhD level programs
because at the Master’s level, the course load is usually rigidly fixed; however, those seeking or
completing Master’s level preparation are also challenged when it comes to statistical literacy.

It seems impossible to achieve the goal of a “collective quantitative proficiency” [12] among
disciplinary stewards given the resistance to (or lack of time for, or lack of opportunities/interest in)
coursework beyond introductory statistical training (e.g., [22]). However, adding or retaining one
course in “introductory statistics” is also unlikely to achieve sufficient statistical literacy for modern
scientific practice—as either a producer or a consumer of argument that relies on quantitation and
data. A one-course approach to statistical literacy for PhD programs implies that:

(A) the single course is sufficient to teach the critical—and complex—set of skills that encompasses
“the ways in which research . . . (is) conducted in that particular discipline [19]; and
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(B) the single course will support the level of consumption and production of statistical arguments
representing competent stewardship of a discipline that uses these methods.

The one-course-done model of statistical training exemplifies the comment by Henson et al.
(2010) [12] (p. 235) that “(f)aculty and students often perceive quantitative methods as a static field
to be mastered”. Moreover, the current conceptualizations of statistical literacy are grounded in the
satisfaction of an undergraduate requirement (e.g., [30,31], for example, the Guidelines for Assessment
and Instruction in Statistics Education (GAISE [31]; see also e.g., [6]). The scientist, professional,
and/or instructor must be considered to have statistical literacy needs that differ qualitatively and
quantitatively from those of undergraduates whose use for, or application of, statistical reasoning and
methods is not yet known. For professional scientists, statistical literacy must support the responsible
stewardship of their disciplines, producing and consuming statistical arguments (see e.g., [12]; [32]
(p. xiii); see also [23]). This is a complex set of skills required for literature review, documenting the
background and contextual (apart from the statistical) significance of one’s work, and for writing and
reviewing manuscripts. Instead of reinforcing the perception that quantitative methods are “static”, an
explicitly developmental model of statistical literacy directs attention of PhD scientists (students and
mentors alike) towards their own awareness of the importance of, and variety in, quantitative method
options for their research and discipline. Because the model is developmental, it can be augmented to
accommodate learners earlier (than the PhD; see [33]) in their training. The model, described in the
next section, is intended to:

A. promote metacognitive awareness of what statistical literacy encompasses for
disciplinary stewards;

B. exemplify the link between this statistical literacy and the “collective quantitative proficiency”
of Henson et al. (2010) [12]; and

C. represent statistical literacy training that could be integrated into—or at least initialized
within—any PhD science program (and possibly earlier).

This conceptualization of statistical literacy as developmental could fulfill the objectives
of increasing statistical sophistication for scientists, reviewers, and faculty/mentors who are
training future scientists, reviewers and faculty/mentors. Moreover, although other models have
separated statistical “literacy”, “reasoning”, and “thinking” [34], these are actually three stages in
a developmental trajectory that describes a deepening of sophistication with respect to data and
principles of statistics. A more explicit statement of this development is intended to promote the
“cultural” shift towards CQP in PhD training in basic and life sciences like biology, physiology,
biochemistry, and genetics—towards a more holistic, reflective, and adaptive view of statistical literacy
(SL). A curriculum development and evaluation tool, the Mastery Rubric (described in the next section),
can be used to create, evaluate, or revise curricula that can generate actionable evidence (see [35]) of
performance by students, instructors, and institutions. In this manuscript, a new Mastery Rubric for
Statistical Literacy (MR-SL) is presented, and its potential to generate actionable evidence of growth
and development in understanding of fundamental statistical concepts, and reasoning with them,
is explored.

The Mastery Rubric

A traditional rubric is assignment-specific and lists the skills the grader requires in the work
product, along with performance levels from poorest to best [36] (Chapter 1). The Mastery Rubric is
similar, but outlines the knowledge, skills and abilities (KSAs) to be developed within the curriculum
(or over time), together with performance levels that characterize the learner moving from novice to
expert [37,38].

Related to the Mastery Rubric is the concept of a “learning progression” (e.g., [39] (p. 1)) which
describes shifts from naïve to “more expert understanding” and is based on how children learn the
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concepts of interest (but see [40] for an example with law students). Whereas a learning progression
represents a curricular segment (e.g., Schwarz et al. 2009 [41]), the Mastery Rubric [37,42,43]
represents the entire (predominantly) post-baccalaureate curriculum. Like the Mastery Rubric for
Statistical Literacy (MR-SL, Table 2), two others were designed to capture and encourage development
throughout the career [42,43]. Additionally, unlike a learning progression, the Mastery Rubric is public:
explication of curricular objectives, and what work products look like then these are met, facilitates the
identification by faculty, mentors, or evaluators of strengths and weaknesses in the curriculum itself.
This also formalizes the evidence that any individual may elicit (instructor/institution) or present
(student) to support their claim of achieving a target performance level throughout the curriculum.
This can also support faculty in other courses to create opportunities to generate this evidence, and
instruction supporting the same objectives from diverse contexts and perspectives. Explicit and
public description of the necessary evidence can, in turn promote learners to self-monitor, and spur
the individual (student, instructor, or institution) to seek (or create) opportunities to generate such
evidence [42].

