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Abstract: Fuzzy logic, which is based on fuzzy sets theory introduced by Zadeh in 1965, 

provides a rich and meaningful addition to standard logic. The applications which may be 

generated from or adapted to fuzzy logic are wide-ranging and provide the opportunity for 

modeling under conditions which are imprecisely defined. In this article we develop a 

fuzzy model for assessing student groups’ knowledge and skills. In this model the students’ 

characteristics under assessment (knowledge of the subject matter, problem solving skills 

and analogical reasoning abilities) are represented as fuzzy subsets of a set of linguistic 

labels characterizing their performance, and the possibilities of all student profiles are 

calculated. In this way, a detailed quantitative/qualitative study of the students’ group 

performance is obtained. The centroid method and the group’s total possibilistic uncertainty 

are used as defuzzification methods in converting our fuzzy outputs to a crisp number. 

According to the centroid method, the coordinates of the center of gravity of the graph of 

the membership function involved provide a measure of the students’ performance. 

Techniques of assessing the individual students’ abilities are also studied and examples are 

presented to illustrate the use of our results in practice.  

Keywords: fuzzy sets; fuzzy logic; defuzzification; students’ assessment 

 

1. Introduction  

There used to be a tradition in science and engineering of turning to probability theory when one is 

faced with a problem in which uncertainty plays a significant role. This transition was justified when 
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there were no alternative tools for dealing with the uncertainty. Today this is no longer the case. Fuzzy 

logic, which is based on fuzzy sets theory introduced by Zadeh [1] in 1965, provides a rich and 

meaningful addition to standard logic. This theory proposed in terms of the membership function 

operating over the range [0,1] of real numbers. New operations for the calculus of logic were also 

proposed and showed to be in principle at least a generalization of classic logic [1,2]. Despite the fact 

that both operate over the same numeric range [0,1], fuzzy set theory is distinct from probability 

theory. For example, the probabilistic approach yields the natural language statement “there is an 85% 

chance that Mary is tall”, while the fuzzy terminology corresponds to the expression “Mary’s degree of 

membership within the set of tall people is 0.85”. The semantic difference is significant: The first view 

supposes that Mary is or is not tall (still caught in the law of the Excluded Middle); it is just that we 

only have a 85% chance of knowing in which set she is in. By contrast, fuzzy terminology supposes 

that Mary is “more or less” tall, or some other term corresponding to the value of 0.85. Another 

immediately apparent difference is that the summation of probabilities of the single subsets (events) of 

a universal set must equal 1, while there is no such requirement for membership degrees. Further 

distinctions and differences between probability and fuzziness also exist, arising from the way that the 

corresponding operations are defined.  

The applications which may be generated from or adapted to fuzzy logic are wide-ranging and 

provide the opportunity for modeling under conditions which are inherently imprecisely defined, 

despite the concerns of classical logicians. A real test of the effectiveness of an approach to uncertainty 

is the capability to solve problems which involve different facets of uncertainty. Fuzzy logic has a 

much higher problem solving capability than standard probability theory. Most importantly, it opens 

the door to construction of mathematical solutions of computational problems which are stated in a 

natural language. In contrast, standard probability theory does not have this capability, a fact which is 

one of its principal limitations. All the above gave us the impulsion to introduce principles of fuzzy 

logic to describe in a more effective way a system’s operation in situations characterized by a degree 

of vagueness and/or uncertainty (e.g., see [3,4]). In Education, such situations often appear in the cases 

of learning a subject matter, of problem-solving, of modeling, of analogical reasoning, etc. In fact, 

students’ cognition utilizes in general concepts that are inherently graded and therefore fuzzy. On the 

other hand, from the teacher’s point of view there usually exists vagueness about the degree of success 

of students in each of the stages of the corresponding didactic situation. As a consequence, our fuzzy 

model mentioned above finds a lot of applications in the area of education (see [3,5,6], etc.).  

