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Abstract: Customer Experience (CX) is monitored through market research surveys, based on metrics like
the Net Promoter Score (NPS) and the customer satisfaction for certain experience attributes (e.g., call
center, website, billing, service quality, tariff plan). The objective of companies is to maximize NPS
through the improvement of the most important CX attributes. However, statistical analysis suggests that
there is a lack of clear and accurate association between NPS and the CX attributes’ scores. In this paper,
we address the aforementioned deficiency using a novel classification approach, which was developed
based on logistic regression and tested with several state-of-the-art machine learning (ML) algorithms.
The proposed method was applied on an extended data set from the telecommunication sector and the
results were quite promising, showing a significant improvement in most statistical metrics.

Keywords: customer experience; net promoter score; machine learning

1. Introduction

Customer Experience (CX), since its introduction as a concept [1–4], has evolved as a key
differentiation strategy element across industries, especially in mature markets with low product
differentiation opportunities. Traditional sectors like banks, retail stores, hotels, telecom operators
as well as modern digital world corporations recognize the role of CX as part of their commercial
success. CX is closely related to customer loyalty management and is measured using survey-based
metrics aiming to capture the overall customer satisfaction, purchase or recommendation intention [1].
As more and more companies are adopting CX excellence strategies, customers receive a higher quality
of experience, which further raises the bar of CX competition. In such a competitive environment,
CX analytics is a topic that attracts the attention of the industry, especially focusing on methods
that lead to actionable insights.

The cornerstone of a CX strategy implementation program is the metric used to measure the
performance of both the company and its market competitors. The Net Promoter Score (NPS) [5]
is a metric that, according to some studies, is associated with customer loyalty [5,6] and is widely used
across industries as confirmed by CX professionals, without missing some objections on this metric
as is described in Section 2. The NPS is measured through regular market research surveys,
which are conducted at a frequency ranging from monthly to an annual basis. In such a survey,
NPS is derived based on a question in which customers are asked to rate the likelihood of recommending
the company’s products and/or services to their friends or colleagues. Apart from the NPS question,
such a survey also includes questions related to the customer satisfaction score on experience attributes,
i.e., key areas of the interaction between the customer and the company that may influence the NPS
(e.g., product attributes, like tariff plan, service quality, billing and touchpoint experiences, such as website,
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call center, mobile app). Moreover, the common practice in CX surveys is to include responses from
a sample of customers related to all competing companies in the market, thus giving crucial information
about the company’s position against competition.

The results obtained from the NPS surveys allow primarily for the monitoring of the NPS and CX
attribute satisfaction score trends for all market players. Such an analysis reveals areas of strong
and weak performance, which trigger companies to take corrective actions. These actions are included
in the plan of the CX program of a company and refer to operational improvements (e.g., reduce the
waiting time in the call center, or the response time of the company webpage), “customer journey”
redesign (i.e., design of the interaction steps between the customer and the company like bill payment
via the mobile app), or innovation (e.g., push customers to fully digitalized transactions). These actions
require certain company investment and for that reason, it is of prime importance for companies
to rank the role of CX attributes in driving the overall NPS.

The problem of CX attribute prioritization is addressed by the so-called NPS key drivers’
analysis, which aims at revealing the association between NPS and the experience attribute satisfaction
scores [7]. Apparently, NPS drivers’ analysis can be further extended by taking into account sector
or company specific factors (e.g., geographical location, customer demographics, macroeconomic
factors) or experience attribute specific performance measures (e.g., the call center waiting time,
website abandoned transactions). For example, telecommunication operators also consider NPS
analysis for their services, exploiting the framework of Quality of Experience (QoE) Key Performance
Indicators (KPIs) in order to identify specific service attributes that need to be improved so as to sustain
user engagement [8].

Despite the increased interest in the topic, the NPS key drivers’ analysis still faces several
challenges. According to the related literature, that linear regression for customer satisfaction
drivers’ analysis is characterized by an R-square in the order of 0.4–0.6 [9–11]. Moreover, according
to the results of one of our earliest previous work [12] on NPS survey data, an accuracy metric
in the order of 50–60% is achieved based on both multiple linear and logistic regression. This finding
indicates that either the applied regression models do not capture the way that CX attributes
contribute to the overall NPS KPI or that NPS KPI does not only depend on the CX attributes but
also on unidentified factors, which could be perception or emotion related attributes. The novelty
of the current paper is that it utilizes a classification method and a variety of widely used machine
learning (ML) algorithms to investigate their ability to capture the relation between the CX attributes
and the NPS KPI.

2. Related Work and Paper Contribution

2.1. Works on Net Promoter Score-NPS

The issue of NPS key drivers’ analysis, described in the introduction, is addressed using primarily
statistical regression, for example, Multiple Linear Regression. However, the NPS key drivers’ analysis
is a classification problem, since both the NPS and the CX attribute satisfaction scores are categorical
parameters (i.e., integers between 0 and 10 that the surveyed customers provide). For that reason,
logistic regression and, in particular, Ordered Logit, is considered to be a more appropriate model for
NPS drivers’ analysis [7,13–15]. There is a number of issues related to these regression models,
including the limited accuracy, the collinearity occurring between attributes, the need to handle
missing values (e.g., responders may not provide scores for all attributes leading to a high percentage
of partially filled data records), the counter-intuitive negative coefficients that may occur, etc. It should
be noted that the accuracy of key driver analysis may affect the ability of a company to take CX
related decisions. In particular, companies use key drivers’ analysis so as to decide on how to allocate
its investment in specific CX attributes so as to maximize the impact on NPS. Moreover, key driver
analysis is also used as a tool for what-if analysis so as to assess the impact of a change in CX attribute
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satisfaction to the overall company NPS. This is an essential step in the process that companies follow
so as to assess the impact of CX projects and decide on their prioritization.