The Mastery Rubric represents the perspective of Messick (1994) [44]: articulating what KSAs
students should possess at the end of the curriculum; what behaviours by the students will reveal
these KSAs; and what tasks will elicit these specific behaviours. Toohey (1999) [45] refers to this
outcomes-based approach as “systems-” or “performance-based”, and every Mastery Rubric follows
this approach. Thus, by design, any Mastery Rubric supports assessable curriculum development,
evaluation, and delivery because learning objectives are articulated and public so that each can be
explicitly aligned to individuals’ progress and development along the articulated continuum from
novice to expert. Then, conversations about curricular objectives, and actionable evidence of whether
or not they are being met, are possible for all stakeholders.

In the next sections, the MR-SL is presented and described, and its alignment with principles of
learning outcomes documentation [46] is analyzed.

2. Materials and Methods

Every Mastery Rubric is constructed with two dimensions: performance levels that represent
a developmental trajectory (columns) and knowledge, skills, and abilities that represent the targets of
the teaching and/or learning (rows; [38]). The methods by which each dimension of the MR-SL was
constructed are articulated below. A degrees of freedom analysis [47–49] was used to create a matrix to
permit examination of alignment of features of the MR-SL with the Principles for Learning Outcomes
articulated by the National Institution for Learning Outcomes Assessment (NILOA [46]).

2.1. The Mastery Rubric for Statistical Literacy (MR-SL): Establishing a Developmental Trajectory

As noted, one of the two essential elements in the creation of a Mastery Rubric (MR) is the
articulation of a developmental trajectory. Much of the research in statistical literacy has focused on
understanding how students or experts think about data (e.g., [50–52])—which means that the two ends
of the “developmental trajectory” in this discussion to date are “completing the undergraduate course”
and “being an expert”.

The Mastery Rubric for Statistical Literacy (MR-SL) was designed from the opposite perspective,
namely, to articulate what is common across middle stages of engagement with data (consumption
and production), with desired entry and exit criteria for each stage, along an explicit continuum from
more naïve to more expert. This is achieved by explicit reference to Bloom’s Taxonomy of Educational
Objectives [53]; see also [54]. Moreover, the MR-SL was constructed synthesizing a developmental
view of Bloom’s taxonomy with a long-standing model of the development of general literacy [55],
focusing on the knowledge, skills, and abilities specific to statistical literacy arising by consensus from
the literature (e.g., [50–52,56–58].

Table 1 presents the Bloom’s Taxonomic context of the MR-SL.
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Table 1. Performance levels in the developmental trajectory of “statistical literacy”: Given a research question, proposal, manuscript, report, or grant, this reader
will/is.

Pre-Literate Beginning Literacy Functionally Literate Skilled (Fluent) Independent (Journeyman) Expert (Master)

Read or skip stats/methods
sections—no critique or
evaluation. Assume writer
(and/or publisher) must know
what they’re doing. Accept
results without question.
Unengaged with statistical
reasoning, lacking quantitative
habits of mind or an awareness
of their role in science.

Read, generally understand, notice
gross errors, e.g., if categorical
method applied to continuous
variable or vice versa. Developing
meta-cognitive awareness that if a
question arises in their mind, the
method may not be correct or
clearly articulated. Initial
engagement with statistical
reasoning, developing awareness of
this skill and how to grow/use it.

Consolidating reading and
understanding, beginning to
learn how to analyze (with
software). Awareness of rules
of thumb (e.g., sample size vs.
representative-ness; parametric
vs. nonparametric options;
“correlation is not causation”).
Actively developing
knowledge, skills and abilities
required for statistical literacy.

Read and understand; reliably
identify misspecification of
methods chosen or employed.
Choose and execute correct
analysis, not necessarily able to
choose the several methods
that could be equally viable
depending on investigator’s
objectives. Qualified as a fluent,
but not as an independent,
statistical reasoner.

Understand scientific question to align
statistical (or graphical) methods options to
desired objectives. Expert review of technical
features of proposal/paper-not necessarily of
the science/statistics alignment. Qualified as
independent experts in statistical reasoning.

Understand scientific question and
clarify/encourage writer to clarify
objectives so as to align statistical (or
graphical) methods options to
desired objectives. Expert review
and evaluation—and diagnosis and
remediation.
Qualified to take individuals from
pre-literate through to Master level
statistical reasoning.

Not yet on the Bloom’s
trajectory.

Bloom’s 1 remembering,
understanding.

Bloom’s 2, 3, understand and
apply but only apply what
you’re told to apply.

Bloom’s 3–5 Choose and apply
techniques. Analyze &
interpret. Identify limitations,
but not sophisticated enough
to independently review
literature, proposals, grants.

Bloom’s 5–6 evaluate (review) and synthesize
for new methods but not for evaluation of
others.

Bloom’s 6 synthesize for new
methods, and evaluation of others.

Not a careful consumer. Becoming a careful Consumer. A careful consumer. Becoming a careful producer. Expert consumer, expert producer.

No or limited capacity to critique. Requires external “validation” to
believe what is presented (e.g., “it was published in JAMA!”
“Cochrane Reviews are correct”).

Developing: capacity to
evaluate; sense of what is/is
not appropriate; ability to
critique; opinions on debates
(e.g., application of
multi-model inference;
Bayesian vs. frequentist; when
to use multiple-comparisons
corrections).

Expert reviewer—capable of stewardship of the
not-statistics discipline.

