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Abstract: The localization of the nodes in wireless sensor networks is essential in establishing
effective communication among different devices connected, within the Internet of Things. This
paper proposes a novel method to accurately determine the position and distance of the wireless
sensors linked in a local network. The method utilizes the signal strength received at the target node
to identify its location in the localized grid system. The Most Valuable Player Algorithm is used
to solve the localization problem. Initially, the algorithm is implemented on four test cases with
a varying number of sensor nodes to display its robustness under different network occupancies.
Afterward, the study is extended to incorporate actual readings from both indoor and outdoor
environments. The results display higher accuracy in the localization of unknown sensor nodes than
previously reported.

Keywords: range-based localization; most valuable player algorithm; received signal strength
indicator; internet of things

1. Introduction

In the realm of networking and communication, wireless sensor networks (WSN)
play a pivotal role in establishing connections among disparate devices situated at dis-
tant locations. Usually, hundreds of wireless sensors share a network to communicate
useful information with each other. Therefore, WSNs are becoming crucial, supported by
increasing trends of digitalization [1]. This lays down the cornerstone of the concept of
the Internet of Things (IoT), which is considered to be the next step in a digital society,
whereby, multi-purpose devices share a networking platform to communicate with each
other in a common language [2,3]. Throughout a WSN, sensor nodes are continuously
transmitting and receiving the information from the base station and are widely used in the
secured networks serving military, healthcare, environment monitoring, and smart home
systems [4]. These applications often require localizing the node by determining both the
distance and coordinates from a known node or router. The purpose of ascertaining the
location of a specific node location is to track the information route while managing and
optimizing network latency. Therefore, the unavailability of localization data ends up in
the deteriorated performance and control of WSN for a specific application.

In the process of localization, the position of the node with the unknown or consis-
tently changing position (target node) is determined by utilizing the signals from nearby
reference nodes, usually referred to as anchors. The localization technique aims to de-
termine the coordinate vectors of the target node. Therefore, the localization technique
is carried out in two steps: (i) Estimating the distance of the target node from the refer-
ence node; (ii) determining geographical coordinates using the estimated distance and
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known coordinates of anchors. In WSN, various methods are used to carry out localization
including the range-free method and range-based method [5].

Hop count-based method [6] and the fingerprint algorithm [7] are examples of a
range-free method. Usually, such methods are cost-effective as they utilize topological
information but exhibit low accuracy. They skip the step of distance estimation as an
intermediate step and directly determine the coordinates. The method used in [6] is easy to
implement and relatively simple but the localization error increases with the distance. In
the fingerprint algorithm, the data are recorded for the predefined and known locations
and the unknown locations are estimated offline by matching the measured values with
those recorded earlier for the known cases. Two indoor localization algorithms, namely
Comparative Received Signal Strength (CRSS) Algorithm and vector algorithm, have been
compared in [7]. The effects of operating frequency, number of access points, and map
resolution have been investigated for both cases to conclude the superior performance of
vector algorithm as CRSS suffers from ambiguity and needs more access points and higher
frequency. A modified version of k-Nearest Neighbor algorithm has been proposed in [8]
which uses the signal matching approach, on a single test case, to claim an increase in the
accuracy of signal fingerprint positions.

Range-based methods, on the other hand, estimates the distance between the nodes.
Global positioning system (GPS) [9], time difference of arrival (TDoA) [10,11], time of
arrival (ToA) [12], acoustic energy [13], angle of arrival (AoA) [14], and received signal
strength indicator (RSSI) [15] are the most common range-based methods used for distance
estimation. For the line-of-sight (LoS) applications operating in the outdoors, GPS is
the most widely used method despite being expensive, requiring more hardware, and
consuming high power. Moreover, such applications are beyond the scope of WSNs under
consideration in this study. TDoA-based distance estimation is sensitive to synchronism
among the nodes of interest. Moreover, to ensure this synchronism, two signals transmitted
at different speeds are required, making it an inefficient method in terms of both energy
and cost. Similarly, for ToA, high-resolution clocks are required to determine the exact time
of arrival. Moreover, it needs the exact speed of signal propagation. AoA is a directional
distance estimation method and therefore, relies on the angle of the antenna receiving the
incoming signal, resulting in increased cost of the hardware. In contrast to other methods,
RSSI-based localization is independent of the antenna array, synchronization requirements,
and any other extra hardware, and hence it is selected to carry out the localization of target
nodes in this research work.

The signal strength received at a node depends on multiple factors including the
power of the transmitted signal and the path terrain. However, this work will take into
consideration the impact of path loss and the distance between two nodes [16]. The path
loss is substantiated by reflection, diffraction, and scattering of the signal [17]. Moreover,
the propagation path also incurs a certain loss in signal strength. RSSI is the measure of
signal power received at any node and is measured in dBm. Many factors influence the
RSSI [18–20] at a certain node including the relative movements of transmitter and/or
receiver. It must be noted that even if devices stay static, the motion of objects in the
propagation environment may also affect the RSSI at any instant [21,22]. The multivariate
dependencies of RSSI inhibit the formation of a direct relationship with the distance of the
nodes emanating signals. Therefore, an accurate and systematic methodology is required
to determine both the distance and coordinates of unknown nodes. The localization of the
target nodes is crucial in minimizing network latency by using the optimal path for a data
package transfer throughout the network.