One of the methods used to mitigate the low statistical fit issue is the application of Grouped
Regression. According to this approach, it is investigated whether there are subgroups of customers
characterized by a common NPS scoring process [13]. For that reason, different regression models are
developed for each defined group aiming at achieving a deeper understanding of the NPS drivers.
Two different approaches may be followed for the definition of the subgroups; (i) customer classification
(e.g., as defined in the next section: promoters, passives, detractors) or (ii) following some unsupervised
method of classification, where customers are divided into subgroups based on statistical criteria [7,14].
However, it appears that this approach does not resolve the issue of limited accuracy. Moreover, one
of the possible drawbacks of this method is that a high number of subgroups may cause regression
over-fitting due to the reduced number of samples per subgroup and in practice to results of limited
statistical value.

Another practice that has been adopted is to include in the survey the option of free comments
from the responders, allowing for the application of advanced sentiment analytics and including
machine learning techniques [16]. However, in this case, only a portion of the responders provide
comments. Furthermore, it is not certain whether a short comment covers the entire range of experience
of the issues of a responder or is limited to a recent event as a highlight. Very recently, machine learning
methods have been employed to estimate customers’ experience in specific types of applications.
For instance, in [17], the experience gained in a shopping mall is described, while [18,19], examine and
automated customer issue resolution method for cellular communication networks. Finally, in [12], a
novel classification method for customer experience survey analysis is proposed.

2.2. Limitations of NPS

The main advantage of the Net Promoter Score (NPS) is that it is a single customer metric
to measure customers’ loyalty. However, many researchers object that NPS is the “single most reliable
indicator of a company’s ability to grow.” In particular, Keiningham et al. [20] reject this argument since
single metrics alone cannot predict customer loyalty and consequently are unlikely to deliver actions
to managers. In addition, the work of [21] doubts the efficiency of the NPS, based on a practitioner’s
perspective and principles of social science and marketing methodology, as an efficient approach
to customer loyalty because recommendations alone are unable to drive business success. For example,
customers could give high NPS scores (promoters), but a firm could lose a percentage of its customer
base. This is also verified in [22] where a detailed description of potential negative implications
of the NPS on customer experience can be proved based on real-world data. This work employs a big
data approach to assessing and predicting customer loyalty in a B2B context.

These limitations are taken into account in our research by modifying the NPS proposing a bias
index to improve customers’ loyalty description. The proposed NPS bias seems to improve the results
compared to using the conventional NPS score. In addition, we apply novel machine learning
algorithms, including deep learning tools, to intelligently analyze these data so as to improve customer
experience and the results obtained. This is the main innovation of this work, i.e., the application
of novel machine learning algorithms along with the introduction of bias dimension to the NPS index.

2.3. Our Contribution

In this paper, we address the problem of NPS key drivers’ analysis in a two-step approach.
In the first step, a customer classification method is employed, which offers an insight into the NPS scoring
process. The novel classification, called “NPS bias”, proved to be quite efficient and significantly improved
the statistical performance based on logistic regression (accuracy 70–85%, F1-score > 70%). The efficiency
of the method was verified using data from multiple NPS survey samples from the telecommunications
market. These results indicate that the proposed method improves the performance of the NPS key
drivers’ analysis, which in turn could increase the reliability of the associated company decisions.
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In the second step, widely used supervised ML algorithms are employed for the classification
process [23–25]. For example, neural network-based classifiers schemes can be applied to categorize
the data [26] exploiting highly non-linear schemes. An interesting idea in this case is the ability of the
network to automatically adapt its performance to the user needs using a retrainable structure [27]
and its application to user profile modeling [28]. Other schemes apply on-line learning processes
for estimating user’s profile [29], including on-line spectral clustering schemes [30,31]. Another
interesting concept is the use of the Successive Geometric Transformations Model (SGTM) like neural
structures [32]. This, in fact, is a new method for solving the multiple linear regression task via a
linear polynomial as a constructive formula. This linear non-iterative computational intelligence tool
is used for identification of polynomial coefficients [33]. Applications of these models to medical
insurance has been applied [34]. One of the problems in building reliable machine learning algorithms
for NPS drivers’ analysis is the limited number of available samples, since NPS surveys are performed
in the best case scenario on a monthly basis, while in some cases only annual surveys are conducted
on a rather limited sample of customers. To handle the classification challenge, the results of the
first step are being exploited so as to build a generator of realistic survey data. This approach allows
for the development of training data for the machine learning algorithms covering a wide range
of realistic scenarios. Finally, the performance of the ML algorithms is presented for both the original
NPS key drivers’ analysis problem and the proposed “NPS bias” classification problem.

The paper is organized as follows: Section 3 provides an overview of the NPS methodology.
Section 4 provides the first step of the NPS key drivers’ analysis based on the proposed customer
classification based on “NPS bias”. Section 5 provides the relevant analysis based on machine learning
classification methods [24,35]. Section 7 provides a thorough overall analysis of the results of the
proposed method. Finally, Section 8 provides the conclusions and the future research steps.

3. Net Promoter Score Survey

As mentioned in the introduction, NPS is widely accepted as one of the most commonly used CX
measurement framework across industries. The methodology requires regular customer surveys (also
called Voice of the Customer) based on a questionnaire addressing the following:

1. NPS question [5]: “How likely are you to recommend [company x] to your friends or colleagues?”
The response is provided in the range of 0 (definitely no) to 10 (definitely yes).