Expert review, diagnosis and recommender of remediation;
capable steward of a statistical discipline.
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Table 1 includes an important column that does not actually appear in the Mastery Rubric but
is included here because it is such a common stage across the biomedical and life sciences (and
across some social and educational sciences as well): the pre-literate non-reasoner. This individual is
described consistently in critiques of the quality of journal and grant reviewing (see also e.g., [27,29]),
and is identified specifically by the lack of skills in the recent review by Weissgerber et al. (2016) [7].
The difference between a scientist who functions at this level and one who functions even at the
Beginning Literacy level is profound—and their effects undermining the rigor and reproducibility of
scientific research are increasingly less tolerable (e.g., [8–16]; see also [17]). Recognition that some
reviews provided for journal editorial decisions, as well as grant funding, represent functioning at
this level should be highlighted in these important decision-making contexts (i.e., even this structure
represents actionable evidence).

The MR-SL can promote remediation of these identified weaknesses by individuals seeking to
generate evidence they are “on the right track” or at least at the Beginning Literacy stage—and by
institutions seeking to provide opportunities to achieve learning outcomes consistent with performance
at this stage (or beyond). PhD students and scientists are often not operating at even the lowest Bloom’s
taxonomy [53] level (knowledge-the main level targeted by most statistical training, see e.g., [21,27])
while professionally, they must function at the highest level (e.g., [10–12]; see also [32] (p. xiii)).

Evidence of this (perhaps surprisingly low) level of functioning with respect to statistical
and quantitative argumentation comes from a variety of sources (e.g., [7,8,14–16]); the pre-literate
non-reasoner is common and problematic. If evidence is found that an institution is training people to
this level (and not beyond), action must be taken to remediate the situation or to reconfigure curriculum
or learning objectives that purposefully aim at this level of performance. The MR-SL treats statistical
literacy in a similar manner to general literacy [54]: comprising a set of learnable, improvable skills.
In order to promote development of a CQP by initiating the learning and improving of this skillset, the
MR-SL could be used to promote curricular or institutional remediation.

2.2. The Mastery Rubric for Statistical Literacy (MR-SL): KSAs for SL

The second dimension of a Mastery Rubric is the articulation of knowledge, skills, and abilities
(KSAs) that are to be targeted and grown throughout the developmental trajectory. For the MR-SL,
the list of KSAs representing statistical literacy was derived by synthesizing several models of statistical
literacy with the more active “empirical enquiry” model of Wild and Pfannkuch ([57]; see also [58]).
Because the developmental trajectory for these KSAs describes change from more naïve to more expert
performance, the qualification of how these KSAs are executed is captured (and described) in the row
that outlines growth and development in each KSA over time/training. The SL KSAs were synthesized
from “A four-dimensional framework for statistical thinking in empirical enquiry” [52] (p. 19) and the
“Statistical Thinking” facility described in [58] (p. 218) into the new MR-SL shown in Table 2.
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Table 2. Mastery Rubric for Statistical Literacy (MR-SL).

Performance Level Beginning Literacy Functional Literacy Skilled (Apprentice) Literacy Independent (Journeyman)
Literacy Expert (Master)

General description
of statistical literacy

Read, generally understand, notice
gross errors, e.g., if categorical method
applied to continuous variable or vice
versa. Developing meta-cognitive
awareness that if a question arises in
their mind, the method may not be
correct or clearly articulated. Engaging
with statistical reasoning, developing
awareness of this skill and how to
grow/use it.

Consolidating reading and
understanding, beginning to learn
how to analyze (with software).
Awareness of rules of thumb (e.g.,
sample size vs. representativeness;
parametric vs. nonparametric
options; “correlation is not
causation”). Actively developing
knowledge, skills and abilities
required for statistical literacy.

Read & understand; reliably
identify misspecification of
methods chosen or employed.
Choose and execute correct
analysis, not necessarily able to
choose the several methods that
could be equally viable depending
on research objectives. Qualified as
a fluent, but not as an independent,
statistical reasoner.

Understand scientific question to
align statistical (or graphical)
methods options to desired
objectives. Expert review of
technical features of
proposal/paper-not necessarily of
the science/statistics alignment.
Qualified as independent expert in
statistical reasoning.

Understand scientific question and
clarify/encourage writer to clarify
objectives so as to align statistical (or
graphical) methods options to desired
objectives. Expert review and
evaluation—and diagnosis and
remediation.
Qualified to take individuals from
pre-literate through to Master level
statistical reasoning.

Considerations for
evidence of
performance at this
level

Bloom’s 1 remembering,
understanding.

Bloom’s 2, 3, understand and apply
but only apply what you’re told
to apply.

Bloom’s 3–5 Choose and apply
techniques. Analyze and interpret.
Identify limitations, but not
sophisticated enough to
independently review literature,
proposals, grants.

Bloom’s 5–6 evaluate (review) and
synthesize for new methods but
not for evaluation of others.

Bloom’s 6 synthesize for new methods,
and evaluation of others.

Define a problem
based on critical
literature review

Can identify the problem that is
articulated within literature that is
reviewed, but not derive or synthesize
one across multiple sources. Does not
question design features or evidence
base supporting problems articulated
in what was reviewed. Might argue
that the impact factor of a journal as
evidence that an article published there
is “good” or “correct”.