In this paper, a relatively new approach, Most Valuable Player Algorithm (MVPA),
is applied to localize a sensor node given only RSSI. MVPA is a sports competition-based
optimization algorithm, well-ranked in various benchmarking studies. In the past, it
was used in energy-management systems and electromagnetic wave theory. However,
despite its superior performance, it has not been used in sensor localization in a WSN
so far. This work not only explains the flow of the proposed approach but also opens an
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avenue for future research of how it may be applied to other similar problems. It applies
a two-fold technique to localize the target sensor node. First, the relationship between
RSSI and distance from reference to target node is ascertained by developing a nonlinear
regression model. In the second stage, MVPA is used to convert the distance data into
(x, y) coordinates of a 2-dimensional plane. Four test cases with a different number of
nodes reflecting variable network occupancy are studied. The results obtained using
MVPA are compared with renowned classical techniques, whereby the proposed approach
outperforms other techniques in terms of accuracy and parametric dependence. Mean
square error sees a reduction by a factor of 10 for case 3, and case 4 when contrasted with the
second-best performing algorithm, reflecting the superiority of MVPA. To demonstrate the
improvement on a real-world example, the experimental set-up of [23] is reused followed
by comparative discussion indicating higher coordinate estimation accuracy with MVPA
than other contemporary algorithms. The remainder of this paper is organized as follows.
The proposed approach is described in Section 2. The simulation tests along with the
experimental study are combined in Section 3. Finally, conclusions are drawn in Section 4.

2. Proposed Approach
2.1. A. Description

Very often a WSN, consisting of several nodes, is dispersed in a geographical area.
However, in some applications, the location (the x and y coordinates in 2d) of these nodes
called target is needed. Along with these target nodes, usually, there are some reference
nodes with known locations or coordinates. In this work, routers play the role of reference
nodes while end device nodes play the role of target nodes. Therefore, the objective of the
proposed approach is to find the location of target nodes (x and y coordinates) based on the
distance estimation (estimated from RSSI) knowing the locations of the reference nodes.

The flowchart of the proposed approach is given in Figure 1. It starts by estimating the
distances of different target nodes with respect to the reference nodes based on measured
RSSI. Measurements are carried out with the loop-infinite option to cater to infinite packet
transmission [23]. If Pt represents the transmitted power and PL(d) denotes the path loss
power at distance d in dBm, then RSSI is given by:

RSSI = Pt − PL(d) (1)

Here, PL(d) can be represented by Log-Normal Shadowing Model (LNSM) in terms
of path loss at a known point d0, PL(d0), path loss exponent, n, and zero-mean Gaussian
random variable with σ standard deviation, Xσ, as below:

PL(d) = PL(d0) + 10nlog
(

d
d0

)
+ Xσ (2)

Combining (1) and (2) relates RSSI, in dBm with the distance between the nodes.

RSSI = Pt − PL(d0) + 10nlog
(

d
d0

)
+ Xσ (3)

The nonlinear regression model is used to estimate the distances from (3). Once all
distances are obtained using regression, it is pertinent to use a systematic way to provide
all distances to the algorithm. The matrix, named DistanceRT, combines all distances in
a closed-form. Hence, it becomes easier for the algorithm to perform matrix operations
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making the approach speed efficient. All distances, denoted by, dij, between the reference
node i and the target node j, are restructured in a matrix as follows:

DistanceRT =


d11 d12 . . . d1n
d21 d22 . . . d2n

...
...

. . .
...

dm1 dm1 . . . dmn

 (4)

In (4), n is the number of target nodes and m is the number of reference nodes.
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Figure 1. Flowchart of the proposed approach.

After that, the MVPA is used to optimize the problem at hand. In other words, the
MVPA is used to determine the location (x and y coordinates) of target nodes by minimizing
the following objective function:

OF = 1
n×m

∣∣d11 − d′11

∣∣+ ∣∣d12 − d′12

∣∣+ . . .
∣∣d1n − d′1n

∣∣+ ∣∣d21 − d′21

∣∣+ |d22 − d′22|+ . . . + |d2n − d′2n|
+
∣∣dm1 − d′m1

∣∣+ |dm2 − d′m2|+ . . . + |dmn − d′mn|
(5)
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where dij is the Euclidian distance between reference node i and target node j estimated
using RSSI and d′ij is the Euclidian distance between reference node i and target node j
calculated using the MVPA and it is expressed as follows:

d′ij =
√(

xi − xj
)2

+
(
yi − yj

)2 (6)

where xi and yi are the location of the target node i to be calculated by the optimization
process (i.e., design variables).

The objective function can be simplified in a more compact form as follows:

OF =
1

n×m

m

∑
i=1

 n

∑
j = 1

∣∣∣dij − d′ij
∣∣∣
 (7)

A matrix containing all possible connection distances, d′ij, of a specific WSN form a
solution set. Several of such solutions form a single team and then similar teams compete
together based on the objective function of (7), as detailed in Algorithm 1 in the next section.
The number of teams, number of players, and number of fixtures are hyperparameters
of the algorithm and are usually chosen during the execution phase of the algorithm by
trial-and-error.