2. Satisfaction scores (from 0 or 1 to 10) for a set of CX attributes like product experience (service
quality, network coverage, tariff plan, billing, etc.), Touchpoint experience (e.g., call center, website,
mobile app, shops), customer lifecycle milestones (e.g., contract renewal), etc. Some surveys also
include brand image related attributes (e.g., trust, innovation)

Apparently, a responder, depending on his/her experience, may not answer a question (e.g., a
responder does not visit shops or does not experience a service like roaming in mobile telecoms). In
this context, an NPS survey will include partially filled responses.

NPS methodology then considers three groups of survey responders depending on the range of
their Net Promoter Score (see Table 1). This classification is supported by studies [5] indicating that
Promoters are more loyal and more likely to purchase products and services vs. Detractors.

Table 1. Net Promoter Score (NPS) customer categorization.

Response Values NPS Label

9–10 Promoter
7–8 Passive
0–6 Detractor

The NPS KPI of a company can then be defined as the difference between the percentage
of promoters and detractors in the relevant survey:
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NPS(C) =
Nprom(C)− Ndetr(C)

N(C)
× 100 (1)

where, Nprom(C), Ndetr(C) and N(C) are the number of promoters, detractors and the total number
of survey responders, respectively. Based on the above definition, the NPS KPI for a company may
range from −100 (every customer is a detractor) to +100 (every customer is a promoter).

NPS Survey Analysis

The primary NPS survey analysis refers to the comparison of the NPS trends (see Figure 1) and
the satisfaction score performance compared to the competition (see Figure 2). Figures 1 and 2 present
indicative results from a set of real NPS survey data processing from the Greek telecommunication
market (for confidentiality purposes, random bias has been applied to the actual data). In the example
of Figure 1, it appears that company 1 is the market leader, company 4 follows a CX improvement
strategy while companies 2 and 3 probably focus on maintaining their NPS levels. Figure 2 presents
the CX attributes’ performance for companies 1 and 2 where it is evident that company 1 is exceeding
company 2 in the performance of key attributes like Network Coverage and Network Data while
company 2 has some strong areas like call center and roaming. As it can be seen such an analysis allows
for a clear understanding of the competitive position of a company in the area of CX and monitoring
of the relevant trends. The next question that a company has to answer is, which attributes have the
highest improvement priority, and which will assist the company to adopt the optimal strategy in
order to maximize the NPS? This problem is addressed by the NPS key drivers’ analysis.

Figure 1. NPS trend in relation to time for the market competitors.

The NPS key drivers’ analysis is typically based on statistical regression models [6,7,36–39] applied
to the relevant customer survey data. Such models consider NPS as the dependent variable and the
customer satisfaction scores on the CX attributes as the independent variables. Figure 3 provides
an example presentation of the resulting NPS key drivers’ analysis where x-axis “Performance”
corresponds to the average satisfaction score of each attribute and y-axis “Importance” corresponds
to the regression model coefficient of each attribute or depending on the approach followed an
appropriate importance indicator (e.g., Shapley value method [40]). The representation of Figure 3 is
commonly used for business decision making [41–45]. As it can be seen from the example of Figure 3
it is feasible for a company to decide on the type of action to follow for each CX attribute depending
on the quadrant it belongs to: (a) improve, (b) leverage (i.e., exploit as a competitive advantage), (c)
maintain or (d) not important for action (monitor). In the example of Figure 3 it is evident that the
attributes that require improvement for the specific company refer to: network voice, network data,
tariff and billing.
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Figure 2. Customer experience attributes: satisfaction for the company and the main competitor.

Figure 3. Customer experience attributes: importance–performance comparison.

As mentioned in the related work overview, a wide variety of regression models have been
considered for NPS key drivers’ analysis. However, most regression models exhibit a limited statistical
accuracy (e.g., Accuracy in the order of 50–60% and F1-score in the order of 55–70%, as shown by
indicative results in Section 4).

This fact has triggered the research presented in this paper, as the key challenge related to the
low statistical accuracy of the regression models may be attributed either to limitation of the modeling
approach or to the fact that there are additional attributes not included in the surveys that explain the
way customers provide their NPS score.

4. NPS Bias Classification

According to the related literature [12], a common method to address the issue of low NPS drivers’
statistical fit is to consider subgroups of responders with common scoring patterns. This concept of
customer classification into subgroups is investigated in the current paper through the definition of a
new metric called “NPS bias”, which is defined for each responder of the NPS survey as follows:

NPS_BIAS(k) = NPS(k)− E[CSA(k)] (2)
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where, NPS(k), k = 1, 2, · · · , N the NPS of responder k, E[CSA(k)], the mean value of the responder
satisfaction score for all CX attributes. Note that the above definition also applies for partially
filled survey responses and in this context, the classification can be performed without the prior
use of missing data imputation methods.

Based on the above definition, customers are classified according to Table 2.

Table 2. NPS bias customer categorization.

NPS Bias Bias Category

NPS_BIAS ≥ 0 Positively Biased
NPS_BIAS < 0 Negatively Biased

The classification of NPS bias can be codified as a label (e.g., 1 for negatively and 2 for
positively Biased customers). The scope of the analysis is to consider this label as an additional
independent parameter in the NPS classification problem aiming at the improvement of the regression
model accuracy. Since the definition of NPS bias requires the knowledge of NPS per responder,
the classification aims primarily on improving descriptive NPS analytics. NPS key driver analysis
belongs to this category of problems, i.e., given the knowledge of NPS and the CX attributes,
the problem aims at the identification of the NPS drivers.