Can identify the problem that is
articulated within literature that is
reviewed, and can recognize when
incomplete review is provided.
Does not derive or synthesize new
issues from single or multiple
sources. Acknowledges that design
features and evidence base are
essential for understanding the
validity of claims or research
problems articulated by others.

Can identify gaps and articulate
problem (research questions) that
arise from critical literature
reviews, can recognize when
incomplete review is provided and
also recognizes the need to
consider wider scope of literature
for alternative solutions to a
problem common across contexts
or domains.

Can synthesize and define a
theoretical or methodological
problem based on a critical review
of the literature in one or across
scientific domains. Recognizes
when and how solutions to
problems from diverse contexts are
or are not appropriate or adaptable
for new applications.

Can diagnose and remediate individual
synthesis and definitions of theoretical
and/or methodological problems based
on a critical review of the literature as
well as critical evaluation of less expert
synthesis across contexts—i.e., in terms of
classroom work as well as grant
proposals and manuscripts.

Identify or
choose—and
justify—the
measurement
properties of
variables

Cannot identify the measurement
system for variables within
manuscripts unless they are articulated
explicitly. If they are articulated, this
information would not be useful/used.

Understands that there are different
measurement systems but does not
know how or why ratio-level data
might be transformed into interval
or ordinal data. Treats nominal
data with numeric labels as if they
are ratio-level.

Chooses measurement that
optimizes power rather what
specifically addresses hypothesis of
interest. Limited consideration of
interaction and
mediation/moderation effects.
Understands that nominal and
ordinal data do not behave as
ratio-level (or even integral)
variables do.

Chooses measurement that
optimizes generalizability and
interpretability of results, and
acknowledges that power may
suffer—justifiably. Can justify (and
recommend as appropriate) the
transformation of data from one
type to another if appropriate.
Careful consideration of interaction
and mediation/moderation effects.

Can identify and critique (as
appropriate) the measurement system
used in any given study/analysis. Can
choose and justify nominal-, interval-, or
ratio-level analytic methods.
Understands the limitations of different
types in terms of analysis assumption
requirements, and can articulate the
tradeoff in scientific explanatory power
associated with measurement and data
type choices. Expert consideration of
interaction and mediation/moderation
effects. Diagnosis and remediation of
each of these across contexts.
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Table 2. Cont.

Performance Level Beginning Literacy Functional Literacy Skilled (Apprentice) Literacy Independent (Journeyman)
Literacy Expert (Master)

Design the collection
of data

Can identify data collection features in
text if they match basic design
elements from introductory materials
(e.g., t-test, chi square) but cannot
derive them if they are not present.
Cannot design data collection
initiatives. Cannot conceptualize
covariates or their roles in analysis or
interpretation.

Can identify data collection
features if they are present in a
manuscript/proposal—including
more complex and advanced
methods- but cannot derive them if
they are not present. Recognizes
covariates if mentioned, but does
not require formal consideration
(or justification) or evaluation of
covariates.

Can match the correct data
collection design to the instruments
and outcomes of interest, but needs
assistance in conceptualizing
covariates and their potential roles
in the planned analyses. May
include covariates “because that is
what is done” without being able to
justify the roles of any in the
hypotheses to be tested.

Can design appropriate data
collection and identify instruments
and outcomes (and covariates) that
support the testing of specific
hypotheses. Collaborates with
expert as needed on appropriate
use of advanced methods,
including accommodating
measurement and sampling error,
attrition (if needed), and modeling
requirements.

Expertly designs collection of data,
including power calculations, modeling
requirements, measurement/sampling
error and data missingness. Designs and
can critique sensitivity analyses as
appropriate, and fluently diagnoses and
remediates each of these across contexts.

Piloting, analysis and
interpretation

Does not differentiate pilot studies and
full studies; might not plan a pilot to
ensure study features are feasible.
Might call a study with a small N
“pilot” just based on sample size.
Cannot evaluate or interpret (their own
or) others’ pilot work

Differentiates pilot and full-scale
studies, but does not consider the
‘failures’ uncovered by pilot work
to be informative-and might stop if
pilot study uncovers problems.
Might consider larger scale study
unnecessary if pilot results are as
expected.

Recognizes need for pilot studies
and asks for appropriate assistance
in the design and analysis. Pilot
results are seen to be useful in
addressing scalability issues. May
seek assistance with scalability
based on pilot results. Does not
recognize when design or review
demands are beyond their skill set.

Independently conceptualizes pilot
studies that address relevant
design issues. May seek expert
advice for design, power, and
analysis planning for their own
work, and consistently recognizes
when reviewing demands are
beyond their skill set.

Expertly designs and analyzes pilot
studies, utilizing the data for full study
design, analysis planning and power,
within their own and others’ work.
Diagnoses and remediates each of these
across contexts.

Discerning
“exploratory”,
“planned”, and
“unplanned” data
analysis

Does not perceive differences between
“planned”, and “unplanned” data
analysis in their own or others’ work.
Does not recognize that exploratory
analyses can be planned or unplanned
and that these should be described as
such.

In their own work, can differentiate
between exploratory analysis and
hypothesis testing, but not
“planned” and “unplanned”
analyses. May incorrectly
characterize “exploratory” analysis
as hypothesis testing (planned or
unplanned).