2.2. B. Most Valuable Player Algorithm (MVPA)

A. General description
MVPA is one of the newest modern optimization algorithms [24]. It is inspired by

sports competitions. It is applied to various fields with always excellent results. In [24]
it was applied to a set of mathematical functions and compared with 13 optimization
algorithms in terms of overall success to find the global optimum and the number of
functions evaluations; it was found to be the best one. In [25], a comparative study was
carried out between modern optimization algorithms inspired by sports events including
the MVPA. The MVPA was ranked first for unimodal problems and equally ranked first
with two other algorithms for multimodal problems. In [26], it was applied in the field
of electromagnetics. In [27] it was used for efficient energy management in a microgrid
with intermittent renewable energy and storage sources. In [28] the MVPA was applied
to solve the direction overcurrent relays coordination problem. In [29] a binary version of
the MVPA was developed and implemented to optimize wind farm layouts considering
obstacles. In [30] an improved version of the MVPA by doubling the training mechanism
was proposed and compared with other optimization algorithms for engineering design
problems. In [31] an enhanced version of the MVPA was proposed and applied to the
optimal power flow problem.

The pseudocode of the MVPA used in this paper is given in Algorithm 1. The MVPA
starts by generating a random population of players in a given search space (Line 3 in
Algorithm 1). Then for a certain number of fixtures, these players will compete collectively (in
teams to win the league championship) and individually to win the trophy of the best player
called in some sports like basketball the Most Valuable Player (MVP). This competition (lines
5 to 15 in Algorithm 1) will improve the skills of the players until the optimization problem
at hand is solved. In other words, the solutions are improved iteratively by minimizing
the objective function of Equation (5). Other steps are added to the MVPA to improve its
performance like the application of greediness and application of elitism in addition to the
diversification of players. More details about the MVPA can be found in [24].

B. Context description
In the previous section, we have described the MVPA in its general form. The MVPA

is used in this paper to solve the optimization problem of estimating the locations of target
nodes formulated in the previous sections. To do so, some random locations (also called
solutions and using the MVPA terminology called players and teams) are first generated
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in the initialization phase. Here it is worth mentioning that a solution is represented by a
vector of xi and yi of all target nodes. Therefore, if there are N target nodes any solution
is represented by a vector of 2× N values. For instance, if there are three target nodes a
solution is represented as follows:

Solution = [x1, x2, x3, y1, y2, y3] (8)

where: (x1, y1), (x2, y2), and (x3, y3) are the coordinates of target node #1, targe node #2,
and targe node #3, respectively.

After that, these solutions move inside the search space of the problem in hand
until the best locations are found (using the MVPA terminology this is achieved in the
competition phase where the aim is to improve the solutions). Other numerical stages and
phases are then performed on the solutions to improve them as aforesaid. This process
is iterative, i.e., the process is repeated until a termination criterion is fulfilled (using the
MVPA terminology the algorithm iterates MaxNFix times). In the end, the best solution
called the MVP is given as the output. In our case, the best solution will be the best locations
for all the target nodes.

Algorithm 1. MVPA pseudocode.

1 Inputs
ObjFunction (objective function), ProblemSize (dimension of the problem),
PlayersSize (number of players), TeamsSize (number of teams) and MaxNFix
(maximum number of fixtures)

2 Output MVP (best solution)
3 Initialization
4 for fixture=1: MaxNFix
5 for i = 1:TeamsSize
6 TEAMi = Select the team number i from the league’s teams
7 TEAMj = Randomly select another team j from the league’s teams where j 6= i

8
TEAMi = TEAMi + rand× (FranchisePlayeri − TEAMi)

+2× rand × (MVP− TEAMi)
9 if TEAMi wins against TEAMj

10 TEAMi = TEAMi + rand×
(

TEAMi − FranchisePlayerj

)
11 else
12 TEAMi = TEAMi + rand×

(
FranchisePlayerj − TEAMi

)
13 end if
14 Check if there are players outside the search space
15 end for
16 Application of greediness
17 Application of elitism
18 Diversification
19 end for

3. Application and Results

To validate the proposed approach both simulation and actual test cases are inves-
tigated. Initially, four simulation-based cases are investigated and discussed. Then, the
real-time experimental study is presented and discussed. Furthermore, a comparison study
is carried out with the established metaheuristic techniques to proclaim the superior perfor-
mance of the proposed technique. The comparisons are drawn with Biogeography-Based
Optimization (BBO), Differential Evolution (DE), Particle Swarm Optimization (PSO), and
Genetic Algorithm (GA). The four selected comparing algorithms are among the most well-
known optimization metaheuristics. PSO is a population-based stochastic optimization
method developed by Eberhart and Kennedy in 1995. It is inspired by the social behavior of
bird flocking or fish schooling [32,33]. GA is the most famous global optimization method,
and it is based on Darwin’s theory about evolution. DE was initially developed by Ken-
neth V. Price and R. Storn in 1995 while trying to solve the Chebyshev polynomial-fitting
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problem [34]. It stems from the genetic annealing algorithm which was also developed by
Kenneth V. Price [35]. The BBO is an optimization algorithm inspired by biogeography [36].

Furthermore, a fifth optimization algorithm called Sequential Quadratic Programming
(SQP) is also used for comparison. SQP is one of the most performant methods for the
numerical solution of constrained nonlinear optimization problems. Unlike the other
methods used in this paper (i.e., the metaheuristics) which are based on a random search,
this method is deterministic and gives always the same results starting from the same point.

3.1. A. Simulation Study
3.1.1. Case 1: Illustrative Case

This first case is an illustrative one used to explain the developed approach rather
than to assess its performance.

Let us assume that we have three reference nodes located at (2,4), (8,8), and (2,8) along
with five target nodes located at (4,2), (8,4), (4,6), (4,8), and (2,9) as shown in Figure 2. Using
the proposed approach first the distances between reference nodes and target nodes are
estimated as follows:

DistanceRT =

 d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35

 (9)

which is numerically given by:

DistanceRT =

 2.8284 6.0000 2.8284 4.4721 5.0000
7.2111 4.0000 4.4721 4.0000 6.0828
6.3246 7.2111 2.8284 2.0000 1.0000

 (10)
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Figure 2. Plot of reference and target nodes for case 1.