4.1. Datasets Available for NPS Bias Analysis

To analyze the NPS Bias classification, a set of data from NPS surveys performed in the Greek
mobile telecommunication market were exploited. The surveys were targeted to a postpay market
segment and included 9 CX attributes: (i) Tariff Plan, (ii) Network Voice, (iii) Network Data, (iv) Billing,
(v) Call Center, (vi) Shops, (vii) Website, (viii) Mobile App, (ix) Roaming. The available datasets refer
to 24 consecutive monthly surveys with approximately 450 samples each. For confidentiality reasons,
the surveys were fully blinded in terms of the attributes names and operators for which the results
referred to, since the focus of the analysis is the algorithm performance rather than specific market
performance.

It should be noted here that the relevant data were collected and processed in a fully anonymized
manner and in full compliance with the relevant regulation framework for the protection of the private
data and the associated ethics’ principles related to data processing [46].

4.2. Distribution Analysis of the NPS Bias Catergories

The first topic investigated in this paper is whether NPS and NPS bias are independent parameters.
To achieve this, the classification mix of each survey (see example Table 3) was considered as a
contingency matrix and the Chi-square test of independence was applied (see example Table 4).
The null hypothesis in this case is that the mix of promoters, passives, detractors vs. the relevant mix
of positively, negatively biased customers is random. The Chi-square test in all cases indicated that
the null hypothesis could be rejected (see example of Table 4), clearly indicating that an NPS bias
distribution pattern may represent a characteristic of NPS surveys.

Table 3. NPS bias distribution.

Mix Detractors Passives Promoters Total

Negatives 42 84 2 128
Positives 3 155 165 323

Total 45 239 167 451
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Table 4. Chi-Square test of independence.

Chi-Square Test (a = 0.05)

Chi-Square df p-Value Significance Cramer V

197.52 4 1.28× 10−41 Yes 0.467

4.3. Regression Analysis of the NPS Bias Classes

The second topic investigated in this paper was whether NPS Bias classes share a common NPS
scoring process. To this end, separate regression models were developed for each customer subgroup.
Without limiting the options of regression modeling that can be applied, logistic regression was used
at this stage of our study. Appendix A provides the confusion matrix and the metrics used to assess
the model performance (accuracy, precision, recall and F1-score).

The results of this analysis are presented in Figure 4 where the performance metrics (Accuracy
and F1-score) are compared for the NPS analysis without the bias classification and the performance
achieved for the subgroups defined based on NPS bias (i.e., positively and negatively biased).
The presented results correspond to the average metric score achieved based on the 24 monthly
NPS survey data samples. The Variance Inflation Factor (VIF) results indicated no significant issue
of multicollinearity. Figure 5 provides the correlation coefficients between the adopted attributes.
Moreover, to ensure that the observed results are not an effect of overfitting, the analysis was performed
in three-month rolling samples where 20% of the samples were reserved for cross-validation of the
regression model.

As it can be observed in Figure 4, positively and negatively biased subgroups exhibit Accuracy
and F1-score in the range of 70–80%, substantially higher compared to the respective values for NPS
analysis without bias classification (in the order of 60%).

The analysis confirms the fact that positively and negatively biased customers share, to a certain
degree, a common NPS scoring process. This fact can be exploited to derive more accurate business
insights, as shown in the following section.

Figure 4. Performance of NPS bias classification.
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Figure 5. The correlation matrix among the CX attributes.

4.4. NPS Drivers’ Analysis Based on NPS Bias

Based on the results achieved via the NPS Bias classification, it is now possible to apply the NPS
key drivers’ analysis separately for positively and negatively biased customers. Indicative results
of this analysis are presented in Figure 6. The primary target of this analysis is to derive more accurate
conclusions on the NPS drivers. Such results may support companies in their effort to focus and
prioritize its CX action plans.

A closer inspection of Figure 6 reveals that for some CX attributes both the positively and
negatively biased customers points belong to the same quadrant. In such cases a company should
take the proper actions to satisfy the entire customer base. For example, Network Data appears to be
an attribute for improvement for both positively and negatively biased customers, which means that
the mobile operator should consider actions like increasing the network data speed in network areas
with significant data traffic demand.
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Figure 6. NPS drivers’ analysis for positively and negatively biased customers.

On the other hand, the proposed method reveals CX attributes for which the positively and
negatively biased points belong to different quadrants. This implies that a company may apply
different and targeted actions to the different customer subgroups. In the example of Figure 6, Billing
is an attribute for improvement for the negatively biased customers and an attribute of satisfactory
performance (leverage quadrant) for the positively biased customers. Therefore, in this example
the operator should take CX improvement measures for the negatively biased customers. Such an
approach requires further and deeper analysis from the company side to identify the issues that cause
dissatisfaction, for example, through customer complaints analysis. An example improvement action
would be to communicate with customers that have complained about their bill so as to verify whether
the issue of the customer has been resolved in the next billing cycle.

It should also be noted that this approach increases the cost efficiency of the company CX action
plan as the increased focus on specific customer subgroups reduces the required cost for fixing
the detected issues.

5. Machine Learning Algorithms for CX Classification

As presented in previous sections, the NPS survey analysis faces significant challenges, such as
the number and temporal variability of the attributes that are considered in the NPS scoring
process. It should be noted that most CX attributes may vary over time, regarding their importance
and performance, thus changing their influence on NPS. Machine learning (ML) techniques seem to be a
promising solution to meet these challenges. However, the limited amount of available data could be a
major obstacle, given that the training step of the ML algorithms requires a dataset of considerable size.
In the best case scenario, NPS surveys are performed on a monthly basis, whereas many companies
conduct surveys every 6 or even 12 months.