Perceives differences between
“planned”, and “unplanned” data
analysis in their own work, but not
in others’ work unless it is
identified. May not recognize that
exploratory analyses can be
planned or unplanned, does not
know why it might matter to
communicate which they are
doing/reporting.

Recognizes differences between
“planned”, and “unplanned” data
analysis in their own and others’
work, even when others do not
recognize it in their own work.
Knows that exploratory analyses
can be planned or unplanned, and
can identify which is included in
their own and others’ work.

Clearly and consistently differentiates
planned and unplanned analyses in their
own work and that of others. Utilizes all
types of analysis appropriately in
support of coherent contributions to
science. Consistently requires others to
do the same, and can diagnose and
remediate each of these across contexts in
order to support scientific integrity and
competence.

Hypothesis
generation based on
planned and
unplanned analyses

Uses the default settings of software to
guide analysis planning (and execution
in the unplanned analysis case). Like
software, does not differentiate
planned or unplanned, nested or
non-nested hypothesis tests. Does not
generate hypotheses.

Uses the default settings of
software to guide analysis planning
(and execution in the unplanned
analysis case). Attention is focused
on planned analyses and
hypothesis generation in that
context; unlikely to generate
testable hypotheses. May not
recognize that hypotheses may be
generated and tested in or by
unplanned analyses or within the
intermediate steps software
executes to complete the desired
analysis.

When software generates and tests
hypotheses, treats that as “what
was supposed to happen” and does
not differentiate these results from
those anticipated and resulting
from planned analyses. Can
generate new hypotheses, but is
likely to base these on data without
appeal to theory, plausibility, or
context.

Can seamlessly integrate
hypothesis generation into the
consideration of literature or data
analysis. In their own and others’
work, recognizes that, and
articulates how, hypothesis
generation from planned and
unplanned analyses differ in their
evidentiary weight and their need
for independent replication.
Depends on knowledge, context,
and skills with synthesis—and not
software—to generate testable
hypotheses.

Expertly distinguishes hypothesis testing
and hypothesis generation. Reliably
recognizes and communicates the
differences between these in all written
and oral work. Consistently seeks to
integrate plausibility and scientific
contextualization into hypothesis
generation. Diagnoses and remediates
each of these across contexts.
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Table 2. Cont.

Performance Level Beginning Literacy Functional Literacy Skilled (Apprentice) Literacy Independent (Journeyman)
Literacy Expert (Master)

Interpretation of
results

Believes that the p-value is “true” and
represents the evidence for the
hypothesis or theory being tested.
Never corrects for multiple
comparisons in their own work; does
not suggest or question the need for it
in reviewing. Resists multiple
comparisons corrections suggested by
reviewers or collaborators if it causes
“significant” results to disappear. Does
not seek coherence in the analysis plan
or the alignment of methods, results,
and interpretation.

Understands that the p-value does
not represent the “truth” of the
hypothesis being tested, but cannot
articulate why it is useful/used.
Interprets p-values that are “very
close” to the nominal alpha level
(e.g., 0.049–0.10) as statistically
meaningful evidence of trends;
interprets very small p-values as
“highly significant” results.

Understands that the p-value
represents evidence supporting the
null hypothesis, not the study
hypothesis. Recognizes that very
small p-values are not “highly
significant results”, but does not
consistently correct this language
when reviewing. Can apply
multiple comparisons corrections,
but does so when reminded. Does
not insist on these corrections in
work that they review (grants,
manuscripts, coursework).

Understands that the null
hypotheses that statistical tests test
are never the actual purpose of the
analysis. Resists reification and is
committed to good-faith efforts to
falsify hypotheses, not simply test
the null. Applies multiple
comparisons to promote
reproducible results. In their own
and others’ work, seeks competing,
plausible, alternative models or
explanations.

Communicates consistently that the null
hypotheses that statistical tests test are
never the actual purpose of the analysis.
Resists reification and is committed to
good-faith efforts to falsify hypotheses,
not simply test the null. Seeks competing,
plausible, alternative models or
explanations. Encourages collaborators
to do all of these, and diagnoses and
remediates each of these across contexts.

Draw and
contextualize
conclusions

p-value driven conclusions without
consideration of limitations. No
contextualization of the results with
prior literature or with the foregoing
portions of the document. Conclusions
may not actually represent results;
overinterpretation and failure to
identify or acknowledge limitations.

p-value—driven conclusions that
may include consideration of
limitations including multiple
comparisons. Conclusions are
typically superficial—i.e., not very
deeply contextualized with the
literature. Conclusions are typically
aligned with results, but may not
be well-contextualized with the rest
of the document (paper, grant).

In their own work, draws
conclusions that are contextualized
with the entire manuscript/grant.
In reviewing, does not require that
conclusions are aligned with the
whole document, and does not
require full contextualization.
Incomplete consideration of
limitations in their own work and
inconsistent requirement that
limitations are acknowledged in
others’ work.

Contextualizes results with respect
to the entirety of the
manuscript/grant, and so can
detect cases where conclusions are
not aligned with the
introduction/background,
methods, and/or results. Careful
consideration of limitations
deriving from the method and its
application in the specific study.
Requires full contextualization of
conclusions in others’ work and
strives to fully contextualize
conclusions in their own work.