As explained before, in this subsection we assume that these distances are estimated
using RSSI.

Then the MVPA solves the optimization problem to calculate (x1, y1), (x2, y2), (x3, y3),
(x4, y4), and (x5, y5) while minimizing the objective function given by Equation (7). The
results (i.e., the coordinates (xi, yi)) along with the mean squared errors (MSE) obtained
using MVPA and the other five algorithms are tabulated in Table 1. It can be seen from this
table that the MVPA along with the SQP were able to calculate the actual coordinates of all
target nodes with an accuracy of less than 5 cm (tolerance on estimation error). However,
all the remaining algorithms have found some difficulties and made some mistakes to
calculate the coordinates of the target nodes as highlighted in soft red in Table 1. The
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evolution of the objective function is sketched in Figure 4. It can be seen from this figure
that the MVPA has the best convergence among all other algorithms.

3.1.2. Case 2

In this case, 25 nodes are generated randomly in a given space of 50 m × 50 m among
these 25 nodes, 5 nodes are considered as reference nodes (i.e., their location is known
and the distances from these nodes to the remaining target nodes are also known). This
case is represented in Figure 3, where red and blue circles represent reference and target
nodes, respectively.
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The obtained results along with the MSE for this case are tabulated in Table 2. From
this table, the proposed approach using the MVPA was able to find all the locations of
target nodes within a small range compared with the actual coordinates. However, the
remaining algorithms have struggled to find the desired locations as highlighted in the
table. From the curves plotted in Figure 5, it can be noticed that the MVPA converges to
the lowest value of the objective function.
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Table 1. Comparison of actual locations with those obtained using different algorithms for case 1.

Actual Values MVPA BBO DE PSO GA SQP

xi yi xi yi xi yi xi yi xi yi xi yi xi yi

4.000 2.000 4.000 2.000 4.037 2.017 3.940 1.975 4.003 2.003 3.157 1.439 4 2

8.000 4.000 8.000 4.000 8.011 4.018 7.999 3.994 8.000 3.999 8.154 3.560 7.999 4

4.000 6.000 4.000 6.000 4.045 5.926 4.036 6.018 4.005 5.999 3.919 6.289 4 6

4.000 8.000 4.000 8.000 4.024 7.948 4.015 8.134 4.013 7.994 3.973 8.058 4 8

2.000 9.000 2.000 9.000 1.986 9.005 1.997 9.003 2.003 9.000 1.971 8.975 2 8.999

MSE 0 0 8.57 × 10−4 1.76 × 10−3 1.03 × 10−3 3.79 × 10−3 4.24 × 10−5 9.40 × 10−6 1.48 × 10−1 1.19 × 10−1 2.00 × 10−7 2.00 × 10−7

Table 2. Comparison of actual locations with those obtained using different algorithms for case 2.

Actual Values MVPA BBO DE PSO GA SQP

xi yi xi yi xi yi xi yi xi yi xi yi xi yi

6.349 45.669 6.349 45.671 7.091 46.351 5.523 44.833 6.945 50.000 6.359 47.694 6.350 45.669

13.925 27.344 13.930 27.344 14.530 28.207 14.689 27.709 14.645 28.685 12.270 26.938 13.924 27.343

47.875 48.244 47.876 48.245 47.836 48.301 49.990 47.275 30.627 50.000 34.784 39.832 36.593 50.000

47.858 24.269 47.860 24.264 47.775 24.335 47.653 25.338 46.676 25.226 33.002 24.645 29.685 26.043

40.014 7.094 40.011 7.094 39.966 7.073 40.676 5.753 40.194 7.827 32.976 5.548 40.015 7.094

21.088 45.787 21.080 45.782 22.821 46.609 22.213 46.330 27.876 50.000 5.235 30.944 21.089 45.787

33.937 37.887 33.937 37.887 33.922 38.045 41.188 36.005 31.260 37.614 44.707 39.158 33.936 37.887

13.846 2.309 13.849 2.305 14.072 1.926 14.285 0.111 14.243 2.064 7.998 6.728 13.846 2.309

21.937 19.078 21.938 19.079 22.229 19.443 21.113 16.793 20.833 13.989 26.605 14.343 21.937 19.078

9.344 24.488 9.344 24.488 9.028 23.726 9.549 24.523 10.648 33.104 10.288 30.101 9.344 24.489

22.279 32.316 22.305 32.338 22.536 32.517 24.403 33.211 30.403 31.898 41.616 40.008 22.279 32.316

13.801 33.985 13.800 33.984 12.461 32.203 14.294 34.225 25.049 42.029 46.173 37.877 13.802 33.985

47.987 17.019 47.989 17.017 48.039 17.023 48.146 15.529 47.940 16.864 40.028 25.441 28.160 18.953

29.263 11.191 29.263 11.189 28.948 11.192 27.180 10.610 27.120 10.438 30.830 17.431 29.263 11.191

7.465 12.875 7.465 12.868 7.498 12.822 6.891 12.254 3.255 0.000 9.356 18.183 7.464 12.874

30.802 23.664 30.803 23.665 30.539 23.325 29.288 25.269 29.287 2.963 31.765 23.716 30.801 23.664