In this section, we apply several ML algorithms to determine the relation between the NPS bias
and CX attributes from the telecommunication sector. In order to tackle the data availability issue,
a data generator is exploited to create a realistic NPS survey dataset, based on the key statistical
parameters of the original sample, such as mean value, standard deviation and correlation matrix.
In the data generation process, both the identified patterns of a mix between NPS bias classification
and NPS classification (see Table 3) and the fact that NPS bias classification corresponds to the common
NPS scoring process, are considered. The following sections briefly present the ML algorithms, as well
as the results of the proposed methods.
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5.1. Problem Formulation

The ordinal regression problem consists of predicting the label y of an input vector x, where
x ∈ X ⊆ RK and y ∈ Y = {C1, C2, · · · , CQ}, i.e., x is in K-dimensional input space and y a label
of Q different values. Q labels form categories or groups of patterns and the objective is to find a
classification rule or function y = r(x) : X → Y to predict the categories of the NPS index, given a
training set of N points, D = (xi, yi), i = 1, · · · , N

ŷ = f (x1, x2, · · · , xK) (3)

In this paper, we consider the problem of the NPS class prediction, as defined in Table 1, i.e., Q
labels correspond to Promoters (C1 = Pr), Passives (C2 = P) and Detractors (C3 = D). Regarding
the K-dimensional input we consider two options: (a) xi corresponds to the satisfaction score (0–10)
on CX attribute i, for example, network, tariff, and billing, and (b) the input set apart from the CX
attributes’ satisfaction scores also includes the NPS bias classification index (1 for positively biased,
2 for negatively biased customers).

5.2. Machine Learning Algorithms

We have scrutinized the effectiveness of a series of well-known classifiers that have been
used in this paper for the customers identification from the questionnaire answers. In this section,
the investigated classification techniques are briefly described.

5.2.1. Decision Trees

Decision tree learning is one of the predictive modeling approaches used in statistics, data mining
and machine learning [47]. It uses a decision tree to go from observations about an item to conclusions
about the item’s target value (represented in the leaves) [48]. In these tree structures, “leaves” represent
class labels (i.e., the lables y ∈ Y = {C1, C2, · · · , CQ}) and “branches” represent conjunctions of
features that lead to those class labels. Decision trees where the target variable can take continuous
values, typically real numbers, are called regression trees. Table 5 contains the decision trees parameters
that we used in the current paper.

Table 5. Parameters of the decision-trees classifiers.

Parameter Values

Function measuring quality of split entropy
Maximum depth of tree 3

Weights associated with classes 1

5.2.2. k-Nearest Neighbors

The -nearest neighbors (k-NN) algorithm is a non-parametric method used for classification [49,50],
applied for solving many classification problems [51]. A majority vote of its neighbors classifies an
object, with the object being assigned to the class most common among its k-nearest neighbors; it is,
therefore, a type of instance-based learning, where the function is only approximated locally and all
computation is deferred until classification. Often a fuzzy variation of the k-NN algorithm is used [52].
Table 6 presents the main parameters of the method applied in this paper.

Table 6. Parameters of the k-NN classifiers.

Parameter Values

Number of neighbors 5
Distance metric Minkowski

Weights function uniform
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5.2.3. Support Vector Machines

Support vector machines (SVM) are supervised learning models with associated learning
algorithms [53–55]. That is, SVM requires a training set, like D in our case. Then, each input is marked
to belong to one or the other of two categories and the SVM training algorithm builds a model that
assigns each new incoming example to one category or the other, making it a non-probabilistic binary
linear classifier. In other words, an SVM model is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by a clear margin that is as wide as
possible. The parameters of the SVM method are presented in Table 7.

Table 7. Parameters of the support vector machine (SVM) classifiers.

Parameter Values

Kernel type linear
Degree of polynomial kernel function 3

Weights associated with classes 1

5.2.4. Random Forest (RF)

The random forest classifier consists of a combination of tree classifiers where each of them
is generated using a random vector sampled independently from the input vector, and each tree casts
a unit vote for the most popular class to classify an input vector [56]. Table 8 contains the parameters
of the RF classifier used in the current work.

Table 8. Parameters of the random forest classifiers.

Parameter Values

Number of trees 100
Measurement of the quality of split Gini index

5.2.5. Artificial Neural Networks (ANNs)

Artificial Neural Networks are highly non-linear classifiers with many applications to extensive
domains [27]. Their structures try to resemble how human brains work with neurons and synapses.
In particular, an ANN consists of one input layer that receives as data the input signals, one or more
hidden layers of neurons that process these data under a non-linear way and one output layer
that yields the final classification outcome. Each neuron sums the input signals under a weighted
(parametrize) way and then passes them to a non-linear activation functions [57].

The activation functions actually non-linearly transforms the input signals to the outputs and they
consist of function bases, if they are increasing, bounded and almost satisfy the continuity property
(through the Kolmogorov Theorem [58]). Especially, their significance in modeling time-varying
signals is of particular interest [59].

In our implementation, an ANN with one input, one hidden and one output layer is employed.
Table 9 indicates the specific parameters of our ANN. The RelU function is adopted as activation
for the input and hidden layers, while the softmax for the output layer. This is due to the fact that
these activation functions seem to work better than other approaches as is proven through the deep
learning paradigm [25]. The ANN parameters are presented in Table 9.
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Table 9. Parameters of the Artificial Neural Networks.