The present paper proposes the use of fuzzy logic in assessing students’ knowledge and skills. The 

text is organized as follows: In section 2 we use our general fuzzy framework mentioned above as a 

tool for students groups’ assessment. In section 3 we apply the methods of the “center of gravity” and 

of the system’s total possibilistic uncertainty as defuzzification methods in converting our fuzzy 

outputs to a crisp number and we present an example illustrating our results in practice. In section 4 we 

study techniques of students’ individual assessment and finally in section 5 we state our conclusions 

and we discuss our plans for future research. For general facts on fuzzy sets we refer freely to the book 

of Klir and Folger [7].  
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2. A Fuzzy Model for Assessing Student Groups’ Performance  

One of the problems faced by teachers is the assessment of their students’ knowledge and aptitudes. 

In fact, our society demands not only to educate, but also to classify the students according to their 

qualifications as being suitable or unsuitable for carrying out certain tasks or holding certain posts. 

According to the standard methods of assessment, a mark, expressed either with a numerical value 

within a given scale (e.g., from 0 to 10) or with a letter (e.g., from A to F) corresponding to the 

percentage of a student’s success, is assigned in order to characterize his/her performance. However, 

this crisp characterization, based on principles of the bivalent logic (yes-no), although it is the one 

usually applied in practice, it is not probably the most suitable to determine a student’s performance. In 

fact, the teacher can be never absolutely sure about a particular numerical grade characterizing the 

student’s abilities and skills. In contrast, fuzzy logic, due to its nature of including multiple values, 

offers a wider and richer field of resources for this purpose. Therefore, the application of fuzzy logic 

that we shall attempt in this section seems to be a valuable tool for developing a framework for the 

students’ assessment. 

Let us consider a class of n students, n 1  and let us assume that the teacher wants to assess the 

following students’ characteristics: S1 = knowledge of a subject matter, S2 = problem solving related to 

this subject matter and S3 = ability to adapt properly the already existing knowledge for use in 

analogous similar cases (analogical reasoning; of course the teacher could choose characteristics 

different for those mentioned here and may be more than three in total). However, the more are the 

characteristics chosen for assessment, the more complicated (technically) becomes our model.). 

Denote by a, b, c, d, and e the linguistic labels (fuzzy expressions) of very low, low, intermediate, high 

and very high success respectively of a student in each of the Sis and set U = {a, b, c, d, e}.  

We are going to attach to each students’ characteristic Si, i = 1, 2, 3, a fuzzy subset, Ai of U. For 

this, if nia, nib, nic, nid and nie denote the number of students that faced very low, low, intermediate, high 

and very high success with respect to Si respectively, we define the membership function mAi for each x 

in U, as follows:  
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In fact, if one wanted to apply probabilistic standards in measuring the degree of the students’ 

success at each stage of the process, then he/she should use the relative frequencies ixn

n
. Nevertheless, 

such an action would be highly questionable, since the nix’s are obtained with respect to the linguist 

labels of U, which are fuzzy expressions by themselves. Therefore, the application of a fuzzy approach 

by using membership degrees instead of probabilities seems to be the most suitable for this case. 
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However, as it is well known, the membership function is usually defined empirically in terms of 

logical or/and statistical data. In our case the above definition of 
iAm seems to be compatible with 

common sense. Then, the fuzzy subset Ai of U corresponding to Si has the form: 

Ai = {(x, mAi(x)): xU}, i = 1, 2, 3. 

In order to represent all possible students’ profiles (overall states) with respect to the assessing 

process we consider a fuzzy relation, say R, in U
3
 (i.e., a fuzzy subset of U

3
) of the form: 

R = {(s, mR(s)): s = (x, y, z)   U
3
}. 

For determining properly the membership function mR we give the following definition:  

A profile s = (x, y, z), with x, y, z in U, is said to be well ordered if x corresponds to a 

degree of success equal or greater than y and y corresponds to a degree of success equal 

or greater than z.  

For example, (c, c, a) is a well ordered profile, while (b, a, c) is not.  