17.583 41.541 17.585 41.544 17.549 41.478 17.302 40.801 18.890 42.364 20.673 45.154 17.584 41.543

19.022 28.391 19.018 28.386 18.742 28.140 19.117 28.745 49.260 34.181 23.388 9.763 19.023 28.392

3.793 2.698 3.793 2.698 3.782 2.749 4.879 0.507 13.096 38.414 4.875 13.265 3.793 2.697

26.540 38.958 26.538 38.958 27.670 39.572 49.634 38.548 25.875 38.815 19.978 40.503 26.540 38.958

MSE 4.09 × 10−5 3.24 × 10−5 3.78 × 10−1 3.28 × 10−1 3.04 × 101 1.53 × 100 7.88 × 101 1.06 × 102 1.22 × 102 5.30 × 101 4.25 × 101 4.99 × 10−1
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3.1.3. Case 3

In this case, the number of nodes is increased to 50. Among these nodes, 10 nodes are
considered reference nodes. This case is represented in Figure 6.
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The obtained results along with the MSE for this case are tabulated in Table 3. It can be
seen from this table that the MVPA was able to find the coordinates of all target points with
good accuracy (less than 5 cm) except for two locations; at the same time, the remaining
algorithms have struggled to do so. Moreover, the objective function minimized over the
iterations is sketched in Figure 7.
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Table 3. Comparison of actual locations with those obtained using different algorithms for case 3.

Actual Values MVPA BBO DE PSO GA SQP
xi yi xi yi xi yi xi yi xi yi xi yi xi yi

12.699 91.338 12.699 91.337 12.246 91.452 23.450 99.898 67.819 43.367 57.194 80.899 16.675 92.279
95.751 96.489 95.752 96.486 95.664 96.742 93.672 97.088 100.000 100.000 85.411 95.000 95.792 96.220
95.717 48.538 95.715 48.540 94.633 48.943 97.965 52.156 51.644 52.110 89.651 65.937 95.737 48.586
80.028 14.189 80.028 14.189 80.069 13.723 79.099 15.970 100.000 47.662 89.123 6.799 80.202 14.176
42.176 91.574 42.175 91.574 41.939 92.433 41.442 92.775 100.000 41.654 31.685 68.365 42.150 91.550
65.574 3.571 65.575 3.572 65.438 3.082 63.702 2.177 61.999 0.000 66.842 0.415 62.978 2.757
67.874 75.774 67.873 75.775 67.915 75.966 71.358 74.339 60.897 76.547 70.118 72.706 68.094 75.754
74.313 39.223 74.313 39.223 75.280 39.208 74.540 40.229 65.807 22.725 58.647 44.445 74.252 39.262
65.548 17.119 65.550 17.121 65.001 16.975 65.120 15.413 65.515 17.193 48.742 71.543 65.512 17.145
27.692 4.617 27.692 4.617 27.534 4.629 28.339 1.928 59.921 0.000 3.998 43.964 28.082 4.633
9.713 82.346 9.711 82.344 10.726 83.293 12.359 82.819 29.189 91.251 12.537 88.115 17.071 86.644

69.483 31.710 69.483 31.710 69.292 31.674 70.394 33.256 68.524 35.604 69.694 31.371 69.440 31.672
95.022 3.445 95.034 3.483 94.655 2.866 99.987 7.607 92.216 0.000 92.905 7.713 94.821 3.388
43.874 38.156 43.874 38.155 44.793 38.660 42.800 38.000 57.791 38.897 19.503 77.192 43.867 38.253
76.552 79.520 76.554 79.516 76.308 79.666 76.066 78.949 79.428 78.965 9.717 61.033 76.495 79.615
18.687 48.976 18.672 49.012 19.153 48.743 16.738 53.314 47.193 58.484 43.772 37.002 18.950 49.336
44.559 64.631 44.560 64.632 44.655 64.690 44.222 63.587 58.420 61.330 32.093 58.520 44.571 64.656
11.900 49.836 11.900 49.836 11.633 50.090 15.387 49.337 0.000 57.195 11.234 64.018 12.049 49.839
95.974 34.039 95.974 34.038 95.959 34.118 95.988 34.809 100.000 37.356 97.447 24.454 96.163 34.481
58.527 22.381 58.534 22.389 58.454 22.415 58.041 23.659 54.764 22.780 22.065 5.481 58.346 22.385
75.127 25.510 75.127 25.510 75.420 25.545 74.007 26.876 43.232 0.000 33.387 29.323 75.160 25.526
50.596 69.908 50.599 69.903 50.503 69.806 51.752 69.659 79.471 65.574 71.484 65.652 50.570 69.776
89.090 95.929 88.148 97.000 89.143 95.624 89.726 94.805 35.527 94.501 92.343 90.431 89.391 95.651
54.722 13.862 54.754 13.868 54.162 12.975 55.111 16.911 39.090 37.988 64.894 22.507 54.555 13.689
14.929 25.751 14.929 25.751 14.960 25.747 13.934 24.061 0.000 39.281 49.906 19.330 12.047 25.429
61.604 47.329 61.605 47.330 61.717 47.458 60.619 45.897 35.657 31.427 35.196 15.720 62.129 47.431
35.166 83.083 35.167 83.083 35.136 83.105 36.565 82.958 0.000 72.830 32.123 87.218 35.145 83.190
58.526 54.972 58.526 54.972 58.373 54.848 57.535 54.157 62.384 53.592 47.001 61.169 58.584 54.990
91.719 28.584 91.720 28.585 91.956 28.850 91.227 28.124 73.554 7.758 93.684 4.164 91.753 28.489
53.080 77.917 53.080 77.917 52.835 77.846 51.846 76.636 100.000 76.681 53.339 82.263 53.086 77.841
93.401 12.991 93.407 12.999 92.878 12.247 92.444 13.878 36.041 0.000 79.693 50.300 93.362 12.859
1.190 33.712 1.190 33.716 1.046 34.120 1.849 32.622 1.995 31.367 35.917 15.566 11.965 21.770