Parameter Values

Number of hidden neurons 6
Activation function applied for the input and hidden layer RelU

Activation function applied for the output layer Softmax
Optimizer network function Adam

Calculated loss sparce categorical cross-entropy
Epochs used 100

Batch size 10

5.2.6. Convolutional Neural Networks (CNNs)

CNNs exploit machine learning paradigms on deep structures. It firstly extracts a set of appropriate
features from the raw data, by applying convolutions on the input signals propagating them into deep
layers while at the last layer a classification is carried out to assign the input data into classes but on
the use of the deep features identified by the convolutional layers. CNNs utilize trainable filters and
pooling operations on their input resulting in a hierarchy of increasingly complex features [25,60,61].
Convolutional layers consist of a rectangular grid of neurons (filters), each of which takes inputs from
rectangular sections of the previous layer. Each convolution layer is followed by a pooling layer in which
subsamples block-wise the output of the precedent convolutional layer and produce a scalar output for
each block. Formally, if we denote the k-th output of a given convolutional layer as hk in which the filters
are determined by the weights Wk and bias bk, then the hk is obtained as:

hk
ij = g((Wk ∗ x)ij + bk) (4)

where x stands for the input (KPIs values) of the convolutional layer, and indices i and j correspond to
the location of the input where the filter is applied. The star symbol (∗) stands for the convolution
operator and g(· ) is a non-linear function. Table 10 provides the paramaters of the CNN method.

Table 10. Parameters of the Convolutional Neural Networks.

Parameter Values

Model Sequential (array of Keras Layers)
kernel size 3
pool size 4

Activation function applied RelU
Calculated loss categorical cross entropy

Epochs used 100
Batch size 128

5.2.7. Naïve Bayes

Naïve Bayes classifiers are a family of probabilistic classifiers based on applying Bayes’ theorem
with strong independence assumptions between the features. These classifiers are highly scalable,
requiring a number of parameters linear in the number of variables (features/predictors) in a learning
problem [62]. Maximum-likelihood training can be done by evaluating a closed-form expression,
which takes linear time, rather than by expensive iterative approximation as used for many other types
of classifiers.

5.2.8. Logistic Regression

Logistic regression is a statistical model that in its basic form uses a logistic function to model
a binary dependent variable [63]. Mathematically, a binary logistic model has a dependent variable
with two possible values, such as pass/fail, which is represented by an indicator variable, where the
two values are labeled 0 and 1. The defining characteristic of the logistic model is that increasing
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one of the independent variables multiplicatively scales the odds of the given outcome at a constant
rate, with each independent variable having its own parameter. Table 11 provides the main logistic
regression parameters.

Table 11. Parameters of the logistic regression.

Parameter Values

Maximum number of iterations 300
algorithm used in optimization L-BFGS
weights associated with classes 1

5.3. Applied Dataset

For our experiments, we took as a basis an extended set of realistic data generated in accordance
to the pattern characteristics identified via the NPS bias analysis. In particular, we have enriched
the available dataset of real data (Section 4.1) with the production of a set of realistic randomized
data reaching a total of 10,800 surveys as an input to our experiments. These surveys included
the NPS class label (Promoter, Passive, Detractor) and 9 CX attributes (Tariff Plan, Network Voice,
Network Data, Billing, Call Center, Shops, Website, Mobile App, and Roaming) with values from
0–10, as explained in Section 3. Moreover, a second version of the datasets included not only the
NPS class and the CX attributes, but also a classification based on an NPS bias metric (1 for positively
biased and 2 for negatively biased cases). This extended dataset allows for the investigation of the
machine learning algorithms’ performance in the case that NPS bias is provided as an additional
input. These parameters were the features that we used to feed the different machine learning neural
networks. In our dataset, out of the total of 10,800 survey entries, there were 3769 promoters, 4072
passives and 2959 detractors.

5.4. Experimental Results

The current section presents the results obtained from each method. The data were normalized
and split into Training, Validation and Test sets using 80:10:10 splits. We train a set of machine learning
models to estimate the NPS customer class (Promoter, Passive, Detractor) from a subset of CX attributes.
The proposed methodology involved data selection, dimensionality reduction, and samplers–classifiers
combinatory approaches. As such, all the above fields were investigated in terms of their impact on the
NPS class identification problem. Their performance was quantified by using traditional performance
measures as accuracy, precision, recall, and F1 score (Appendix A) based on the adopted well-known
machine learning algorithms described in Section 5.2. Python scikit-learn and Tensorflow/Keras libraries
are used for data processing, model development and performance evaluation. The hyperparameters of
the ML methods are provided in Section 5.2.

Since our data are signals of relatively low dimensions, the computational cost for executing
the machine learning algorithms (i.e., testing cost) is almost negligible and can be implemented in
real-time. In addition, the highest computational cost for training is of the Artificial Neural Network
(ANN) structure and of the Convolutional Neural Networks (CNN). In particular, the computational
cost for training the ANN is about 49 ms and for the CNN about 110 ms. Both costs have been estimated
on a laptop of Intel i7 processor and of 16 GB memory. These costs are, in fact, the heaviest load of our
machine learning algorithms.

Two different versions of the machine learning algorithms were applied based on the two versions
of the available datasets: (a) the first version aimed at the prediction of the NPS class (Promoter, Passive,
Detractor) using as input the satisfaction scores on the 9 CX attributes and (b) the second version aimed
at the prediction of the NPS class using as input both the satisfaction scores on the 9 CX attributes and
the NPS bias. The results for these versions are presented in Figures 7 and 8, respectively.



Technologies 2020, 8, 76 15 of 22

Figure 7. Comparison of the classification metrics for Dataset 1 results (input: CX attributes only).

Figure 8. Comparison of the classification metrics for Dataset 2 results (input: CX metrics plus
NPS Bias).