We define now the membership degree of a profile s to be mR(s) = m
1A
(x)m

2A
(y)m

3A
(z), if s is 

well ordered, and 0 otherwise. In fact, if for example the profile (b, a, c) possessed a nonzero 

membership degree, how it could be possible for a student, who has failed at the problem solving 

stage, to perform satisfactorily at the stage of analogical reasoning, where he/she has to adapt the 

existing knowledge for solving problems related to analogous similar cases?  

Next, for reasons of brevity, we shall write ms instead of mR(s). Then the probability ps of the 

profile s is defined in a way analogous to crisp data, i.e., by ps = 

3

s

s

s U

m

m



. We define also the possibility 

rs of s to be rs = 
}max{ s

s

m

m , where max {ms} denotes the maximal value of ms for all s in U
3
. In other 

words the possibility of s expresses the “relative membership degree” of s with respect to max {ms}. 

From the above two definitions it becomes evident that ps < rs for all s in 3U , which is compatible to 

the common logic. In fact, whatever is probable it is also possible, but whatever is possible need not be 

very probable. 

Assume now that one wants to study the combined results of the performance of k different groups 

of students, k2. For this, we introduce the fuzzy variables A1(t), A2(t) and A3(t) with t = 1, 2,…, k. The 

values of these variables represent fuzzy subsets of U corresponding to the students’ characteristics 

under assessment for each of the k groups; e.g., A1(2) represents the fuzzy subset of U corresponding to 

the knowledge of a subject matter (characteristic S1) for the second group (t = 2). Obviously, in order 

to measure the degree of evidence of the combined results of the k groups, it is necessary to define the 

probability p(s) and the possibility r(s) of each profile s with respect to the membership degrees of s 

for all groups. For this reason we introduce the pseudo-frequencies f(s) = ms(1)+ms(2)+…. +ms(k) and 

we define the probability and possibility of a profile s by p(s) = 

3

( )

( )
s U

f s

f s



 and r(s) = 

)}(max{

)(

sf

sf  

respectively, where max{f(s)} denotes the maximal pseudo-frequency. The same method could be 

applied when one wants to study the combined results of k different assessments of the same  

student group.  
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The above model gives, through the calculation of probabilities and possibilities of all students’ 

profiles, a quantitative/qualitative view of their realistic performance. 

3. Defuzzification Methods  

Defuzzification is the process of producing a quantifiable result in fuzzy logic given fuzzy sets and 

corresponding membership degrees. Here we shall apply two different approaches for this purpose and 

we shall compare the corresponding results. 

3.1. The Centroid Method 

A common and useful defuzzification technique is the method of the center of gravity, usually 

referred as the centroid method. According to this method, given a fuzzy subset A = {(x, m(x)): xU} 

of the universal set U of the discourse with membership function  

m: U  [0, 1], we correspond to each xU an interval of values from a prefixed numerical 

distribution, which actually means that we replace U with a set of real intervals. Then, we construct the 

graph F of the membership function y = m(x).There is a commonly used in fuzzy logic approach to 

measure performance with the pair of numbers (xc, yc) as the coordinates of the center of gravity, say 

Fc, of the graph F, which we can calculate using the following well-known (e.g., see [8]) formulas:  

,F F
c c

F F

xdxdy ydxdy

x y
dxdy dxdy

 
 

 
 

(1) 

Subbotin et al. adapted the centroid method for use with our fuzzy model for the process of  

learning [9] and they have applied it on comparing students’ mathematical learning abilities [10] and 

for measuring the scaffolding (assistance) effectiveness provided by the teacher to students [11]. More 

recently, together with Prof. Subbotin we have applied this method in measuring the effectiveness of 

Case-Based Reasoning Systems [12] and of students’ Analogical Reasoning skills [13]. 