Expertly differentiates effect sizes,
clinical significance and statistical
significance. Can articulate either
multi-trait/multi-method (MMTM) or
other triangulation approach, including
mixed methods analysis to understand
and contextualize results. Consistently
requires full contextualization of
conclusions in others’ work and fully
contextualizes conclusions in their own
work. Diagnoses and remediates each of
these across contexts.

Communication

Does not communicate statistical
information clearly or consistently,
skips the methods section of papers or
grants. Does not differentiate
appropriate and inappropriate
communication with statistics or other
quantitative material. Does not
generate or evaluate communication of
statistical or quantitative material.

Reads the statistics and methods
sections superficially. Does not
recognize inconsistencies (e.g.,
author describes data as categorical
and plans t-test). May state that
“only the p-value is needed” when
reviewing how results are
communicated. Does not generate
communication of statistical or
quantitative material and should
not review these.

Reads the statistics and methods
sections and identifies what they
are and are not able to review
competently. Can formulate
queries for either the author or for
an expert to help them complete a
review. Seeks to collaborate with
statistical expert to ensure that
team-based reporting is coherent,
consistent, and accurate.

Consistent proficient use of
statistical and quantitative
language to correctly describe what
was done, why, and how. Sufficient
consideration given to limitations
with explicit contextualization of
results consistently included in the
interpretation of results. Errors of
comprehension of this text—if they
arise—arise on the side of the
reader.

Expert communicator and reviewer of
scientific communication relating to or
including statistical and quantitative
materials. Consistent sensitivity to
audience and appropriate interpretation
and contextualization of results. In
reviewing proposals, can anticipate
(diagnose) challenges for dissemination
and communication, and differentiate
errors in reasoning from failures to
disclose or articulate. Diagnoses and
remediates each of these across contexts.
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The model of statistical thinking articulated by Wild and Pfannkuch ([57] discussed in [52]
(pp. 18–20), captures the features of literacy, reasoning, and thinking that are relevant for graduate
science curricula (as noted by [58]; see also [50]) and beyond. Thus, this model embodies “ . . . value on
the integration of quantitative methods as part of the substantive enterprise of doctoral education” [12]
(p. 236). The KSAs (rows) in the MR-SL are:

• Define a problem based on critical literature review;
• Identify or choose—and justify—the measurement system;
• Design the collection of data;
• Piloting, analysis and interpretation;
• Discerning “exploratory”, “planned”, and “unplanned” data analysis;
• Hypothesis generation based on planned and unplanned analyses;
• Interpretation of results;
• Draw and contextualize conclusions;
• Communication.

These KSAs generally define the scientific method—and also require content knowledge.
The initiation and development of these KSAs could therefore be integrated across multiple content
course areas, and also for those who are practicing scientists—whether or not they completed PhD-level
training. The MR-SL serves to link instruction in statistical methods with the application, and reasoning
with, those methods and results. Thus, it can support the initiation of the development of this set of
KSAs and their continued promotion within, and beyond the ending of, formal education. There are
six mutually exclusive performance level descriptors for each of these KSAs in the MR-SL (Table 2);
the integration of the Bloom’s level functioning at different stages with the features of statistical literacy
are explicit.

3. Results

The MR-SL in Table 2 co-articulates cognitive perspectives on the development (columns) derived
from extant literature with context-appropriate and explicit, but flexible, descriptions of a complex
set of knowledge skills and abilities KSAs (rows) that represent statistical literacy as a learnable,
improvable skill set. Table 3 provides a rough alignment of the KSAs in the MR-SL and definitions of
statistical “literacy”, “thinking”, and “reasoning” in prior models.

Table 3. Alignment of models of statistical reasoning, thinking, and literacy with the MR-SL KSAs.

Tractenberg MR-SL KSAs
(defining Statistical Literacy Like
Chall [55] Defined General
Literacy: As a Learnable and
Improvable Skill Set)

Bishop and Talbot 2001 [58] (statistical Thinking)
Wild and Pfannkuch
1999 [57] (statistical
Thinking)

Garfield, delMas,
Chance 2003 [34]
(Definitions of
Statistical Literacy,
Thinking,
Reasoning)

Define a problem based on critical
literature review. Identify the problem. Constructing and

reasoning from models. Statistical thinking.

Identify or choose—and justify—the
measurement properties of
variables.

Plan the experiment/survey/observational study.

Taking account of
variation; Constructing
and reasoning from
models.

Statistical thinking.

Design the collection of data. Pilot and adjust (analyze and interpret the data)

Constructing and
reasoning from models;
transnumeration
(transforming data for
understanding);
synthesis of problem
context and statistical
understanding.

Piloting, analysis and interpretation.

Discerning “exploratory”,
“planned”, and “unplanned” data
analysis.

Do final study;
collect and present the data;
analyze and interpret the data.

Hypothesis generation based on
planned and unplanned analyses.

Interpretation of results. “To think statistically means that one can:
1. Read data, critically and with comprehension;
2. Produce data that provide clear answers to
important questions;
3. Draw trustworthy conclusions based on data” [58] (p. 220).

Statistical reasoning.

Draw and contextualize
conclusions.