As we can see from Figure 7, if we do not consider the NPS bias information, Naïve Bayes and
CNN, followed by SVM and logistic regression, are the best performing models in terms of F1-score.
Figure 8 indicates that in the case that NPS bias information becomes available, random forest ANNs
and CNNs followed by linear regression, SVM and logistic regression posted the best results overall.

It should be noted that the NPS Bias significantly improves the performance of all the examined
ML methods. As we can see by the comparison of Figures 7 and 8, this improvement is reflected in all
the performance metrics, thus confirming the results observed in the initial analysis, which was based
on the exploitation of monthly data using logistic regression (Section 4).

6. Personal Data Protection Rules and Ethical Issues

A major aspect of this research is how to protect the personal data of the participants, implying that
our work should be carried out under strict ethical standards, for example, in relation to protecting
humans’ data and their privacy, confidentiality and consent. Towards this, three main actions should be
taken into account. The first concerns the written consensus of participants to allow for processing their
personal data and information. The second deals with the secure storage, processing and management
of these data and the third with the lawful basis in exploiting data from third sources.

Written Consensus Forms: Regarding data received by humans, a written consensus
of the subjects is always required when transferring personal individualized information from the
subjects to the analysts. Children and vulnerable subjects are excluded since they are not able to
give consensus. Thus, only adults who are able to give consensus will allow to share their data.
Participation in data sharing is totally voluntary and no participant shall be coerced into taking part in
such process. Participants have the right to decline taking part in this sharing process at any given
moment without giving any reason or explanation and even after giving their consent. Participants are
informed that dropping out of the study at any time, for any reason, will not have any penalization or
negative effects on them. Before participants give their consent they receive clear and unambiguous
information in their own language on the terms of the research study. For example, the subjects are
informed about: (a) what the validation study is about, (b) who is carrying out this validation, (c)
the funding scheme, (d) any potential benefit to individuals or groups, (e) what they will have to
do, (f) duration of the experiment, (g) what the experiment/pilot/test findings will be used for, (h)
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what personal information will be collected and stored, (i) what is the revocation process in case the
participant wants to delete all the stored data referred to him/her at any time.

Data Management: As far as the management of the data, these are stored and held securely as per
legal, ethical and good practice requirements. That is, databases used would be password protected
and separation of humans’ identifiable master list held separate from the research database, which
would use numbered subject codes. We give special attention to the confidentiality of data storage
and processing. We commit to implementing all appropriate technical and organizational measures
necessary in order to protect potential personal data against accidental or unlawful destruction or
accidental loss, alteration, unauthorized disclosure or access, and against all other unlawful forms of
processing, taking into account the particularity of the performed processing operations. Personal data
are stored securely on a password-protected computer or an encrypted hard-drive kept in secure
premises, only used for the purpose for which they were collected and deletion immediately after that
purpose is fulfilled. Any access is granted only to authorized partners for data handling. Furthermore,
access to information or data input (even change) will also be restricted only to authorized users
to ensure their confidentiality and reserved only for those partners that collect and provide data.
In general, the following principles are followed:

• Personal data of participants are strictly held confidential at any time of the research;
• No personal data are centrally stored. In addition, data are scrambled where possible and

abstracted and/or anonymized in a way that does not affect the final project outcome;
• No collected data are utilized outside the scope of this research or for any other secondary use.

Secondary Use of Data: Finally, in the case that we further process previously collected personal
data, an explicit confirmation that we have the lawful basis for the data processing and that the
appropriate technical and organizational measures are in place to safeguard the rights of the data
subjects is included.

7. Discussion

The findings from the experiments we conducted in this paper could be summarized in the following:

(a) A set of scenarios was tested by changing the mix of random and real data in the training
data set. The results indicated that the contribution of randomly generated data led to similar
results (in terms of the metrics presented in Figures 7 and 8). Although the incorporation of
the randomly generated data eliminated the potential overfitting effects, it did not increase the
achieved performance of the models tested. To this end, the next research step in this direction
will be to further enhance the random data generator through the application of Generative
Adversarial Networks (GANs) [39].

(b) The comparative analysis of all the examined models indicated that despite the differences
observed in the performance metrics, at this stage we cannot identify a single model as the one
with dominant performance for NPS classification analysis. It appears that linear and logistic
regression exhibit similar performance with other ML algorithms.

(c) The introduction of the NPS bias label delivers substantial improvement in the performance
metrics of all the tested algorithms. The proposed method provides fertile ground for the better
understanding of the NPS key drivers, which in turn will allow to apply targeted actions based
on separate analysis of positively and negatively biased customers, as described in Section 3.
The next research step in this case will be to verify whether the statistical results of this paper
are associated with causality. This can be achieved through the comparison of the key drivers’
analysis results with the free comments that the surveyed customers are asked to provide
(sentiment analysis).
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8. Conclusions

The paper addresses the issue of NPS key drivers’ analysis following a two-step approach.
In the first step, a novel classification of customers based on “NPS bias” definition is proposed.
This classification, which is valid for descriptive analysis, leads to the identification of two sub-groups
of customers (namely the positively and negatively biased customers). The new classification allows
for the employment of the same NPS scoring process and seems to have an improved performance in
terms of accuracy and F1-score, compared to the original NPS analysis. The paper also provides an
example of how the proposed method can support the prioritization of CX actions based on logistic
regression and a set of monthly NPS survey data.