Here we shall apply the centroid method as a defuzzification technique for the student groups’ 

assessment model developed in the previous section. For this, we characterize a student’s performance 

as very low (a) if y  [0, 1), as low (b) if y   [1, 2), as intermediate (c) if y  [2, 3), as high (d) if  

y  [3, 4) and as very high (e) if y   [4, 5) respectively (these characterizations are usually awarded 

on the basis of the reports prepared by the students during the course and the results of the progress 

exams (if any) and the final exam). In this case the graph F of the corresponding fuzzy subset of U is 

the bar graph of Figure 1 consisting of 5 rectangles, say Fi, i = 1,2,3,4,5, having the lengths of their 

sides on the x axis equal to 1.  
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Figure 1. Bar graphical data representation. 
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Therefore, Formulas (1) are transformed into the following form: 
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Normalizing our fuzzy data by dividing each m(x), x   U, with the sum of all membership degrees 

we can assume without loss of the generality that y1 + y2 + y3 + y4 + y5 = 1. Therefore, we can write: 

 

 

1 2 3 4 5

2 2 2 2 2

1 2 3 4 5

1
3 5 7 9 ,

2

1

2

c

c

x y y y y y

y y y y y y

    

    
 

(2) 

with yi = 

Ux

i

xm

xm

)(

)(
, where x 1  = a, x2 = b, x3 = c, x4 = d and x5 = e. 

But 0   (y1 − y2)
2
 = y1

2
 + y2

2
 − 2y1y2, therefore y1

2
 + y2

2
   2y1y2, with the equality holding if, and 

only if, y1 = y2. In the same way one finds that y1
2
+y3

2
   2y1y3, and so on. Hence it is easy to check 

that (y1 + y2 + y3 + y4 + y5)
2
   5(y1

2
 + y2

2
 + y3

2
 + y4

2
 + y5

2
), with the equality holding if, and only if y1 

= y2=y3 = y4 = y5. However, y1 + y2 + y3 + y4 + y5 = 1; therefore, 1   5(y1
2
 + y2

2
 + y3

2
 + y4

2
 + y5

2
) (3), 

with the equality holding if, and only if y1 = y2 = y3 = y4 = y5 =
5

1  . In this case the first of Formulas (2) 

gives that xc = 
2

5
.  

Further, combining the Inequality (3) with the second of Formulas (2) one finds that 1  10yc, or  

yc   
10

1

 
. Therefore, the unique minimum for yc corresponds to the center of gravity Fm (

2

5 ,
10

1 ). 
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The ideal case is when y1 = y2 = y3 = y4 = 0 and y5 = 1. Then from Formulas (2) we get that xc = 
2

9  

and yc = 
2

1
.Therefore the center of gravity in the ideal case is the point Fi (

2

9 ,
2

1 ). On the other hand 

the worst case is when y1 = 1 and y2 = y3 = y4 = y5 = 0. Then for formulas (2) we find that the center 

of gravity is the point Fw (
2

1 ,
2

1 ). Thus, the “area” where the center of gravity Fc lies is represented by 

the triangle Fw Fm Fi of Figure 2. 

Figure 2. Graphical representation of the “area” of the center of gravity. 

 

Then from elementary geometric considerations it follows that for two groups of students with the 

same xc   2.5 the group having the center of gravity which is situated closer to Fi is the group with the 

higher yc; and for two groups with the same xc < 2.5 the group having the center of gravity which is 

situated farther to Fw is the group with the lower yc. Based on the above considerations we formulate 

our criterion for comparing the groups’ performances as follows: 

 Among two or more groups the group with the biggest xc performs better. 

 If two or more groups have the same xc  2.5, then the group with the higher yc performs better. 

 If two or more groups have the same xc < 2.5, then the group with the lower yc performs better. 

3.2. The Group’s Uncertainty 

It is well known that the amount of information obtained by an action can be measured by the 

reduction of uncertainty resulting from this action. Accordingly a system’s uncertainty is connected to 

its capacity in obtaining relevant information. Therefore, a measure of uncertainty could be adopted as 

an alternative defuzzification technique for the student groups’ assessment model developed in the 

previous section. 