16.218 79.428 16.208 79.419 16.173 79.437 16.016 80.130 17.977 80.552 12.996 45.995 15.081 78.974
16.565 60.198 16.565 60.198 16.658 60.213 17.541 65.071 22.569 53.924 25.304 42.153 16.484 60.225
45.054 8.382 45.055 8.382 45.186 8.461 44.530 8.662 45.771 11.927 82.188 24.607 45.000 8.379
22.898 91.334 22.906 91.338 22.289 91.143 28.249 92.909 28.479 100.000 42.461 93.581 20.232 90.099
53.834 99.613 53.834 99.614 54.354 99.318 53.784 99.947 80.081 61.974 38.189 84.211 53.782 99.364
7.818 44.268 7.817 44.268 8.039 44.116 7.569 44.696 26.861 36.811 18.129 32.177 7.787 44.177

10.665 96.190 10.445 95.959 10.946 96.487 9.954 96.057 10.633 100.000 21.210 90.468 46.631 96.050
0.463 77.491 0.463 77.491 1.447 78.725 0.045 77.860 38.547 94.239 5.972 95.552 40.015 84.358

MSE 2.34 × 10−2 3.01 × 10−2 1.94 × 10−1 1.65 × 10−1 5.87 × 100 4.96 × 100 6.80 × 102 2.71 × 102 4.67 × 102 3.57 × 102 7.67 × 101 5.31 × 100
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3.1.4. Case 4

In this case, the number of nodes is 50 nodes in a space of 100 m × 100 m. Among
these nodes, 5 nodes only are considered as reference nodes. This case is represented in
Figure 8. Compared to the previous case a smaller number of reference nodes and a wider
space are considered here. This will test the efficiency and robustness of the MVPA.
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This case, which is the hardest case to solve because of the low number of reference
points and the high number of target points, is solved using MVPA and the results are
tabulated in Table 4. It can be seen that the MVPA is by far the best algorithm in estimating
the coordinates of target nodes compared to the remaining algorithms. It has estimated five
nodes with less accuracy than 5 cm whereas other algorithms have shown low accuracy
for most of the cases, or rather have wrongly estimated the location of a few nodes. The
curves of the evolution of the objective function are sketched in Figure 9.
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Table 4. Comparison of actual locations with those obtained using different algorithms for case 4.

Actual Values MVPA BBO DE PSO GA SQP
xi yi xi yi xi yi xi yi xi yi xi yi xi yi

81.472 90.579 81.472 90.579 81.622 90.435 78.378 90.224 81.689 100.000 84.558 83.656 47.894 83.877
12.699 91.338 12.619 91.293 12.992 91.439 10.423 88.999 12.857 93.491 22.661 84.089 0.000 36.845
63.236 9.754 63.233 9.754 62.775 9.721 63.374 10.437 83.680 12.557 90.613 10.385 62.599 10.597
95.751 96.489 96.351 95.718 95.603 96.009 93.465 98.841 100.000 92.989 4.755 32.923 24.279 41.997
15.761 97.059 15.731 97.031 17.060 98.208 16.154 96.484 15.718 97.986 12.683 23.494 0.000 36.888
95.717 48.538 95.718 48.538 95.946 48.800 96.293 46.623 69.863 21.991 67.347 16.979 78.486 29.237
80.028 14.189 80.067 14.205 79.648 14.265 100.000 22.887 87.651 21.467 57.249 18.007 80.712 14.171
42.176 91.574 41.102 90.642 43.037 92.096 39.906 89.198 40.129 88.434 30.518 87.646 41.981 91.744
79.221 95.949 79.196 95.982 79.144 95.937 83.066 92.968 85.625 96.827 97.578 96.873 43.699 89.282
65.574 3.571 65.550 3.572 65.765 3.327 61.235 3.108 100.000 0.249 68.704 16.588 69.084 3.359
74.313 39.223 74.328 39.253 74.788 39.849 71.359 34.319 72.187 47.572 75.755 53.111 74.502 39.160
65.548 17.119 65.542 17.118 65.826 16.989 66.736 16.309 65.516 12.782 45.037 27.523 65.979 17.160
70.605 3.183 70.613 3.183 71.102 3.320 68.269 0.000 76.485 0.000 75.203 20.143 76.192 5.046
27.692 4.617 27.692 4.617 27.990 4.384 29.523 1.298 27.587 4.127 29.085 33.031 27.135 5.203
9.713 82.346 9.713 82.345 9.681 82.375 1.322 76.777 15.949 100.000 26.714 30.503 0.000 36.932