In the second step of the analysis, the revealed NPS scoring pattern is exploited so as to create a
generator of realistic NPS survey data. This is vital for investigating the application of ML algorithms
as a means for a more accurate NPS survey analysis. Several state-of-the-art ML algorithms are
considered for addressing the issue of NPS class prediction. It should be noted that the ML algorithms
are applied on two datasets: the first one includes only the CX attributes satisfaction score, while the
second one also incorporates the “NPS bias” label as an additional input. The results indicate that the
performance of certain ML algorithms, such as CNNs, ANNs and random forests, is quite satisfactory
in most performance metrics. The result analysis also confirms that the “NPS bias” classification leads
to substantially improved performance, which was observed in the first step using logistic regression.

Finally, the paper results strongly indicate that the proposed “NPS bias” classification is a valid
descriptive analytics method for supporting business decision making. For the telecommunication
sector, this decision making could include several attributes, such as tariff policy and billing, customers’
satisfaction, on-line (e-)services, and mobile (m-)services. Moreover, the experimental results helped
the authors to identify the next research steps in this topic. These steps include the investigation of
methods like GANs for the random generation of data and the application of sentiment analysis on
the free comments that surveyed customers provide, so as to verify the causality of the NPS bias
classification analysis. Another important issue is the use of a multi-dimensional index instead of a
single metric such as the NPS for identifying the customers’ experience. This index can further increase
the performance but it may increase the complexity as well.
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Appendix A. Performance Metrics

Appendix A.1. Confusion Matrix

In the NPS classification problem, the applied machine learning algorithms predict the class label,
either with success or with misclassification of some non-detects as detects. The outputs of a binary
classification problem are typically used to form the table of confusion, which is a 2× 2 matrix that
reports the number of true positives (TP), false positives (FP), false negatives (FN), and true negatives
(TN). Given these values we are able to calculate various performance metrics regarding the algorithm
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detection performance. In the NPS classification problem, however, we have three classes; Promoters,
Passives and Detractors. For that reason, we need to apply performance metrics for a 3× 3 mutli-class
confusion matrix [64] (see Table A1).

Each row of the matrix represents the instances in a predicted class, while each column represents
the instances in an actual class, or vice versa. The confusion matrix shows the ways in which the
classification model is “confused” when it makes predictions. It can give insight not only into the
errors being made by a classifier, but more importantly the type of the resulting errors.

Table A1. The NPS classification confusion matrix.

Actual Class

Detractors Passives Promoters

Pr
ed

ic
te

d-
C

la
ss Detractors C1,1 C1,2 C1,3

Passives C2,1 C2,2 C2,3

Promoters C3,1 C3,2 C3,3

Appendix A.1.1. Accuracy

Accuracy measures the model’s overall performance in correctly identifying all classes. This metric
is valid for both binary and multi-class classification. The accuracy formula stands as follows:

Accuracy(i) =

N
∑

k=1
Ci,i

N
∑

k=i

N
∑

m=i
Ck,m

(A1)

Apparently, we want the accuracy score to be as high as possible, but it is important to note that
accuracy may not always be the best metric to use, especially in cases of a dataset that has imbalanced
data. This happens when the distribution of data is not equal across all classes.

Appendix A.1.2. Precision and Recall

Precision, also called positive predictive value, is the fraction of relevant instances among the
retrieved ones, while recall, known also as sensitivity, is the fraction of the total amount of relevant
instances that were actually retrieved. Both these metrics, precision and recall, are therefore based on
an understanding and measure of relevance.

In a binary classification problem, precision is defined as the ratio of true positives to the total
positive predictions (i.e., true positives plus false positives).

In the NPS multi-class confusion matrix the Precision metric can be defined in two basic ways
called “macro” and “micro” in a Python scikit-learn module [65]:

Precision (macro) =
1
N

N

∑
i=1

TP(i)
TP(i) + FP(i)

(A2)

Precision (micro)(i) =

N
∑

k=1
Ci,i

N
∑

k=i
Ck,i

(A3)

When a model identifies an observation as a positive, this metric measures the performance
of the model by correctly identifying the true positive from the false positive. This is a very robust



Technologies 2020, 8, 76 19 of 22

matrix metric for multi-class classification and the unbalanced data. The closer the precision value to 1,
the better the model.

The recall metric, in a binary classification problem, is defined as the ratio of true positive
predictions to the total number of actual positive class instances (i.e., true positive plus false negative
instances). In the NPS multi-class confusion matrix the recall metric can be defined in two basic ways
called “macro” and “micro” in the Python scikit-learn module [65]:

Recall (macro) =
1
N

N

∑
i=1

TP(i)
TP(i) + FN(i)

(A4)

Recall (micro)(i) =

N
∑

k=1
Ci,i

N
∑

k=i
Ck,i

(A5)

This metric measures a model’s performance in identifying the true positive out of the total
positive cases. The closer the recall value to 1, the better the model. As is the case with the precision
metric, this metric is a very robust matrix for multi-class classification and the unbalanced data.

Note that in the current paper the “macro” option of metrics’ calculation has been exploited.

Appendix A.1.3. F1-Score

The F1-Score metric is a measure of a test’s accuracy. It considers both precision and recall metrics
of the particular test. In particular, the F1-Score is defined as the weighted harmonic mean of the test’s
precision and recall metrics:

F1 =
2

Recall−1 + Precision−1 = 2× Recall× Precision
Recall + Precision

(A6)

The F1-Score reaches the best value, meaning perfect precision and recall, at the value of 1.
The worst F1-Score, which means lowest precision and lowest recall, would be a value of 0. Moreover,
having an imbalance between precision and recall, such a high precision and low recall, can give us an
extremely accurate model, but classifies difficult data incorrectly. We want the F1-Score to be as high
as possible for the best performance of our model.
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