Within the domain of possibility theory uncertainty consists of strife (or discord), which expresses 

conflicts among the various sets of alternatives, and non-specificity (or imprecision), which indicates 

that some alternatives are left unspecified, i.e., it expresses conflicts among the sizes (cardinalities) of 

the various sets of alternatives ([14]; p. 28). 

Strife is measured by the function ST(r) on the ordered possibility distribution 

r:r1 = 1   r2 …….  rrn  rrn+1 of a group of students defined by  
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Similarly, non-specificity is measured by the function Ν(r) = 1
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The sum T(r) = ST(r) + N(r) is a measure of the total possibilistic uncertainty for ordered possibility 

distributions. The lower is the value of T(r), which means greater reduction of the initially existing 

uncertainty, the better the system’s performance.  

We must emphasize that the two defuzzification methods presented above treat differently the idea 

of a group’s performance. In fact, the weighted average plays the main role in the centroid method, i.e., 

the result of the group’s performance close to its ideal performance has much more weight than the one 

close to the lower end. In other words, while the measure of uncertainty is dealing with the average 

group’s performance, the “centroid” method is mostly looking at the quality of the performance. 

Consequently, some differences could appear in evaluating a group’s performance by these two 

different approaches. Therefore, it is argued that a combined use of them could help the user in finding 

the ideal profile of the group’s performance according to his/her personal criteria of goals. 

There are also other defuzzification techniques in use, such as the calculation of the group’s  

total probabilistic uncertainty, i.e., the classical Shannon’s entropy expressed in terms of the 

Dempster-Shafer mathematical theory of evidence for use in a fuzzy environment (e.g., see [4]), the 

calculation of the group’s ambiguity which is a generalization of the Shannon’s entropy in possibility 

theory that captures both strife and non specificity (e.g., see [15]), etc. 

Next we give an example illustrating our results in practice. 

EXAMPLE: The following data was obtained by assessing the mathematical skills of two groups of 

students of the Technological Educational Institute of Patras, Greece being at their first term of studies: 

First group (35 students from the School of Technological Applications, i.e., future engineers)  

A11 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0..25), A12 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0)}, 

A13 = {(a, 0.25),(b, 0.25),(c, 0.25),(d,0),(e,0)} 

According to the above notation the first index of Aij denotes the group (i = 1,2) and the second 

index denotes the corresponding students’ characteristic Sj (j = 1,2,3). We calculated the membership 

degrees of the 5
3
 (ordered samples with replacement of 3 objects taken from 5) in total possible 

students’ profiles as it is described in Section 2 (see column of ms(1) in Table 1). For example, for the 

profile s = (c, c, a) one finds that ms = 0.5 × 0 .5 × 0.25 = 0.06225. From the values of the column of 

ms(1) it turns out that the maximal membership degree of students’ profiles is 0.06225. Therefore, the 

possibility of each s in U
3
 is given by rs = 

0.06225

sm
. The possibilities of the students’ profiles are 

presented in column of rs(1) of Table 1. One could also calculate the probabilities of the students’ 

profiles using the formula for ps given in section 2. However, according to Shackle [16] and many 

other researchers after him, human cognition is better presented by possibility rather than by 

probability theory. Therefore, adopting this view, we considered that the calculation of the 

probabilities was not necessary. 
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Table 1. Profiles with non zero membership degrees. 

A1 A2 A3 ms(1) rs(1) ms(2) rs(2) f(s) r(s) 