Communicate.
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Table 3 shows that the alignment of the MR-SL KSAs is tightest with the model of statistical
thinking outlined by Bishop and Talbot (2001) [58] but it is also similar to the statistical thinking model
of Wild and Pfannkuch (1999) [57]. The definition of “statistical literacy” given in Garfield, delMas and
Chance (2003) [34] may be foundational to engaging in any of the KSAs, but “statistical thinking” as
they defined it may be more aligned with the consumption of statistical reasoning and is not (according
to Table 3) involved in production. However, considering the alignment of their definition of “statistical
reasoning” with the interpretation of results and drawing of conclusions suggests that the ability to
reason statistically can be developed without a focus on data collection or analysis (which are key
aspects of the other two models of “statistical thinking”). For scientists who are either in training or in
practice, both the production and consumption of statistical argumentation are essential and these can
be leveraged as two types of important practice for ensuring that the learning in statistics coursework
is sustainable (endures beyond the end of teaching and can be applied in different contexts than where
it was learned).

It is not necessary that all learners progress on all KSAs simultaneously; with the co-articulation
of KSAs with developmental stages of performance on each one, instructors, institutions and students
can leverage their time and effort in order to ensure that all KSAs are performed, at some point
(e.g., midway through a degree program), at a target level. The co-articulation of the MR-SL also
supports the generation of actionable evidence for learners who identify one or another KSA as most
challenging, as well as for institutions or instructors that identify performance on one KSA or another
as least-consistent across a student cohort. The co-articulation also both captures an explanation for
why reproducibility and peer review in science are widely perceived to be weak (i.e., because people
do “function” at insufficiently-sophisticated levels on some, if not all, of these important KSAs) and
also provides an approach, to an individual, instructor or the institution, for addressing this weakness.

Table 4 is a degrees of freedom analysis [47–49] evaluating the alignment of the MR-SL and its
potential to support evidence-based decision-making in higher education as well as the five Principles
for the documentation of learning outcomes [46].

It can be seen in Table 4 that four of five Principles [46] are addressed by the creation of the MR-SL
and its adoption to promote statistical literacy that is appropriate for PhD science students and anyone
who will consume or produce scientific argumentation that depends on data or quantitation. One of
the five principles (collaborative) is not addressed at all by the MR-SL; however, the MR-SL KSAs
are articulated based on multiple models of statistical thinking and reasoning, and on real-world
requirements for applied statistical literacy by scientists in their daily work. Explicit articulation
allows learners to see what is expected of them and institutions/instructors to support learners in
their achievement of these expectations. Thus, the MR-SL is “representative”, but not necessarily
“collaborative”. Its implementation at any institution would need to be based on all stakeholders
agreeing, so “collaboration” might become relevant in that (implementation) context.

The alignment of the MR-SL with one of the principles (“Outcomes are focused on improvement”)
does not differentiate between the learner and the instructor/institution. The instructor/institution
can obtain actionable evidence about how courses or training support improvement in key outcomes,
and the learner can obtain actionable evidence about what other information or training is needed in
order to achieve a targeted performance level on each KSA. With a Mastery Rubric self-monitoring is
focused on, “what training do we offer to promote growth or development of this KSA, what else can
we offer to support if for all learners?” (institution/instructor) and “how well do I do/know this KSA,
what do I need to do to become more proficient?” (learner). These perspectives are sufficiently similar
to warrant collapsing over instructor/learner in Table 4.
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Table 4. Alignment of Principles for documenting and improving assessment with features of the
MR-SL from student and institutional perspectives.

Principles for
Documenting/Improving Student Performance Institutional Effectiveness

Develop/articulate specific
actionable learning outcomes

MR-SL helps students identify their
progress towards articulated learning
objectives.

MR-SL helps instructors/institutions identify and
articulate developmental learning objectives.

Connect learning goals with
student work

If work is not explicitly aligned with
learning goals, students see this and can
remediate that (with additional work
or training).

If learning goals are not reflected in student work
(assignments), instructors/institution can see this and
remediate with different assignments.

Articulate learning outcomes
collaboratively Not addressed by the MR-SL.

Outcomes support assessment that
generates actionable evidence

Students can/are encouraged to actively
self assess, to ensure they are making
progress on the developmental path.

Institutions and instructors see explicit alignment of
curricular features (courses, assignments/work
products) and can use this evidence to support or
change the approach.

Outcomes are focused
on improvement

The explicit articulation of expected growth and development in the target KSAs focuses all
stakeholders on improvement of these KSAs—emphasizing they are not static.

Outcomes document learning and
its extent

Learners generate evidence of their
achievement and ongoing development
of KSAs.

Instructors/institutions structure training/teaching to
generate documentation of learning and the
achievement of articulated learning objectives.

Outcomes provide evidence of
quality of learning

A portfolio can be created articulating
the extent and quality of learning.

Assessment opportunities that document the
achievement and quality of learning can be developed.

Expectations are explicit in
the outcomes

The MR-SL makes explicit the
expectation that the learner takes some
responsibility for self-assessment and
ensuring ongoing development until the
target performance level is achieved.

The MR-SL makes explicit the institutional obligation
to provide learning opportunities that can and do
promote growth and development in the target KSAs.

Evidence from the outcomes is
externally relevant

Portfolios documenting the
achievement of learning outcomes (in
statistical literacy) can be used to
document readiness/qualification
to review.

Statistical literacy is known to be weak; institutions
that adopt the MR-SL and use it to guide curriculum
development or evaluation can document their
alignment of learning outcomes with the improvement
of statistical literacy and/or contributions to the
collective quantitative proficiency.