95.022 3.445 95.019 3.443 93.308 2.268 90.011 0.275 90.994 0.813 59.760 4.881 78.949 0.000
43.874 38.156 43.871 38.156 43.399 38.402 44.013 37.637 35.497 35.558 37.923 37.127 44.795 38.240
76.552 79.520 76.551 79.520 76.358 80.122 73.576 81.110 34.532 100.000 63.853 81.347 76.777 79.106
18.687 48.976 18.701 48.954 18.392 48.935 23.816 63.073 23.753 89.436 56.002 63.902 16.985 52.233
44.559 64.631 44.554 64.632 44.444 64.926 42.640 62.851 48.073 68.041 50.117 67.701 44.626 64.077
27.603 67.970 27.600 67.970 27.487 67.904 28.052 69.193 14.130 55.495 33.654 76.068 27.983 67.478
11.900 49.836 11.896 49.849 12.185 49.240 12.379 51.198 13.827 57.349 26.958 39.969 11.843 49.967
95.974 34.039 95.976 34.040 95.484 33.502 99.985 38.517 0.000 35.958 80.464 23.020 95.943 33.456
58.527 22.381 58.527 22.380 57.882 21.986 63.999 22.290 89.097 44.735 71.527 8.229 58.354 22.686
75.127 25.510 75.161 25.524 76.136 26.478 72.353 24.298 100.000 43.713 94.905 30.350 74.812 25.280
50.596 69.908 50.596 69.908 50.926 69.321 49.197 72.392 49.713 76.378 73.980 67.512 50.594 70.075
89.090 95.929 89.084 95.931 88.200 97.095 83.616 98.416 100.000 69.950 90.881 92.395 36.544 80.275
54.722 13.862 54.718 13.870 54.762 13.855 54.356 13.657 100.000 26.890 69.775 30.512 54.276 13.648
14.929 25.751 14.929 25.751 17.493 23.741 12.519 29.020 80.373 0.000 27.675 51.527 15.467 25.731
84.072 25.428 84.072 25.429 85.009 26.074 86.790 27.913 89.767 9.534 43.845 47.376 84.934 26.552
61.604 47.329 61.572 47.276 61.698 47.265 63.376 48.688 89.398 92.890 71.801 59.939 58.607 43.789
35.166 83.083 35.166 83.082 35.468 82.778 34.334 84.193 13.744 43.546 34.856 85.713 35.202 83.401
58.526 54.972 58.527 54.972 57.839 55.065 56.642 53.500 86.713 77.649 49.642 23.494 57.932 54.584
38.045 56.782 38.048 56.783 37.312 57.219 37.614 57.238 44.186 61.747 43.857 56.733 37.841 58.355
7.585 5.395 7.588 5.389 6.852 5.803 1.023 11.594 4.367 0.000 32.946 94.879 9.141 3.298

93.401 12.991 93.385 12.981 95.156 13.445 91.985 14.383 100.000 22.190 99.174 5.443 79.441 4.864
1.190 33.712 1.181 33.724 1.233 34.075 0.383 34.815 25.763 0.001 9.035 94.611 1.420 35.517

16.218 79.428 16.219 79.433 15.712 79.061 13.911 77.422 15.108 100.000 51.585 63.772 6.811 54.286
16.565 60.198 16.561 60.190 16.346 60.400 14.969 57.770 18.732 75.761 79.249 90.307 16.245 60.869
45.054 8.382 45.035 8.384 45.744 8.029 48.384 9.465 5.489 28.395 45.197 14.296 45.410 8.065
22.898 91.334 22.898 91.334 22.537 91.202 31.659 100.000 16.565 74.060 46.148 4.891 11.287 58.981
53.834 99.613 53.719 99.547 51.648 98.465 52.622 99.230 24.007 70.406 43.745 84.854 48.629 96.527
7.818 44.268 7.823 44.256 7.641 44.777 0.000 57.017 17.193 35.972 13.080 31.052 6.095 46.505

10.665 96.190 10.665 96.190 8.035 93.554 15.125 99.743 13.075 100.000 11.818 50.961 0.002 36.758
0.463 77.491 0.465 77.496 2.017 80.343 17.213 99.932 0.000 0.000 25.185 59.080 0.463 34.980

MSE 3.42 × 10−2 3.28 × 10−2 8.19 × 10−1 6.68 × 10−1 2.72 × 101 2.81 × 101 6.02 × 102 4.44 × 102 5.69 × 102 9.20 × 102 2.65 × 102 4.33 × 102
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Figure 9. Evolution of the objective function versus iterations for case 4.

Looking at Figures 5, 7 and 9, it can be noticed that although the BBO has a quick
speed of convergence, the MVPA converges to a better final solution. This statement is
confirmed by the results tabulated in Tables 1–3 where the MSEs obtained using MVPA
are lower than the ones obtained using all the comparing algorithms including the BBO in
all cases.

3.2. B. Real-Time Experimental Study

In [23] a real wireless network with three reference nodes and one target node (that
can be moved to have multiple measurements) were studied. The target node and refer-
ence nodes are created using Zigbee series two modules, that were chosen for being less
expensive and power-efficient [37,38]. As aforesaid, the reference nodes are acting as three
routers whereas the target node acts as a device that receives signals from three transmitting
devices (reference nodes) at any instant. A local coordinate system was established such
that both x and y coordinates increase by half feet i.e., each integer in the coordinate system
is representative of two feet (0.6096 m). The coordinates of the three reference nodes on a
local coordinate system are (0,0), (6,0), and (3,8) for both indoor and outdoor settings as
shown in [23].

The target node was relocated to ten independent positions as shown by the blue dots
in Figure 10. The coordinates of these nodes along with the distances measured between
reference nodes and target nodes, in meters, are tabulated in Table 5. The last column gives
the average of the distances of the target node from all three nodes.
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Table 5. Coordinates and distances of target nodes.