b b b 0 0 0.016 0.258 0.016 0.129 

b b a 0 0 0.016 0.258 0.016 0.129 

b a a 0 0 0.016 0.258 0.016 0.129 

c c c 0.062 1 0.062 1 0.124 1 

c c a 0.062 1 0.062 1 0.124 1 

c c b 0 0 0.031 0.5 0.031 0.25 

c a a 0 0 0.031 0.5 0.031 0.25 

c b a 0 0 0.031 0.5 0.031 0.25 

c b b 0 0 0.031 0.5 0.031 0.25 

d d a 0.016 0.258 0 0 0.016 0.129 

d d b 0.016 0.258 0 0 0.016 0.129 

d d c 0.016 0.258 0 0 0.016 0.129 

d a a 0 0 0.016 0.258 0.016 0.129 

d b a 0 0 0.016 0.258 0.016 0.129 

d b b 0 0 0.016 0.258 0.016 0.129 

d c a 0.031 0.5 0.031 0.5 0.062 0.5 

d c b 0.031 0.5 0.031 0.5 0.062 0.5 

d c c 0.031 0.5 0.031 0.5 0.062 0.5 

e c a 0.031 0.5 0 0 0.031 0.25 

e c b 0.031 0.5 0 0 0.031 0.25 

e c c 0.031 0.5 0 0 0.031 0.25 

e d a 0.016 0.258 0 0 0.016 0.129 

e d b 0.016 0.258 0 0 0.016 0.129 

e d c 0.016 0.258 0 0 0.016 0.129 

The outcomes of Table 1 are with accuracy up to the third decimal point. 

Second group (50 students from the School of Management and Economics).  

A21 = {(a, 0),(b, 0.25),(c, 0.5),(d, 0.25),(e, 0)}, A22={(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e, 0)} 

A23 = {(a, 0.25),(b, 0.25),(c, 0.25),(d, 0),(e, 0)}. 

The membership degrees and the possibilities of students’ profiles are presented in columns of 

ms(2) and rs(2) of Table 1 respectively.  

In order to study the combined results of the two groups’ performance we also calculated the 

pseudo-frequencies f(s) = ms(1) + ms(2) and the combined possibilities of all profiles presented in the 

last two columns of Table 1.  

We compare now the two groups’ performance by applying the centroid method. For the first 

characteristic (knowledge of the subject matter) we have:  

A11 = {(a, 0),(b, 0),(c, 0.5),(d, 0.25),(e, 0.25), A21= {(a, 0),(b, 0.25),(c, 0.5),(d, 0.25),(e, 0)} 

and respectively 

xc11 = 
2

1 (5 x 0.5 + 7 x 0.25 + 9 x 0.25) = 3.25, xc21 = 
2

1 (3 x 0.25 + 5 x 0.5 + 7 x 0.25) = 2.25 
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Thus, by our criterion the first group demonstrates better performance. 

For the second characteristic (problem solving abilities) we have:  

A12 = {(a, 0),(b, 0),(c, 0.5),(d, 0.25),(e, 0)}, A22 = {(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e, 0)}. 

Normalizing the membership degrees in the first of the above fuzzy subsets of U (0.5:0.75 ≈ 0.67 

and 0.25:0.75 ≈ 0.33) we get A12 = {(a, 0),(b, 0),(c, 0.67),(d, 0.33),(e, 0)}. Therefore 

xc12 = 
2

1 (5 × 0.67 + 7 × 0.33) = 2.83, xc22 = 
2

1 (0.25 + 3 × 0.25 + 5 × 0.25) = 1.125  

By our criterion, the first group again demonstrates a significantly better performance. 

Finally, for the third characteristic (analogical reasoning) we have 

A13 = A23 = {(a, 0.25),(b, 0.25),(c, 0.25),(d, 0),(e, 0)}, 

which obviously means that in this case the performances of both groups are identical.  

Based on our calculations we can conclude that the first group demonstrated a significantly better 

performance concerning the knowledge of the subject matter and problem solving, but performed 

identically with the second one concerning analogical reasoning.  

Calculating the possibilities of all profiles (column of rs(1) in Table 1) one finds that the ordered 

possibility distribution for the first student group is:  

r: r1 = r2 = 1, r3 = r4 = r5 = r6 = r7 = r8 = 0,5, r9 = r10 = r11= r12 = r13= r14 = 0,258,  

r15 = r16 = …….. = r125 = 0. 