Four additional rows are included in Table 4. These are not “principles” for documenting learning
per se, but they are relevant to a discussion about promoting statistical literacy with a Mastery
Rubric approach and they are also discussed in the NILOA policy statement [46]. These additional
considerations are that:

• Outcomes document learning and its extent;
• Outcomes provide evidence of quality of learning;
• Expectations are explicit in the outcomes; and
• Evidence from the learning outcomes is externally relevant.

4. Discussion

A Mastery Rubric emphasizes habits of mind as they transition from more novice to more
expert, along a Bloom’s-compatible developmental trajectory [37]. The developmental stages
of the MR-SL map onto those articulated for the development of general literacy [55], and the
potential for explicit articulation of performance levels for each KSA are aligned with the self-efficacy
argument of Bandura [59] (Chapter 2). The MR-SL captures key features of engagement in scientific
inquiry (e.g., [57,58]); it is consistent with four of five NILOA principles for learning outcomes,
and has an additional four features that generate actionable evidence by both the learner and the
instructor/institution. Overall, these features suggest that the MR-SL is strongly supportive of the
perspective that documenting learning matters.

Undergraduate statistical literacy is fundamentally different from that required for applied
science and for doctoral level work, but it is not expertise in statistics that is targeted with the
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MR-SL—it is expertise, or movement towards it, in this particular type of literacy that is targeted.
Perhaps especially, explicitly describing what the KSAs are and how they should be developing can
promote the recognition that/when additional training (institution) or information (learner) is needed.
This approach is supportive of the identification of strengths and weaknesses—in the student and in the
curriculum—thereby promoting creation or revision of training opportunities to address the identified
gaps. This in turn can promote the concrete articulation by learners/trainees of how statistical training
experiences have actually promoted observable changes in their own SL strengths and weaknesses.

The one NILOA principle for documenting learning outcomes with which the MR-SL is not closely
aligned, that outcomes are articulated via collaboration with all stakeholders, is a significant limitation
to the applicability of this work—because buy-in from faculty across courses and possibly disciplines
or departments is critical for institutional adoption of the MR-SL. It is possible, however, that a focus
on the representativeness of the KSAs of what is commonly defined as “statistical literacy”, and the
alignment of the developmental trajectory with other well-established models (e.g., [54,57,58]; [59]
(Chapter 2)), can facilitate consideration of how the MR-SL can best be adopted or adapted to achieve
institutional objectives in support of the collective quantitative proficiency and statistical literacy that
modern scientific practice requires.

5. Conclusions

Many PhD science programs require a single statistics course, and although this may suffice
for undergraduates (see [31]), statistical literacy to support responsible stewardship of a scientific
discipline differs fundamentally from that of undergraduates (see, e.g., [58]). Any syllabus can be
compared to the MR-SL to determine the stage at which learners would be able/are expected to
function, as well as evaluating the extent to which the learning objectives articulated in the syllabus
are supportive of growth in statistical literacy. Moreover, the MR-SL can be used like other Mastery
Rubrics have been to revise an existing curriculum [43], or to create new training opportunities that
can promote the initiation of, and sustainable development in, a target set of KSAs [42].

It is not possible for degree and training programs to teach every quantitative method. At a
minimum, because the developmental trajectory and KSAs are specified in this article, institutions
can use it to determine the highest level a graduate in any program (undergraduate or graduate) can
expect to attain given the existing statistical training and practice opportunities. Individual scientists
may use the MR-SL to seek new quantitative learning opportunities by placing themselves on the
developmental trajectory with respect to each KSA. With a focus on their metacognitive awareness of
their own statistical literacy, individuals in or beyond their formal education setting can discern their
growth and/or the need for more training.

The National Institute for Learning Outcomes Assessment [46] articulates that . . . “students
need a postsecondary education that will prepare them to meet the challenges of the 21st century”
(see also [60]). This paper describes a model for statistical literacy (SL) and its development that can
support the dynamics of practicing modern science, starting with either graduate or undergraduate
training. The MR-SL does so by generating actionable evidence about learning outcomes in statistical
literacy from institutional, instructor, and student performance. The developmental framework around
SL promotes the learner’s understanding of his/her own statistical reasoning, as well as growth and
depth of their knowledge, skills, and abilities relating to data and statistical analysis. This feature is an
important element of education that can prepare learners “to meet the challenges of the 21st century”,
because knowledge is increasing at a rate we simply cannot keep up with. A crucial aspect of 21st
century education is preparing individuals to continue learning—part of which involves self-assessment.

The Mastery Rubric provides explicit opportunities for consequential assessment that
serves students, instructors, developers/reviewers/accreditors of a curriculum, and institutions.
By supporting the enrichment, rather than increasing the amount, of statistical training in the sciences,
the MR-SL supports evaluable curriculum development, evaluation, and delivery to promote statistical
literacy for students and a collective quantitative proficiency more broadly. This model for promoting
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SL can be adopted by an individual for their own learning, or by a department or discipline, to promote
ongoing and integrated teaching and learning in statistical reasoning. The extent that the model is
adopted can support a cultural shift across scientific disciplines towards a collective quantitative
proficiency that enables scientists and students alike to determine which methods to learn about
and also how to know if they have learned enough about the chosen methods for professional-level
engagement in modern life and science.
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