Coordinates of Target
Nodes in the Local
Coordinate System

Coordinates of
Target Nodes (m)

Distance from
Ref Node # 1 (m)

Distance from
Ref Node # 2 (m)

Distance from
Ref Node # 3 (m)

Average
Distance (m)

(2,4) (1.219, 2.438) 2.73 3.45 2.51 2.90

(3,3) (1.829, 1.829) 2.59 2.59 3.05 2.74

(6,4) (3.658, 2.438) 4.40 2.44 3.05 3.29

(1,2) (0.610, 1.219) 1.36 3.28 3.86 2.83

(1,3) (0.610, 1.829) 1.93 3.55 3.28 2.92

(5,4) (3.048, 2.438) 3.90 2.51 2.73 3.05

(2,5) (1.219, 3.048) 3.28 3.90 1.93 3.04

(3,6) (1.829, 3.658) 4.09 4.09 1.22 3.13

(5,7) (3.048, 4.267) 5.24 4.31 1.36 3.64

(6,8) (3.658, 4.877) 6.10 4.88 1.83 4.27

3.2.1. Distance Estimation Based on Measured RSSI

As aforesaid, to determine the coordinates of a real system, first, the distances are
estimated from the measured RSSI using a nonlinear regression model and approximating
that model on LNSM of Equation (3). Then the proposed MVPA is run to localize the
coordinates of the local grid. RSSI is measured for each of the ten locations of the target
node using range testing of the XCTU software (XCTU offers a convenient graphical
interface where developers can deal with multiple Digi RF modules simultaneously. It
is available in several platforms as an open-source application) [39]. The coordinates of
the ten locations where the target node is kept are given in the first column of Table 5.
At each location, ten values of RSSI are noted and their average RSSI is computed. The
average RSSI of each location for both indoor and outdoor settings is shown in Figure 11.
It can be noted that as the target node is moved far away from a specific reference node,
the received RSSI is decreased. Moreover, the signal strength observed in the outdoor
environment is less than that observed in the indoors. Based on these measurements, a
nonlinear regression model is developed to estimate the distances from measured RSSI.

The relationship between RSSI and distance obtained using our nonlinear regression
model for indoor experiments is expressed as follows:

RSSI = −23.671− 18.78× log(d) (11)

and therefore:
d = 10−

RSSI+23.671
18.78 (12)

The relationship between RSSI and distance obtained using our model for outdoor
experiments is expressed as follows:

RSSI = −40.425− 10.10× log(d) (13)

and therefore:
d = 10−

RSSI+40.425
10.10 (14)

Comparing (10) and (12) with (3) reveals that the terms Pt − PL(d0) + Xσ is equal to
−23.671 (dBm) for the indoor case and −40.425 (dBm) for the outdoor case. However, the
value of 10 n log 10 can be approximated to −18.78 (dBm) and −10.10 (dBm) for indoor
and outdoor scenarios, respectively. Equations (10) and (12) are plotted in Figure 12a,b,
respectively. It can be seen that the nonlinear curves approximate the best function such that
the error function between the measured values and the approximated curve is minimized.
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Figure 11. Average measured RSSI for (a) indoor experiments, and (b) outdoor experiments at ten different locations of
target nodes.

3.2.2. Coordinate Estimation Using MVPA

The distances estimated in the previous section for outdoor application are given to
the MVPA algorithm to determine the coordinates of the target nodes. The results are
displayed in Table 6. It can be seen from this table that the locations are well estimated,
and the error is mainly due to the estimation of the distances from RSSI using the nonlinear
regression model.
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Figure 12. Nonlinear regression estimation of the relationship between the measured RSSI and the
distance d: (a) indoor scenario, (b) outdoor scenario.

Table 6. Comparison of actual locations with those obtained using MVPA for outdoor application.

Actual Values MVPA

xi yi xi yi

2 4 2.05 4.01

3 3 3.1 3.02

6 4 6.04 4.03

1 2 1.02 2.02

1 3 1.00 3.03

5 4 4.92 3.98

2 5 2.02 5.08

3 6 3.02 5.95

5 7 4.96 7.04

6 8 5.94 8.02

4. Conclusions

Localization of sensor nodes has always intrigued wireless network engineers as it
enables them to deploy efficient network protocols and minimize the traffic and hence
the latency on a given channel. To realize the effective and accurate localization, this
paper has effectively demonstrated the two-fold technique toward localization; first, a
nonlinear regression model is used to establish an approximate relationship between RSSI
and distance between the sensors, later, those distances are fed to MVPA to figure out
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the geometrical coordinates in the local 2d space. The model is first implemented on four
simulation-based test cases, where the results obtained from MVPA are compared with
the contemporary techniques for benchmarking. Finally, the applicability of the proposed
method is demonstrated on actual WSN in both indoor and outdoor environments. It is
found that the proposed MVPA estimation method preceded by nonlinear regression has
given good results for distance estimation and node localization. The approach is tested
under rigorous simulation scenarios spanning a large area and equipped with a very low
number of reference nodes. Even in the most constrained problem (case 4), the MSE in the
x-coordinate of the proposed approach is 24 times less than the second-best approach (BBO).
Similarly, for the y-coordinate, the MSE obtained with the proposed MVPA is 20 times less
than that of the BBO approach, the second-best performer. Future directions can focus
more on how to improve the estimation of distances based on RSSI using regression models
or even Artificial Neural Networks (ANNs). Another future work can also be to test the
developed approach for a network with obstacles like walls for example.
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