Thus, with the help of a calculator one finds that  

ST(r) = 

14

1

2

1

1
[ ( ) log ]

log 2
i i i

i

j

j

i
r r

r









 
301.0

1
(0.5

2 8 14
log 0.242log 0.258log )

2 5 6.548
    

 (3.32). (0.242).( 0.204) + (0.258) . 0.33≈0.445.  

Also the group’s non-specificity is Ν(r) = 

14

1

2

1
[ ( ) log ]

log 2
i i

i

r r i



   

≈3.32(0.5 log 2 0.242log8 0.258log14)   ≈ 2.208. Therefore we finally have that T(r) ≈ 2,653  

The ordered possibility distribution for the second student group (column of rs(2) in Table 1) is:  

r: r1 = r2 = 1, r3 = r4= r5 = r6 = r7 = r8 = 0,5, r9 = r10 = r11 = r12 = r13 = 0,258, r14 = r15 =…….= r125 = 0 

and working in the same way as above one finds that T(r) = 0.432 + 2.179 = 2.611. 

Therefore, since 2.611 < 2.653, it turns out that the second group had in general a slightly better 

average performance than the first one. In contrast, according to the results of the centroid 

defuzzification method the first group demonstrated a significantly better performance concerning the 

knowledge of the subject mater and the problem solving and performed identically with the second one 

concerning the analogical reasoning. The reasons causing these differences have already been 

explained above. 
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4. Students’ Individual Assessment  

The outputs of our fuzzy model developed above can be used not only for assessing the 

performance of student groups’, but also for the students’ individual assessment. In fact, if n = 1 (we 

recall that n denotes the number of students’ of the group under study), then from the definition of the 

membership function m given in Section 2 it becomes evident that in each Ai, i = 1, 2, 3, there exists a 

unique element x of U with membership degree 1, while all the others have membership degree 0. The 

centroid method is trivially applicable in this marginal case.  

For example, if A11 = {(a, 0), (b, 0), (c,0), (d,1), (e,0)} and A21 = {(a, 0), (b, 0), (c,1), (d,0), (e,0)}, 

then obviously the first student demonstrates a better performance with respect to the knowledge 

acquisition (characteristic S1). This is crossed by the centroid method, since xc 11 = 
7

2
 and xc 21 = 

5

2
. 

As a consequence of the above situation (n = 1), there exists a unique student profile s with ms = 1, 

while all the others have membership degree 0. In other words, each student is characterized in this 

case by a unique profile, which gives us the requested information about his/her performance. For 

example, if (c, b, a) and (c, b, b) are the characteristic profiles for students x and y respectively, then 

clearly y demonstrates a better performance than x. In contrast, if (d, b, b) and (c, c, b) are the 

corresponding profiles, then x demonstrates a better performance than y concerning the knowledge 

acquisition, but y demonstrates a better performance than x concerning the problem solving skills 

(characteristic S2). Mathematically speaking this means that the students’ characteristic profiles define 

a relationship of partial order among students’ with respect to their performance.  

A. Jones developed a fuzzy model to the field of Education involving several theoretical constructs 

related to assessment, amongst which is a technique for assessing the deviation of a student’s 

knowledge with respect to the teacher’s knowledge, which is taken as a reference [17,18]. Here we 

shall present this technique, properly adapted with respect to our fuzzy model, as an alternative fuzzy 

method for the students’ individual assessment.  

Let X = {S1, S2, S3} be the set of the students’ characteristics under assessment that we have 

considered in section 2. Then a fuzzy subset of X of the form {(S1, m(S1)), (S2, m(S2)), (S3, m(S3)}can 

be assigned to each student, where the membership function m takes the values 0, 0.25, 0.5, 0.75, 1 

according to the level of the student’s performance. The teacher’s fuzzy measurement is always equal 

to 1, which means that the fuzzy subset of X corresponding to the teacher is {(S1, 1), (S2, 1), (S3, 1)}.  

Then the fuzzy deviation of the student i with respect to the teacher is defined to be the fuzzy subset 

Di = {(S1,1-m(S1)), (S2, 1-m(S2)), (S3,1-m(S3)} of X.  

This assessment by reference to the teacher provides us with the ideal student as the one with nil 

deviation in all his/her components and it defines a relationship of partial order among students’. The 

following example illustrates this theoretical framework in practice.  

EXAMPLE: We reconsider the group of 35 students of the School of Technological Applications of 

the Technological Educational Institute of Patras, Greece of our example of section 2. In assessing the 

students’ individual performance by applying the A. Jones technique we found the following types of 

deviations with respect to the teacher: 

D1 = {(S1, 0.75), (S2, 0.75), (S3, 1)} (this type of deviation was related with 2 students) 

D2 = {(S1, 0.5), (S2, 1), (S3, 1)} (related with 7 students) 
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D3 = {(S1, 0.5), (S2, 0.75), (S3, 1)} (related with 5 students) 

D4 = {(S1, 0.5), (S2, 0.75), (S3, 0.75)} (related with 4 students) 

D5 = {(S1, 0.25), (S2, 0.5), (S3, 0.75)} (related with 3 students) 

D6 = {(S1, 0.25), (S2, 0.25), (S3, 0.5)} (related with 6 students) 

D7 = {(S1, 0), (S2, 0.5), (S3, 0.75)} (related with 1 student) 

D8 = {(S1, 0), (S2, 0.5), (S3, 0.5)} (related with 2 students) 

D9 = {(S1, 0), (S2, 0.25), (S3, 0.5)} (related with 1 student) 

D10 = {(S1, 0), (S2, 0.25), (S3, 025)} (related with 3 students) 

D11 = {(S1, 0), (S2, 0), (S3, 0.25)} (related with 1 student) 

On comparing the above types of students’ deviations it becomes evident that the students 

possessing the type D3 of deviation demonstrate a better performance than those possessing the type 

D1, the students possessing the type D4 demonstrate a better performance than those possessing the 

type D3 and so on. However, the students possessing the type D1 demonstrate a better performance 

with respect to problem solving than those possessing the type D2, who demonstrate a better 

performance with respect to the knowledge acquisition. Similarly, the students possessing the type D6 

demonstrate a better performance with respect to problem solving and analogical reasoning than those 

possessing the type D7, who demonstrate a better performance with respect to the knowledge 

acquisition. In other words, this type of assessment by reference to the teacher defines a relationship of 

partial order among students’ with respect to their performance. 

Notice that the teacher may put a target for his/her class and may establish didactic strategies in 

order to achieve it. For example he/she may ask for the deviation, say d, to be 0.25 0.5d  , for  

all students and all characteristics. The above fuzzy framework could help him/her to determine  

the divergences with respect to this target and hence readapt his/her didactic plans in order to  

diminish them.  

5. Conclusions and Discussion  

The following conclusions can be drawn from those presented in this paper: 

 Fuzzy logic, due to its nature of including multiple values, offers a wider and richer field of 

resources for assessing the students’ performance than the classical crisp characterization does 

by assigning a mark to each student, expressed either with a numerical value within a given 

scale or with a letter corresponding to the percentage of the student’s success.  

 In this article we developed a fuzzy model for assessing student groups’ knowledge and skills, 

in which the students’ characteristics under assessment are represented as fuzzy subsets of a set 

of linguistic labels characterizing their performance. 

 The group’s total possibilistic uncertainty and the coordinates of the center of gravity of the 

graph of the membership function involved were used as defuzzification methods in converting 

our fuzzy outputs to a crisp number.  

 Techniques of assessing the students’ performance individually were also discussed and 

examples were presented illustrating the use of our results in practice.  
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Our model is actually a proper adaptation of a more general fuzzy model developed in earlier papers 

to represent in an effective way a system’s operation in situations characterized by a degree of 

vagueness and/or uncertainty. Our plans for future research include among the others the possible 

extension of this model for the description of more such situations in Education and in other human 

activities (human cognition, artificial intelligence, management, etc.).  
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